

Toggle navigation

	

	Home
	
Topics
	

 VIEW ALL TOPICS

	

	 Airbrush
	 American
	 Art
	 Art & Design
	 Articles & News Stories
	 Arts & Architecture
	 Arts & Ideas
	 Automobiles
	 Baseball
	 Bills
	 Biography
	 Biography & Memoir
	 Book
	 Book Excerpts
	 Books

	 Books - Fiction
	 Books - Non-fiction
	 Brochures
	 Business & Economics
	 Business & Leadership
	 Business/Law
	 Calendars
	 California
	 Chick Lit
	 Children's Literature
	 Christian
	 Comic Fiction & Satire
	 Comics
	 Computers & Technology
	 Contemporary Fiction

	 Contemporary Women
	 Cooking & Food
	 Corporate Finance
	 Court Filings
	 Court Records
	 Crafts
	 Creative Writing
	 Criminal Procedure
	 Crosswords
	 Current Economy
	 Databases
	 Diet & Nutrition
	 Documents
	 Economic Conditions
	 Economic History & Theory

	 Education
	 Emigration & Immigration Studies
	 Energy
	 Environmental Economics
	 Essays
	 Essays & Theses
	 Ethnic & Minority Studies
	 Ethnicity, Race & Gender
	 Faith & Spirituality
	 Family Sagas
	 Fan Fiction
	 Fantasy
	 Fiction & Literature
	 Film
	 Finance

	 Food & Wine
	 Gadgets
	 Games & Puzzles
	 Genealogy
	 Genre Fiction
	 Government & Politics
	 Government Documents
	 Graphic Art
	 Health & Lifestyle
	 Health & Medicine
	 Health & Wellness
	 Historical
	 History
	 History, Criticism & Theory
	 Homework

	 Horror
	 Humor
	 Industries
	 Information Technology & Theory
	 Instruction manuals
	 Internet & Technology
	 Japanese
	 Jewish
	 Journals
	 Law
	 Legal
	 Legal forms
	 Letters
	 Literature
	 Magazines/Newspapers

	Contact
	 Upload
	 Login / Register

	Home

	Topics

	Documents

	code.bk

code.bk

Published on January 2017 | Categories: Documents | Downloads: 44 | Comments: 0 | Views: 496

 of 422

×
Share & Embed

Embed Script

Size (px)
750x600
750x500
600x500
600x400

Start Page
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

URL

Close

 Download PDF
 Embed
 Report

Syuan Zro

 Subscribe 0

Comments

Content

Writing FCode Programs for PCI

An Introduction to FCode Programming Fully Compliant with IEEE Standard 1275-1994

Suite 115 480 San Antonio Road Mountain View, CA 94040-1218 U.S.A. Part No.: 000-0000-0000005-02 Revision C, August 1996

Copyright © 1994-1996 FirmWorks Suite 115, 480 San Antonio Road, Mountain View, California 94040-1218 U.S.A. Copyright © 1993 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this document may be reproduced in any form by any means without prior written authorization of FirmWorks and its licensors, if any. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Apple is a registered trademark and MPW and MPW 411 are trademarks of Apple Computer Inc. Ethernet is a registered trademark of Xerox Corporation. IBM is a registered trademark and PowerPC, PowerPC 601, PowerPC 603, PowerPC 604, PowerPC 620 are trademarks of International Business Machines Corporation. Intel386, Intel486, i486 and Pentium are trademarks of Intel Corporation. MS-DOS is a registered trademark and Windows is a trademark of Microsoft Corporation. Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the SMCC logo, and OpenBoot are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc. All other product names mentioned herein are the trademarks of their respective owners. THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. FIRMWORKS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

ii

Contents

Preface . Chapter 1: PCI Cards and FCode The Purpose of FCode Locating the FCode Program FCode Program Functions FCode ROM Format Interpreting FCode. Device Identification. Creating and Executing FCode Definitions . Elements of FCode Programming . Colon Definitions Stack Operations Data Types Additional Information Programming Style Commenting Code Coding Style Short Definitions Stack Comments A Minimum FCode Program FCode Classes Primitive FCode Functions System FCode Functions Interface FCode Functions Local FCode Functions . xv 1 1 1 2 3 3 3 4 5 6 6 7 7 8 8 8 8 9 10 12 13 14 14 15 17 17 18 18 19 19 20 21 21

Chapter 2:

Chapter 3:

Testing FCode Programs . FCode Source . Tokenizing FCode Source . FCode Binary Format . PCI Expansion ROM Header . FirmWorks pci-header / pci-header-end Tokenizer Extensions Testing FCode Programs on the Target Machine Configuring the Target Machine . Setting Appropriate Configuration Parameters

iii

“The Script” and the Open Firmware Startup Sequence Modifying the Expansion Bus Probe Sequence Getting to the User Interface Using the Command Line Editor of the User Interface . . . Using the User Interface to Test FCode Programs Using dl to Load From a Serial Port Downloading Multiple Files with dl and fload . . . Using the User Interface to Interpret an FCode Program . . Using the User Interface to Browse a Device Node Using the User Interface to Test a Device Driver. Device Node Methods Testing FCode Programs in Source Form Producing an FCode ROM Exercising an Installed FCode ROM. Chapter 4: Packages . Packages and Instances Package Data Static and Instance-specific Methods . . . Defining Methods, Properties and Data . Execution Tokens Intra-package Calling Methods Accessing Other Packages Inter-package Calling Methods execute-device-method and apply Plug-in Device Drivers Common Package Methods Basic Methods Supplemental Methods Package Data Definitions Instance Arguments and Parameters Package Addresses Package Mappings Modifying Package Properties Standard Support Packages TFTP Booting Support Package Deblocker Support Package Disk-Label Support Package Properties . Standard FCode Properties Standard Property Names Display Device Properties Network Device Properties Memory Device Properties MMU Properties General Properties For Parent Nodes . . Properties For PCI Parent Nodes Properties for PCI Child Nodes Detailed Descriptions of Standard Properties Manipulating Properties Property Creation and Modification . . . Property Values Property Encoding .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

22 23 24 24 26 27 28 32 34 35 35 39 40 40 41 41 45 46 46 47 47 47 49 51 52 52 53 53 54 55 56 57 57 57 58 59 61 63 65 65 65 66 66 66 67 67 68 69 84 84 85 85

Chapter 5:

iv

Writing FCode Programs for PCI

Property Retrieval . 85 Property Decoding . 86 Property-Specific FCodes . 87 Chapter 6: FCode Basic Concepts Parent-Relative Addressing. PCI Configuration Space PCI Configuration Space Header Open Firmware Memory Types . . . System Memory Scratch Buffer DMA Memory Device Memory . 89 89 90 91 93 93 94 94 96 99 99 99 100 101 102 102 103 109 121 121 122 122 122 122 124 124 124 124 124 131 131 131 132 132 132 139 139 140 140 140 140 142 142 142 142 144 145

Chapter 7:

Block and Byte Devices. Block Devices Byte Devices Required Methods Required Properties Device Driver Examples. Simple Block Device Driver Extended Block Device Driver Complete Block and Byte Device Driver

Chapter 8:

Network Devices Required Methods Required Device Properties Optional Device Properties network Device Driver Issues write Buffer Format read Buffer Format Use of DMA selftest Device Driver Examples. Simple Bootable Network Device Example Serial Devices Required Methods Required Properties Device Driver Examples. Simple Serial FCode Program . . Complete Serial FCode Program .

Chapter 9:

Chapter 10:

Display Devices . Required Methods . Required Properties Structure of a display Device Driver Probe Time Actions is-install Actions is-remove Actions is-selftest Actions display Device Driver Issues 16-Color Text Extension Recommended Practice 8-Bit Graphics Extension Use of Legacy VGA Addressing

v

Device Driver Example . 145 Generic VGA Display Device Driver . 145 Chapter 11: Memory-Mapped Buses . . . Required Methods PCI Bus Addressing PCI Required Properties . . . SBus Addressing. SBus Required Properties . . VMEBus Addressing VMEBus Required Properties . 153 153 156 156 157 157 157 158

Chapter 12: Appendix A:

Open Firmware Dictionary . 159 FCode Reference . . . FCode Primitives . . . FCodes by Function . . FCodes by Byte Value . FCodes by Name. 341 341 342 361 372 385 385 385 386 386 387 387 387 388 388 388 389 389

Appendix B:

Coding Style Typographic Conventions Use of Spaces if…else…then do…loop begin…while…repeat . begin…until…again . . Block Comments Stack Comments Return Stack Comments . Numbers Optimizations Case Insensitivity

Index . 391

vi

Writing FCode Programs for PCI

Tables

Table A Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Typographic Conventions . xvii Forth Data Type Definitions . Stack Item Notation . FCode Tokenizer Directives . FCode Binary Format . FCode Header Format . System Start-up Control Primitives . Required Command Line Editor Keystroke Commands Optional Command Line Editor Keystroke Commands. Optional Command Line History Keystroke Commands Optional Command Completion Keystroke Commands File Download/Execute-related User Interface Commands FirmWorks/Sun File Download/Execute-related User Interface Extensions . Commands for Browsing the Device Tree. Package Access FCodes . Manipulating phandles and ihandles . Method-Access Words. TFTP Package Methods . Deblocker Package Methods . Disk Label Package Methods . Standard Device Types . "interrupts" Property Value Encoding . Child-Parent Address Relationships for a PCI Node in a PPCRP Machine . . "status" Property Values. Property-specific FCodes . Required Properties of Block and Byte Devices Required Network Device Properties . Optional Network Device Properties . Serial Driver Required Properties . Required Display Device Properties . 16 Color Text Extension Color Assignments Required PCI Properties. Required SBus Properties . Required VMEbus Properties. Escape Sequences in Text Strings. “Step” Mode Commands for the Source-Level Debugger. 7 9 13 18 18 22 24 24 25 26 26 26 34 48 49 49 58 59 61 72 74 80 83 87 101 122 122 131 140 143 156 157 158 160 206

vii

Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Table 46 Table 47 Table 48 Table 49 Table 50 Table 51 Table 52 Table 53 Table 54 Table 55 Table 56 Table 57 Table 58 Table 59 Table 60 Table 61 Table 62 Table 63 Table 64 Table 65 Table 66 Table 67 Table 68 Table 69 Table 70 Table 71 Table 72 Table 73 Table 74 Table 75 Table 76 Table 77 Table 78 Table 79 Table 80 Table 81 Table 82 Table 83 Table 84 Table 85 Table 86 Table 87 Table 88 Table 89

FirmWorks/Sun “Step” Mode Extensions NVRAM Script Editor Keystroke Commands security-mode Settings "status" Property Value Descriptions Stack Manipulation . Single-Precision Arithmetic Operations. Bitwise Logical Operations Double Number Arithmetic Operations Memory Access . 64-Bit Memory Access. Atomic Access . 64-Bit Atomic Access . Data Exception Tests . Comparison Operations Text Input. ASCII Constants . Numeric Input . Numeric Primitives . Numeric Output . General-purpose Output Formatted Output . begin Loops . Conditionals . case Statements . do Loops . Control Words . Strings. Defining Words . Dictionary Compilation 64-Bit Dictionary Compilation Dictionary Search . Address Arithmetic . 64-Bit Address Arithmetic Data Type Conversion 64-Bit Data Type Conversion Memory Buffers Allocation. Miscellaneous Operators Internal Operators, (invalid for program text) Memory Allocation . Properties . Commmonly-used Properties System Version Information Device Node Creation. Self-test Utility Routines Time Utilities . Machine-specific Support. Terminal Emulator Interface User-set Terminal Emulator State Values Terminal Emulator-set Terminal Emulator State Values Display Device Low-level Interface defer Words . . . Frame Buffer Parameter Values* Font Operators . One-bit Framebuffer Utilities. Eight-bit Framebuffer Utilities

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

206 281 308 317 342 342 343 343 343 344 345 345 345 345 346 346 346 347 347 348 348 348 348 348 349 349 349 350 350 350 351 351 351 352 352 352 353 353 354 355 355 356 356 356 356 356 356 357 357 357 357 358 358 359

viii

Writing FCode Programs for PCI

Table 90 Table 91 Table 92 Table 93 Table 94 Table 95 Table 96 Table 97

Package Support Asynchronous Support . . Miscellaneous Operations. Interpretation Error Handling FCodes by Byte Value . . . FCodes by Name Forth Optimizations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

359 360 360 360 360 361 372 389

ix

x

Writing FCode Programs for PCI

Figures

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PCI Expansion ROM format . Relationship of Package to Instance Record. An Instance Chain for /pci/framus An Instance Chain for /pci/framus with obp-tftp Support . PCI Configuration Space Header Type 00h Hypothetical System with Plug-in Peripheral Card Sample Device Tree . write Method Input Buffer Format Network Packet Format . 2 42 43 45 91 94 102 123 123

xi

xii

Preface

This manual, Writing FCode Programs for PCI, is derived from the Sun Microsystems manual Writing FCode Programs with adaptations speciﬁc to IEEE Standard 1275-1994 and to PCI FCode drivers.

Who Should Use This Book

This manual is written for designers of PCI interface cards and other devices that use the FCode programming language. It assumes that you have some familiarity with PCI card design requirements and Forth programming. This manual is oriented toward those developing FCode applications for PCI peripherals. However, most of the material applies to any FCode driver. The FCode language is deﬁned by IEEE Standard 1275-1994 Standard for Boot Firmware (hereafter referred to as Open Firmware). The speciﬁcs of FCode for the PCI bus are deﬁned in the PCI Bus Binding to IEEE Standard 1275-1994 1.6 (or later). This manual also assumes that you have read and understood the PCI Local Bus Speciﬁcation, Revision 2.1 (or later).

How This Book Is Organized

s s s s s s s

s s

Chapter 1, “PCI Cards and FCode”, introduces the basic relationships between FCode device drivers and the hardware that they control. Chapter 2, “Elements of FCode Programming”, introduces the basic elements of FCode, stack notation, and programming style. Chapter 3, “Testing FCode Programs”, describes the process of producing FCode programs, from source ﬁle to testing working programs. Chapter 4, “Packages”, describes the basic units of FCode program function. Chapter 5, “Properties”, describes properties, which deﬁne how an FCode device driver program “sees” the hardware that it controls. Chapter 6, “FCode Basic Concepts”, discusses concepts that are common to most or all FCode drivers. Chapter 7, “Block and Byte Devices” through Chapter 11, “Memory-Mapped Buses” describe currently-deﬁned device types, programming requirements, and give some examples of device drivers for the various device types. Chapter 12, “Open Firmware Dictionary”, describes currently-deﬁned FCode words, their functions and use, with brief programming examples. Appendix A, “FCode Reference”, lists all currently-deﬁned Fcode words according to functional grouping, name, and byte value.

xiii

s

Appendix B, “Coding Style”, contains an Open Firmware coding guideline.

Related Books and Speciﬁcations

This manual does not pretend to cover everything you need to know to write FCode drivers for PCI cards. You’ll have to read some other books, too. For information about Open Firmware, see the following manuals and Internet resources:

s s

s

s

IEEE Standard 1275-1994 Standard for Boot (Initialization Conﬁguration) Firmware, Core Requirements and Practices (IEEE Order Number SH17327. 800-678-4333. US$87.) Open Firmware “binding” documents are available by anonymous FTP from ftp://playground.sun.com/pub/p1275/bindings. Among the bindings that may be of interest is: s PCI Bus Binding to IEEE Standard 1275-1994 1.6 (or later). Open Firmware “recommended practice” documents are also available by anonymous FTP from ftp://playground.sun.com/pub/p1275/practice. Among the recommended practice documents that may be of interest are: s 16-color Text Extension 1.2 (or later). s 8-bit Graphics Extension 1.2 (or later). Open Firmware Command Reference, FirmWorks PN 000-0000-0000006-02. US$50 plus shipping, handling and applicable sales tax.

Since Open Firmware is a living technology that is constantly being enhanced by the Open Firmware Working Group, you may want to monitor their FTP site and/or Web page at http://playground.sun.com/pub/p1275 for changes and additions to Open Firmware documentation. Working Group meetings are open to all interested parties. See the Working Group’s Web page for details. For information about PCI, see the following manual:

s

PCI Local Bus Speciﬁcation 2.1 (or later). Available from the PCI Special Interest Group, Box 14070, Portland, OR 97214, 800-433-5177, 503-234-6762 (fax) . US$25 plus shipping.

For more information about Forth and Forth programming, see:

s s s s

Programming Languages - Forth, American National Standards Institute, Inc. Forth: A Text and Reference, Mahlon G. Kelly and Nicholas Spies. Prentice Hall, 1986. Starting FORTH, Leo Brody. FORTH, Inc., second edition, 1987. Forth: The New Model, Jack Woehr. M & T Books, 1992.

Information about FirmWorks publications can be obtained with an email request to info@ﬁrmworks.com, from ftp://ftp.ﬁrmworks.com/pub/open_ﬁrmware/literature or from FirmWorks World Wide Web page at http://www.ﬁrmworks.com.

Development Tools

FirmWorks has available PCI FCode Program developer tools that include an Open Firmware FCode tokenizer and a BIOS compressor. In many cases, the compressor makes it possible to include an FCode driver with an existing BIOS image in a card’s existing PCI Expansion ROM without increasing the size of the Expansion ROM.

xiv

Writing FCode Programs for PCI

If you don’t have the PCI Developer’s Kit and would like more information about it, contact FirmWorks at info@ﬁrmworks.com.

What Typographic Changes and Symbols Mean

The following table describes the typeface changes and symbols used in this book.

Table A Typographic Conventions Typeface or Symbol AaBbCc123 AaBbCc123 AaBbCc123 AaBbCc123 Meaning The names of commands, ﬁles, and directories; on-screen computer output What you type, contrasted with on-screen computer output Command-line placeholder: replace with a real name or value Book titles, new words or terms, or words to be emphasized MS-DOS prompt FirmWorks Open Firmware command prompt Apple Open Firmware command prompt UNIX C shell prompt UNIX Bourne and Korn shell prompt Superuser prompt, all shells Example Edit your autoexec.bat ﬁle. Use dir to list all ﬁles. C:\> dir To delete a ﬁle, type del ﬁlename. Read Chapter 6 in User’s Guide. These are called class options. C:\> ok 0> system% system$ system#

Code samples are included in boxes and may display the following: C:\> ok 0> % $ #

This manual follows a number of typographic conventions:

s

Keys are indicated by their name. For example: Press the Return key. When you see two key names separated by a dash, press and hold the ﬁrst key down, then press the second key. For example: To enter Control-C, press and hold Control, then press C, then release both keys. Although the keyname (i.e. C in the preceding example) is shown in uppercase, the actual keystroke may be lowercase.

s

s

When you see two key names separated by a space, press and release the ﬁrst key and then press and release the second key. For example: To enter Escape B, press and release Escape, then press and release B. Although the keyname (i.e. B in the preceding example) is shown in uppercase, the actual keystroke may be lowercase.

s

In a command line, square brackets indicate an optional entry and italics indicate an argument that you must replace with the appropriate text. For example: cd [directory]

xv

s

The Open Firmware system prompts and responses shown in this manual are based upon those of the FirmWorks implementation. Other Open Firmware implementations may format prompts and responses differently. When a table is too large to ﬁt on a single page, the row separator is omitted from the bottom of the portion of the table that ﬁts on the ﬁrst page. This is to alert you to the fact that the table continues on the following page. Similarly, the title line of the portion of the table on the second and succeeding pages contain the notation (Continued) to alert you to the fact that the table continues from the preceding page. For example, the ﬁrst portion of such a split table would look like:

s

Table 1 Command probe-scsi

Diagnostic Test Commands Description Identify devices attached to a SCSI bus.

probe-scsi-all [device-path] Perform probe-scsi on all SCSI buses installed in the system below the speciﬁed device tree node. (If device-path is absent, the root node is used.)

while the second portion of the same table would look like:

Table 1 Command test device-speciﬁer Diagnostic Test Commands (Continued) Description Execute the speciﬁed device’s self-test method. For example: test floppy - test the ﬂoppy drive, if installed test /memory - test number of megabytes speciﬁed in the selftest-#megs NVRAM parameter; or test all of memory if diag-switch? is true test net - test the network connection Test all devices (that have a built-in self-test method) below the speciﬁed device tree node. (If device-speciﬁer is absent, the root node is used.)

test-all [device-speciﬁer]

Were this table contained within a single page, it would look like:

Table 1 Command probe-scsi Diagnostic Test Commands Description Identify devices attached to a SCSI bus.

probe-scsi-all [device-path] Perform probe-scsi on all SCSI buses installed in the system below the speciﬁed device tree node. (If device-path is absent, the root node is used.) test device-speciﬁer Execute the speciﬁed device’s self-test method. For example: test floppy - test the ﬂoppy drive, if installed test /memory - test number of megabytes speciﬁed in the selftest-#megs NVRAM parameter; or test all of memory if diag-switch? is true test net - test the network connection Test all devices (that have a built-in self-test method) below the speciﬁed device tree node. (If device-speciﬁer is absent, the root node is used.)

test-all [device-speciﬁer]

xvi

Writing FCode Programs for PCI

1

Chapter 1

PCI Cards and FCode

The Purpose of FCode

Each PCI card identiﬁes itself with a set of up to 64, 32-bit “conﬁguration registers”. The purpose of these registers is to provide a standard set of descriptive information in a known place. The conﬁguration registers contain data identifying the type of card, its manufacturer and various other characteristics of the card. In addition, a PCI card can have an “Expansion ROM” containing additional information such as a BIOS extension for the card or an FCode program. A BIOS extension provides a driver for the card to be used when the card is installed in a system that uses an Intel x86 compatible processor. An FCode program provides, at a minimum, additional descriptive information beyond that provided by the conﬁguration registers and can provide a processorindependent boot-time driver for use in Open Firmware-based systems. An FCode program can also contain (or can help the operating system to locate) processor-speciﬁc and operating system-speciﬁc OS drivers.

Locating the FCode Program

The ﬁrst 16 PCI conﬁguration registers are collectively known as the conﬁguration space header. Included within this header is the Expansion ROM base address register. If Bit 0 of this register is reset, the PCI card has no expansion ROM. If Bit 0 is set, the PCI card has one or more Expansion ROMs whose base address is speciﬁed by Bits 11 - 31 of the register. The ROM(s) can contain several different images to accommodate different machine and processor architectures. As shown in Figure 1, each such ROM image has a header record and a PCI Data Structure that together describe the image. The header record is located at the start of the image and contains a pointer to the PCI Data Structure. The PCI Data Structure, in turn, contains a number of ﬁelds including:

s

A code type ﬁeld This ﬁeld identiﬁes the type of code contained within the image An image length ﬁeld This ﬁeld deﬁnes the length of the image in integral multiples of 512 bytes.

s

1

Header Image 0 PCI Data Structure

Image 1

end of code Image N 512 byte boundary

Figure 1 PCI Expansion ROM format

s

An indicator ﬁeld This ﬁeld deﬁnes whether there are additional images located after this image.

FCode Program Functions

If the code type ﬁeld has a value of 1, the ROM contains an FCode Program that, at a minimum, identiﬁes the device and its characteristics. An FCode Program may also include an optional software driver that lets you use the card as a boot device or a display device during booting. The software driver may also include diagnostic selftest code. In addition to designing hardware, the process of developing PCI devices must include the writing, testing, and installing of an FCode driver for the device if it is to be used as a boot device in an Open Firmware-based system. These drivers, if present, serve three functions:

s s s

To exercise the device during development, and to verify its functionality. To provide the necessary driver to be used by the system boot ROM during powerup. To provide device conﬁguration information.

In practice, these functions overlap substantially. The same code needed by the system boot ROM usually serves to signiﬁcantly test the device as well. The ROM code is used before and during the boot sequence. After the boot sequence ﬁnishes, and while not using the Open Firmware User Interface, most PCI devices are controlled with operating system device drivers. Even if the PCI device is not a boot device, there are still advantages to providing a simple FCode driver that describes the characteristics of the device. Some operating systems (e.g. MacOS) are able to use this descriptive information to automatically attach operating system drivers to the device. FCode Programs are written in the FCode programming language, which is similar to ANS Forth. FCode is described in more detail in Chapter 2 “Elements of FCode Programming”.

2

Writing FCode Programs for PCI

FCode ROM Format

An FCode ROM image is located within the PCI Expansion ROM on a 512 byte boundary. Its size typically ranges from 60 bytes (for a simple card that identiﬁes itself but does not need a driver) to 1-4K bytes (for a card with a simple boot driver) to 10K bytes (for a device with a complex boot driver). It is good practice to make FCode boot drivers as short as is practical. An FCode ROM image for PCI is organized as follows:

s s s s

Header (26 bytes: consisting of ROM signature and a pointer to the associated PCI Data Structure) PCI Data Structure (24 bytes: See the PCI Local Bus Speciﬁcation for details) Body (FCode program; 0 or more bytes). End Token (either end0, a zero byte, or end1, an alternative all 1’s byte).

Interpreting FCode

For each PCI slot containing a card, the following process is followed during boot-up to ﬁnd and interpret any FCode programs:

s s

s

s s s

s s

Scan all slots in numerical order. For each slot read the header type ﬁeld. s If the header ﬁeld type indicates a multi-function device, perform the following sequence for each function that is present. s Otherwise, perform the following sequence for the card’s Function 0. Create a number of properties from the information contained in the PCI conﬁguration registers. (See the PCI Bus Binding to IEEE Standard 1275-1994 for the details.) Determine whether the device contains an expansion ROM and, if so, whether that ROM contains an image containing an FCode program. If an FCode program is present, copy the FCode program into RAM and evaluate it If the function does not have an FCode program: s Create the "reg" and "name" properties from the information in the PCI conﬁguration registers. s If possible, create the "power-consumption" property from the state of the PRSNT1# and PRSNT2# connector. Disable ﬁxed address response by clearing the PCI conﬁguration address header’s command register. Enable Memory Space response by setting Bit 1 in the command register.

Device Identiﬁcation

An FCode ROM must identify its device. This identiﬁcation must include, at a minimum, the device name. Identiﬁcation information may include additional characteristics of the device for the beneﬁt of the operating system and the CPU boot ROM. The CPU’s FCode interpreter stores each device’s identiﬁcation information in a device tree that has a node for each device. Each device node has a property list that identiﬁes and describes the device. The property list is created as a result of interpreting the program in the FCode ROM.

PCI Cards and FCode

3

Each property has a name and a value. The name is a string and the value is an array of bytes, which may encode strings, numbers, and various other data types. See Chapter 5 “Properties” for more information.

Creating and Executing FCode Deﬁnitions

Many FCode programs create executable routines, called methods, that typically read from and write to device locations to control device functions. These deﬁnitions are also stored in the device tree node for that device. Once deﬁned, these routines may be executed under any of the following circumstances:

s s s

Interactively through the Open Firmware User Interface’s ok prompt (for selftest or other purposes). By the Open Firmware Client Interface (for using this boot or display during system start-up). Automatically by the Open Firmware Device Interface during FCode interpretation (for power-on initialization or other purposes).

4

Writing FCode Programs for PCI

2

Chapter 2

Elements of FCode Programming

FCode is a computer programming language deﬁned by IEEE Standard 1275-1994. FCode is semantically similar to ANS Forth, but is encoded as a sequence of binary byte codes representing a deﬁned set of Forth deﬁnitions. FCode has these characteristics:

s s s s s s s

The source format is machine and system independent. The binary format (FCode) is machine, system, and position independent. The binary format is compact. The binary format can be interpreted easily and efﬁciently. Programs are easy to develop and debug. The source format can easily be translated to binary format. The binary format can be translated back to source format.

Forth commands are called words, and are roughly analogous to procedures in other languages. Unlike other languages, such as C, which have operators, syntactic characters and procedures, in Forth every word is a procedure. A Forth word is named by a sequence of between one to 31 printable characters. A Forth program is written as a sequence of Forth word names separated from one another by one or more “whitespace” characters (i.e. spaces, tabs or line terminators). Forth uses a left-to-right reverse Polish notation, like some scientiﬁc calculators. The basic structure of Forth is: do this, now do that, now do something else, and so on. New Forth words are deﬁned as sequences of previously existing words. Subsequently, new words may be used to create still more words. FCode is a byte-coded translation of a Forth program. Translating Forth source code to FCode involves replacing the Forth word names (stored as text strings) with their equivalent FCode numbers. The tokenized FCode takes up less space in ROM than the text form of the Forth program from which it was derived, and can be interpreted more easily and rapidly than the text form. For purposes of this manual, the term FCode indicates both binary-coded FCode and the Forth programs written as ASCII text ﬁles for later conversion to binary-coded FCode.

5

Except where a distinction between the two forms is explicitly stated, the use of FCode in this manual can be assumed to apply equally to both FCode and Forth.

Colon Deﬁnitions

Three concepts are critical to understanding FCode (or Forth):

s

A colon deﬁnition creates a new word with the same behavior of a sequence of existing words. A colon deﬁnition begins with a colon and ends with a semicolon. Once a new word has been created it is immediately available, either for direct execution or for use in future colon deﬁnitions. Most parameter passing is done through a pushdown, last-in, ﬁrst-out stack.

s

s

Normally, the action associated with an FCode Function is performed when the FCode Function is encountered. This is called interpret state. However, you can switch from interpret state to compile state. In interpret state, FCode Functions are executed as they are encountered. Interpret state operates until encountering a “:”. The word “:” does the following:

s s

Allocates an FCode Number and associates it with the name immediately following the colon. Switches to compile state.

In compile state, FCodes are saved for later execution, rather than being executed immediately. The sequence thus compiled is installed in the action table as a new word, and can be later used in the same way as if it were a built-in word. Compile state continues until a “;” is read. The word “;” does the following:

s s

Compiles an end-of-procedure FCode word Switches to interpret state

After compilation, the newly-assigned FCode word can be either interpreted or compiled as part of yet another new word. If you deﬁne a new word having the same spelling as an existing word, the new deﬁnition supersedes the older one(s), but only for subsequent usages of that word. Here’s an example of a colon deﬁnition, deﬁning a new FCode word dac!:

: dac! (data offset --) dac + rw! ;

Stack Operations

Each FCode word is speciﬁed by its effect on the stack and any side effects, such as accessing memory. Most FCode words affect only the stack, by removing arguments from the stack, performing some operation on them, and putting the result(s) back on the stack. To aid understanding, conventional coding style requires that a stack diagram of the form (--) appear on the ﬁrst line of every deﬁnition of a Forth word. The stack diagram speciﬁes what the execution of the word does to the stack.

6

Writing FCode Programs for PCI

Entries to the left of -- represent those stack items that the word removes from the stack and uses during its operation. The rightmost of these items is on top of the stack, with any preceding items beneath it. In other words, arguments are pushed onto the stack in left to right order, leaving the most recent one (the rightmost one in the diagram) on the top. Entries to the right of -- represent those stack items that the word leaves on the stack after it ﬁnishes execution. Again, the rightmost item is on top of the stack, with any preceding items beneath it. In the previous example, the stack comment, beginning with “(” and ending with “)”, shows that dac! takes two parameters from the stack, and doesn’t replace them with anything when it’s done. You can place stack comments anywhere in a colon deﬁnition, and you should include them wherever they will enhance clarity. Following the stack comment in the preceding example are a series of words that describe the behavior of dac!. Executing dac! is the same as executing the list of words in its colon deﬁnition. Note that FCode words are separated by spaces, tabs, or newlines; “(data” is not the same as “(data”. Any visible character is part of a word, and not a separator. Although case is not signiﬁcant, by convention FCode is written in lower case.

Data Types

The terms shown in Table 1 describe the data types used by Forth.

Table 1 Notation byte cell An 8-bit value. The implementation-deﬁned ﬁxed size of a cell is speciﬁed in address units and the corresponding number of bits. Data-stack elements, return-stack elements, addresses, execution tokens, ﬂags and integers are one cell wide. On Open Firmware systems, a cell consists of at least 32-bits, and is sufﬁciently large to contain a virtual address. The cell size may vary between implementations. A “32-bit” implementation has a cell size of 4. A “64-bit” implementation has a cell size of 8. A 16-bit value. A 64-bit value; only deﬁned on 64-bit implementations, A 32-bit value.

Forth Data Type Deﬁnitions

Description

doublet octlet quadlet

double-cell A number represented by two cells. In memory, the cell at the lower address holds the more number signiﬁcant part of the number, and the address of that cell is used to identify the number. On the stack, the more signiﬁcant part of the number is on top of the less signiﬁcant part.

Additional Information

For more information about Forth programming needed to use available FCode primitives, refer to the Forth-related books listed in“Related Books and Speciﬁcations” on page xvi.

Elements of FCode Programming

7

Programming Style

Some people have described Forth as a write-only language. While it sometimes ends up that way (like any badly written computer language), it is possible to write Forth (and FCode) programs that can be read and understood by more than just the original programmer. In fact, well-written Forth programs can be very clean and easy to understand. See Appendix B “Coding Style” for detailed information about the style used in the existing Open Firmware FCode source base.

Commenting Code

Comment code extravagantly, then consider adding more comments. The comments can help you and others maintain your code, and they don’t add to the ﬁnal size of the resulting FCode ROM. Typical practice is to use “()” for stack comments and “\” for other descriptive text and comments. In your comments, describe the purpose of your Forth words, their interface assumptions and requirements, and any unusual aspects of the algorithm you use. Try to avoid simply translating low-level details of your code into English. Comments like, “increment the variable” are rarely helpful.

Coding Style

Study the examples in this book to see an indentation and phrasing style that is widely used in Open Firmware source code. Adoption of that style will make your code more easily readable by the many FCode programmers who are accustomed to that style. If you are tempted to chose a different style, consider the following: Communication among humans is enhanced by adherence to a uniform set of conventions. No matter how “good” your custom style may be, it is unlikely that the existing body of Open Firmware source code and FCode Programs will be rewritten in your new style.

Short Deﬁnitions

Keep word deﬁnitions short. If your deﬁnition exceeds half a page, try to break it up into two or more deﬁnitions. If it grows to a page or longer, you should break it up, if only to make the code easier to support in the future. A good size for a word deﬁnition is one or two lines of code. Keeping deﬁnitions short and of limited functionality improves readability, speeds debugging and increases the likelihood that the word will be re-usable. Remember: re-use of Forth words is a principal contributor to compact ROM images.

8

Writing FCode Programs for PCI

Stack Comments

Always include stack comments in word deﬁnitions. It can be useful to compare intended function with what the code really does. Here’s an example of a word deﬁnition with acceptable style.

\ xyz-map establishes a virtual-to-physical mapping for each of the \ useful addressable regions on the board 0 value status-register : xyz-map (--)

\ Base-address Size create-mapping then save virtual address my-address 4 map-low to status-register my-address 10.0000 0 d+ frame-buf-size map-low to frame-buffer-adr ; ((((virtaddr)) virtaddr))

Stack items are generally written using descriptive names to help clarify correct usage. See Table 2 for stack item abbreviations used in this manual.

Table 2 Notation | | ??? … < > <space> a-addr addr addr len byte bxxx char cnt len size dxxx <eol> false ihandle n n1 n2 n3 nu nu1 <nothing> o o1 o2 oct1 oct2 oaddr octlet Stack Item Notation Description Alternate groups of stack results are separated by | surrounded with spaces. (in -- addr len false | result true) means either (in -- addr len false) or (in -- result true). Individual stack item alternatives are separated by | without surrounding spaces. (in -- addr len|0 result) means either (in -- addr len result) or (in -- addr 0 result). Unknown stack item(s). Unknown stack item(s). If used on both sides of a stack comment, means the same stack items are present on both sides. Space delimiter. Leading spaces are ignored. Variable-aligned address. Memory address (generally a virtual address). Address and length for memory region. 8-bit value (low order byte in a cell). 7-bit value (low order byte in a cell, high bit of low order byte unspeciﬁed). Count or length. Double (extended-precision) numbers. 2 cells, high quadlet on top of stack. End-of-line delimiter. 0 (false ﬂag). Pointer (handle) for an instance of a package. Normal signed, one-cell values. Signed or unsigned one-cell values. Zero stack items. Octlet (64 bit signed value). Octlet (64-bit) aligned address. An eight-byte quantity.

Elements of FCode Programming

9

Table 2 Notation phandle phys phys.lo phys.hi pstr quad qxxx qaddr str {text} "text<delim>” [text<delim>] true uxxx udxxx virt waddr word wxxx x x1 x.lo x.hi xt xxx? xy-str xylen xyz-sys (C: --) (--) (E: --) (R: --)

Stack Item Notation (Continued) Description

Pointer (handle) for a package. Physical address (actual hardware address). Lower/upper cell of physical address. Packed string. Quadlet (32-bit value, low order four bytes in a cell). Quadlet (32-bit) aligned address. Starting address of an unpacked string. Usually used in the form: xyz-str xyz-len Optional text. Causes default behavior if omitted. Input buffer text, parsed when command is executed. Text delimiter is enclosed in <>. Text immediately following on the same line as the command, parsed immediately. Text delimiter is enclosed in <>. -1 (true ﬂag). Unsigned positive, one-cell values. Unsigned positive double numbers. 2 cells, high quadlet on top of stack. Virtual address (address used by software). Doublet (16-bit) aligned address. Doublet (16-bit value, low order two bytes in a cell). Arbitrary, one cell stack item. Low/high signiﬁcant bits of a data item. Execution token. Flag. Name indicates usage (e.g. done? ok? error?). Address and length for unpacked string. Control-ﬂow stack items, implementation-dependent. Control ﬂow stack diagram. Used to describe the compile time behavior of words with different behaviors at compile-time and run-time. Run-time stack diagram. Execution stack diagram. Used with deﬁning words to describe the run-time behavior of a word deﬁned with that deﬁning word. Return stack diagram.

10

Writing FCode Programs for PCI

A Minimum FCode Program

If a PCI card is not needed during the boot process, a minimal FCode program that merely declares the name of the device and the location and size of on-board registers will often sufﬁce. Here is an example of an acceptable minimum program for a PCI card:

fcode-version2 " 0ABCDEF,bison" encode-string \ Create "reg" property \ The first entry must be for the configuration space header my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+ \ The next N entries document the active base address registers my-address my-space 0200.0010 or encode-phys encode+ 0 encode-int encode+ 1000 encode-int encode+ \ The next entry describes the Expansion ROM base address register my-address my-space 0200.0030 or encode-phys encode+ 0 encode-int encode+ 8000 encode-int encode+ " reg" property fcode-end

" name" property

The following should be noted about the preceding example:

s

s

s s

s

my-address and my-space leave a total of three numbers on the stack representing the phys.lo phys.mid phys.hi address representation of a PCI node. The value of "#address-cells" is 3 for PCI which is reﬂected by this format. The size argument for "reg" is a double number encoded from two integers (e.g. 0 and 0 for the conﬁguration space entry). This is due to the fact that the value of "#size-cells" is 2 for PCI which reﬂects PCI’s 64-bit address space. The conﬁguration space entry in the "reg" property of a PCI device must have a size of zero. The second entry in the "reg" property assumes a device whose base address register at offset 0x10 in the conﬁguration space header controls a 32-bit memory resource of size 4 KB. (See PCI Bus Binding to IEEE Standard 1275-1994 for the encoding details.) The third entry in the "reg" property assumes a device whose PCI Expansion ROM is 32 KB in size.

A similar minimum program for an SBus device is:

fcode-version2 " 0ABCDEF,bison"

encode-string

" name" property

my-address h# 20.0000 + my-space h# 100 reg fcode-end

Elements of FCode Programming

11

The following should be noted about this SBus example:

s

s s s

my-address and my-space each leave only a single number on the stack representing the phys.lo phys.hi address representation of an SBus node. The value of "#address-cells" is 2 for SBus which is reﬂected by this format. An offset of 0x200000 is being added to the value returned by my-address. The size argument of "reg" is a single number since "#size-cells" is 1 for SBus reﬂecting SBus’s 32-bit address space. Since:

„ „ „

The value of "#address-cells" is 2 for SBus The value of "#size-cells" is 1 for SBus The format for an SBus "reg" (as deﬁned in the binding IEEE Draft Standard P1275.2/D14a Supplement for IEEE 1496 (SBus) Bus) requires only a single entry

the reg method can be used to create the "reg" property. Note – The reg method is not useful in a PCI environment since reg can only work with buses whose "#address-cells" value is 2 and whose "#size-cells" value is 1. PCI is 3 and 2, respectively. PCI also requires multiple entries within the "reg" property and reg can only encode a single entry. If you wanted to add an address offset to a PCI device (as was done in the SBus example), you’d have to take care to add the offset to the phys.lo portion of the address while leaving phys.mid unaffected. This can be done most easily using double-precision addition as shown in the code fragment below:

\ The first entry must be for the configuration space header my-address h# 20.0000 0 d+ my-space encode-phys 0 encode-int encode+ 0 encode-int encode+

Both of the example programs create a "name" property whose value is “0ABCDEF,bison” that will be used to identify the device. The "name" property’s value should always begin with an identiﬁcation of your company. The preferred form of this identiﬁcation is the organizationally unique identiﬁer (OUI), a sequence of six, uppercase hexadecimal digits which are assigned by the IEEE Registration Authority Committee. OUI’s are guaranteed to be unique world-wide. (For more information about obtaining an OUI, please see the glossary entry for "name" in IEEE Standard 1275-1994.) As an alternative to the OUI, you may use a sequence of from one to ﬁve uppercase letters representing the stock symbol of your company on any stock exchange whose symbols do not conﬂict with the symbols of the New York Stock Exchange and the NASDAQ Exchange. All stock exchanges in the United States satisfy this requirement. If a non-US company’s stock is traded on US stock exchanges via “depository equivalents”, those symbols also satisfy this requirement. For those companies that have neither an OUI or a public stock symbol, an organizationally unique "name" property value must start with a company name that contains at least one lower case letter or that is longer than ﬁve characters thereby making it unlike a stock symbol (e.g. FirmWorks)

12

Writing FCode Programs for PCI

These sample programs could be extended by including additional code to declare additional properties, to create device methods, and/or to initialize the device after power-on.

FCode Classes

There are four general classes of FCode source words:

s

Primitives. These words generally correspond directly to conventional Forth words, and implement functions such as addition, stack manipulation, and control structures. System. These are extension words implemented in the boot ROMs, and implement functions such as memory allocation and device property reporting. Interface. These are speciﬁc to particular types of devices, and implement functions such as draw-character. Local. These are private word deﬁnitions, implemented and used by devices.

s

s

s

Each FCode primitive is represented in the PCI card’s ROM as a single byte. Other FCodes are represented in the PCI ROM as two consecutive bytes. The ﬁrst byte, a value from 1 to 0x0f, may be thought of as an escape code. One-byte FCode numbers range in value from 0x10 to 0xfe. Two-byte FCode numbers begin with a byte in the range 0x01 to 0x0f, and end with a byte in the range 0x00 to 0xff. The single-byte values 0x00 and 0xff signify “end of program” (either value will do; conventionally, 0x00 is used): Currently-deﬁned FCodes are listed in functional groups, in alphabetic order by name and in numeric order by FCode value in Appendix A, “FCode Reference”.

Primitive FCode Functions

There are more than 300 primitive FCode functions, most of which exactly parallel ANS Forth words, divided into three groups:

s s s

FCode words that generate a single FCode byte tokenizer macros tokenizer directives

Primitive FCode functions that have an exact parallel with standard ANS Forth words are given the same name as the equivalent ANS Forth word. Chapter 12 “Open Firmware Dictionary”, contains further descriptions of primitive FCodes. There are about another 70 tokenizer macros, most of which also have direct ANS Forth equivalents. These are convenient source code words translated by the tokenizer into short sequences of FCode primitives.

Elements of FCode Programming

13

tokenizer directives are words that generate no FCodes, but are used to control the tokenization process. tokenizer directives include the words shown in Table 3.

Table 3 Command alias emit-byte

FCode Tokenizer Directives

Stack Diagram Description Output speciﬁed FCode. Only works in tokenizer escape mode Enter tokenizer escape mode, allowing manual FCode generation. Exit tokenizer escape mode, resuming FCode interpretation Words deﬁned hereafter will be visible whenever this node is the current node. Words deﬁned hereafter will never be visible. Words deﬁned hereafter will be optionally visible as a function of the setting of the conﬁguration variable fcode-debug?. When used outside of a colon deﬁnition, change the tokenizer’s numeric conversion base to 10. When used inside a colon deﬁnition, append the phrase d# 10 base ! to the word being deﬁned. Interpret number in decimal; base is unchanged. When used outside of a colon deﬁnition, change the tokenizer’s numeric conversion base to 16. When used inside a colon deﬁnition, append the phrase d# 16 base ! to the word being deﬁned. Interpret number in hex; base is unchanged. When used outside of a colon deﬁnition, change the tokenizer’s numeric conversion base to 8. When used inside a colon deﬁnition, append the phrase d# 8 base ! to the word being deﬁned. Interpret number in octal; base is unchanged. Insert the speciﬁed ﬁle at this point.

(“new-name< >old-nmae< >” --) Create a new command equivalent to an existing command. (FCode# --)

tokenizer[(--)]tokenizer (--) external (--)

headerless (--) headers (--)

decimal

(--)

d# number hex

(-- n) (--)

h# number octal

(-- n) (--)

o# number fload

(-- n) ([ﬁlename<cr>] --)

System FCode Functions

System FCode functions are used by all classes of FCode drivers for various systemrelated functions. System FCode functions can be either service words or conﬁguration words.

s

Service words are available to the device’s FCode driver when needed for functions such as memory mapping or diagnostic routines. Conﬁguration words are included in the driver to document characteristics of the driver itself. These “properties” are made available for use by the operating system.

s

14

Writing FCode Programs for PCI

Interface FCode Functions

Interface FCode functions are standard routines used by the workstation’s CPU to perform the functions of the PCI card’s device. Different classes of devices will each use only the appropriate set of interface FCodes. For example, in order to display a character on the screen, Open Firmware calls the interface FCode draw-character. Previously, the FCode driver for the device controlling that screen must have assigned a device-speciﬁc implementation to draw-character. It does this as follows:

: my-draw (char --) \ "local" word to draw a character. … \ Definition contents. ; \ end of my-draw definition. : my-install (--) \ local word to install all interfaces. … ['] my-draw to draw-character … ;

When my-install executes, draw-character is assigned the behavior of my-draw.

Local FCode Functions

Local FCode functions are assigned to words deﬁned within the body of an FCode Program. There are over 2000 FCode byte values allocated for local FCodes. The byte values are meaningful only within the context of a particular driver. Different drivers re-use the same set of byte values.

Elements of FCode Programming

15

16

Writing FCode Programs for PCI

3

Chapter 3

Testing FCode Programs

FCode Source

An FCode source ﬁle is essentially a Forth language source code ﬁle. The basic Forth words available to the programmer are listed in Chapter 12 “Open Firmware Dictionary”. Typically, Forth source ﬁles are named with a .fth sufﬁx. FCode source ﬁles follow the same convention. FCode programs have the following format:

\ Title comment describing the program that follows fcode-version2 < body of the FCode program > fcode-end

fcode-version2 is a macro which directs the tokenizer to:

s s s

Prepare the tokenizer to tokenize the following source text. Output the start1 FCode. Output an FCode header. For a description of the FCode header see “FCode Binary Format” on page 18.

fcode-end is a macro that tells the tokenizer to:

s s s

Output the end0 FCode that marks the end of an FCode program. (end0 must be at the end of the program or erroneous results may occur.) Stop tokenizing the current FCode program. Set the checksum and length ﬁelds of the FCode header to the program’s actual checksum and length.

The comment in the ﬁrst line is not strictly necessary in many cases, but it is recommended since it allows some Open Firmware tools to recognize the ﬁle as a Forth source ﬁle. Enabling those tools to automatically recognize your ﬁle as a Forth source ﬁle may make your debugging easier.

17

Tokenizing FCode Source

The process of converting FCode source to FCode binary is referred to as tokenizing. A tokenizer program converts FCode source words to their corresponding byte-codes, as speciﬁed in Chapter 12 “Open Firmware Dictionary” and deﬁned by IEEE Standard 1275-1994. A tokenizer program together with instructions describing its use is available from FirmWorks. An FCode program’s source can reside in multiple ﬁles. The fload tokenizer directive directs the tokenizer input stream to load another ﬁle. fload acts like an #include statement in C. When fload is encountered, the tokenizer begins processing the ﬁle named by the fload directive. When the named ﬁle is completed, tokenizing continues with the ﬁle that issued the fload. fload directives may be nested. Typically, the tokenizer produces a ﬁle in the following format:

s s

FCode header - 8 bytes FCode binary - remainder of ﬁle

The header format is system dependent. You can use such a tokenized ﬁle to load either an FCode ROM or system memory for debugging as described in “Using the User Interface to Test FCode Programs” on page 26. Consult your tokenizer’s documentation for a description of how to produce ROMs from the ﬁle. By convention, the ﬁle output by the tokenizer has the sufﬁx .fc.

FCode Binary Format

The format of FCode binary that is required by the Open Firmware FCode evaluator is as follows:

Table 4 Element FCode header Body End byte-code Eight bytes 0 or more bytes 1 byte, the end0 byte-code FCode Binary Format Structure

The format of the FCode header is:

Table 5 Byte(s) 0 1 2 and 3 4 through 7 Format 16-bit checksum of the FCode body Count of bytes in the FCode binary image including the header FCode Header Format Content One of the FCodes: version1 (not used with PCI), start0, start1, start2, start4

The above information is presented for completeness. Since the tokenizer automatically generates this information, you will seldom be concerned about these details.

18

Writing FCode Programs for PCI

PCI Expansion ROM Header

As shown in Figure 1 on page 2, an FCode image that is stored in a PCI Expansion ROM must have some additional information included with it. This information can be synthesized by the tokenizer through the use of the tokenizer[, emit-byte, and]tokenizer directives as follows:

hex tokenizer[55 emit-byte aa emit-byte \ PCI magic number 34 emit-byte 00 emit-byte \ 0x16 Processor architecture unique data 14 0 do 0 emit-byte loop \ Pad bytes 1c emit-byte 00 emit-byte \ Pointer to start of PCI Data Structure 00 emit-byte 00 emit-byte \ Pad bytes \ Start of PCI Data Structure (DWORD aligned) ascii P emit-byte \ 4 Signature string “PCIR” ascii C emit-byte ascii I emit-byte ascii R emit-byte x1 emit-byte x2 emit-byte \ 2 Vendor ID = config reg 00/01 y1 emit-byte y2 emit-byte \ 2 Device ID = config reg 02/03 w1 emit-byte w2 emit-byte \ 2 Pointer to Vital Product Data 18 emit-byte 00 emit-byte \ 2 PCI Data Structure length 00 emit-byte \ 1 PCI Data Structure revision z1 emit-byte z2 emit-byte \ 3 Class Code = config reg 09/0a/0b z3 emit-byte q1 emit-byte q2 emit-byte \ 2 Image Length XXX - Must be fixed up r1 emit-byte r2 emit-byte \ 2 Revision Level of Code/Data 01 emit-byte \ 1 Code Type 00=BIOS 01=OpenFW 80 emit-byte \ 1 Indicator 00=another image 80=last image 00 emit-byte 00 emit-byte \ 2 Reserved]tokenizer fcode-version2 fload mycode.fth fcode-end

You will have to customize the “vendor ID”, “device ID”, “class code”, “image length”, “revision level” and “pointer to vital product data” ﬁelds appropriately for each FCode program. Since this header is only required for your ﬁnal ROM image, we suggest that you put your FCode source into one or more ﬁles (represented by the ﬁlename mycode.fth in the above example), and then fload the ﬁle(s) in a second ﬁle containing the PCI header code as shown above. You can then easily download mycode.fth with dl and can easily tokenize the same code by tokenizing the second ﬁle.

FirmWorks pci-header / pci-header-end Tokenizer Extensions

The FirmWorks tokenizer contains two additional directives named pci-header and pci-header-end that will create the PCI Expansion ROM header for you. The

Testing FCode Programs

19

directive pci-header takes the “vendor ID”, “device ID” and “class code” ﬁeld values from the stack and incorporates them into the header. pci-header puts a default value of 0 into the “pointer to vital product data” ﬁeld, puts a default “1” in the “revision level” ﬁeld and sets the “indicator” ﬁeld to a default value of 1 indicating that this is the last image in the ROM. pci-header-end computes the length in bytes of the PCI Expansion ROM FCode image, divides that length by 512, rounds the result up and ﬁlls in the “image length” ﬁeld. The following example creates such a header.

hex \ pci-header (vendor-id device-id class-code --) tokenizer[v2v1 y2y1 z3z2z1]tokenizer pci-header fcode-version2 fload mycode.fth fcode-end \ pci-header-end (--) pci-header-end

Note – Calling pci-header-end without having ﬁrst called pci-header will scramble the tokenizer’s output ﬁle since pci-header-end will “ﬁx-up” a nonexistent PCI header. The FirmWorks tokenizer provides three additional directives for modifying the default values used by pci-header.

s s s

set-rev-level (revision --) set-vpd-offset (addr --) not-last-image (--)

The following example shows how to set the “revision level”, “pointer to vital product data” and “indicator” ﬁelds to something other than their default values.

hex tokenizer[r2r1]tokenizer set-rev-level tokenizer[w2w1]tokenizer set-vpd-offset not-last-image tokenizer[v2v1 y2y1 z3z2z1]tokenizer pci-header fcode-version2 fload mycode.fth fcode-end pci-header-end

Testing FCode Programs on the Target Machine

Once you have created the FCode binary you can test it using the Open Firmware User Interface. The User Interface provides facilities to allow you to load your program into system memory and direct the FCode evaluator to interpret it from there. This allows

20

Writing FCode Programs for PCI

you to debug your FCode without having to create a ROM and attach it to your plugin board for each FCode revision during the debug process. See IEEE Standard 12751994 for the complete speciﬁcation of the User Interface. The FCode testing process generally involves the following steps: 1. Conﬁguring the target machine. This includes installing the hardware associated with the FCode program into the target machine and powering-up the machine to the User Interface. 2. Loading the FCode program into memory from a serial line, a network, a hard disk, or a ﬂoppy disk. 3. Interpreting the FCode program to create a device node(s) on the Open Firmware device tree. 4. Browsing the device node(s) to verify proper FCode interpretation. 5. Exercising the FCode program’s device driver methods complied into the device node, if any. If the FCode program does not include any methods which involve using the actual hardware (e.g. a driver which only publishes properties) then the program can be tested without installing the hardware.

Conﬁguring the Target Machine

Setting Appropriate Conﬁguration Parameters

Before powering-down the target machine to install the target hardware, a few NVRAM conﬁguration variables should be set to appropriate values. You can set them from the User Interface as follows:

ok setenv auto-boot? false ok setenv fcode-debug? true

Setting auto-boot? to false tells Open Firmware not to boot the OS upon a machine reset but rather to enter the User Interface. The Open Firmware FCode evaluator always saves the names of any words created by interpreting FCode while the external tokenizer directive is in effect. By setting fcode-debug? to true, you tell the FCode evaluator also to save the names of words created while the headers tokenizer directive is in effect. (Words tokenized while the headerless directive is in effect are never saved.) fcode-debug? defaults to false to conserve RAM space in normal machine operation. With names saved, the debugging methods described in later sections are easier to use since decompiled FCode will be displayed with names versus execution tokens.

Testing FCode Programs

21

“The Script” and the Open Firmware Startup Sequence

The conﬁguration variable known as nvramrc is an area of NVRAM that is also known as the “script”. nvramrc can be used to store user-deﬁned commands that are executed during start-up. Typically, nvramrc is used by a device driver to save start-up conﬁguration variables, to patch device driver code, or to deﬁne installation-speciﬁc device conﬁguration and device aliases. It can also be used for bug patches or for user-installed extensions. Commands are stored in ASCII, just as the user would type them at the User Interface. If the use-nvramrc? conﬁguration variable is true, the script is evaluated during the Open Firmware start-up sequence as follows:

s s s s s s s s

Perform power-on self-test (POST) if present (system dependent) Perform system initialization Evaluate the script (if use-nvramrc? is true) Execute probe-all (i.e. evaluate FCode) Execute install-console Execute banner Execute secondary diagnostics Perform default boot (if auto-boot? is true)

Table 6 shows the top-level words that can be used in the script to control the overall execution of the start-up sequence.

Table 6 Command probe-all

System Start-up Control Primitives

Description Search for plug-in devices on the system-dependent set of expansion buses, creating device nodes for devices that are located. probe-all should not be executed more than once. It is normally executed during start-up following evaluation of the script, but this automatic execution is disabled if the script contains banner or suppress-banner. Activate the console function and select input and output devices as follows: a. Activate the console so that subsequent input (e.g. key) and output (e.g. emit) will use the devices selected by input and output. b. Execute output with the value returned by output-device. c. Execute input with the value returned by input-device. d. If the preceding fails and if there is a fallback device for console functions, select that device as the console device. install-console may take other implementation-dependent actions to ensure the availability of a console in the event of failure and may display related messages. Display power-on banner. When included in the script, suppresses the execution of the sequence probe-all install-console banner in the system start-up sequence. When included in the script, suppresses the execution of the sequence probe-all install-console banner in the system start-up sequence.

install-console

banner suppress-banner

Patching FCode of a Plug-in Card

It is sometimes desirable to modify the sequence probe-all install-console banner. For example, commands that modify the characteristics of plug-in display devices may need to be executed after the plug-in devices have been probed, but

22

Writing FCode Programs for PCI

before the console device has been selected. Such commands would need to be executed between probe-all and install-console. Commands that display output on the console would need to be placed after install-console or banner. Such custom control of the start-up sequence is accomplished by creating a script which contains either banner or suppress-banner since the sequence probe-all install-console banner is not executed if either banner or suppress-banner is executed from the script. This allows the use of probe-all, install-console and banner inside the script, possibly interspersed with other commands, without having those commands re-executed after the script ﬁnishes. For example, assume that the plug-in device /pci/framus has an error in its set-rate method such that it divides by four when it should divide by two. This error could be patched using the script as follows:

ok 0: 1: 2: 3: 4: 5: ok ok ok nvedit probe-all dev /pci/framus patch 2 4 set-rate device-end install-console banner Control-C nvstore setenv use-nvramrc? true reset-all

The script shown patches the broken plug-in card’s method by:

s s s s

First executing probe-all to cause all of the plug-in cards to be probed. Identifying /pci/framus as the device to be patched and patching its broken method. Ending the use of the /pci/framus device. Completing the startup sequence and suppressing the re-execution of the probe-all install-console banner sequence.

For more information about the script, the script editor and the high-level Forth patching facility, see Open Firmware Command Reference and/or “nvedit” on page 281. and “patch” on page 291.

Modifying the Expansion Bus Probe Sequence

The start-up sequence in the machine’s Open Firmware implementation normally examines all expansion buses for the presence of plug-in devices and their on-board FCode ROM program. It then invokes the FCode evaluator to interpret any such programs. This process is called probing. When using the User Interface to load and interpret an FCode program in system memory, it is better to conﬁgure Open Firmware to avoid probing that device automatically. The probing can then be done manually (as explained later) from the User Interface. Conﬁguring an Open Firmware implementation to avoid probing a given slot on a given expansion bus can be done in various implementation-dependent ways. That is, they will be different for different systems and different expansion buses.

Testing FCode Programs

23

Many machines with a PCI bus have an NVRAM conﬁguration variable named pci-probe-list that deﬁnes which PCI card slots will be probed during start up and the order in which they will be probed. For example, a machine with four PCI slots might have the pci-probe-list conﬁguration variable set to a default value of 0123. Setting pci-probe-list to 031 directs Open Firmware during start-up to probe ﬁrst PCI slots 0, then slot 3, and ﬁnally slot 1. This re-arranges the order in which the slots are probed (perhaps to ensure that a particular graphics card is probed before all others) and leaves PCI slot 2 un-probed, free for use by the device under development. Methods to prevent probing a given slot for other types of expansion buses can involve using the NVRAM script. An NVRAM script could patch an implementation-speciﬁc Open Firmware word that deﬁnes the bus’s probe sequence or could modify a property of the expansion buses device node that describes the sequence. After the FCode program is debugged and programmed in ROM on the device, you can do a full system test (including automatic probing of the new device), by restoring the expansion bus probing conﬁguration to the default.

Getting to the User Interface

After completing the conﬁguration described above, power-down the machine and install the device. Then power-up the system and it should stop at the ok prompt ready for User Interface commands.

Using the Command Line Editor of the User Interface

IEEE Standard 1275-1994 describes a required Command Line Editor and an optional Command Line Editor Extension to the User Interface. All implementations must support the following command line editing keys:

Table 7 Keystroke Delete Backspace Return (Enter) Erases previous character. Erases previous character. Finishes editing of the line and submits it to the interpreter. Required Command Line Editor Keystroke Commands Description

The standard also describes three groups of extensions of these capabilities (which are included in the FirmWorks implementation). The command line editing extension group includes the following command line editing keys.

Table 8 Keystroke Control-B Escape B Control-F Escape F Control-A Control-E Moves backward one character. Moves backward one word. Moves forward one character. Moves forward one word. Moves backward to beginning of line. Moves forward to end of line. Optional Command Line Editor Keystroke Commands Description

24

Writing FCode Programs for PCI

Table 8 Keystroke Delete Backspace Control-H Escape H Control-W Control-D Escape D Control-K Control-U Control-R Control-Q Control-Y Control-P Control-N Control-L

Optional Command Line Editor Keystroke Commands Description

Erases previous character. Erases previous character. Erases previous character. Erases from beginning of word to just before the cursor, storing erased characters in a save buffer. Erases from beginning of word to just before the cursor, storing erased characters in a save buffer. Erases next character. Erases from cursor to end of the word, storing erased characters in a save buffer. Erases from cursor to end of line, storing erased characters in a save buffer. Erases entire line, storing erased characters in a save buffer. Retypes the line. Quotes next character (allows you to insert control characters). Inserts the contents of the save buffer before the cursor. Selects and displays the previous line for subsequent editing. Selects and displays the next line for subsequent editing. Displays the entire contents of the editing buffer.

The command line history extension enables previously-typed commands to be saved in an emacs-like command history ring that contains at least 8 entries. Commands may be recalled by moving either forward or backward around the ring. Once recalled, a command may be edited and/or re-submitted (by typing the Return key). The command line history extension keys are:

Table 9 Keystroke Control-P Control-N Control-L Optional Command Line History Keystroke Commands Description Selects and displays the previous command in the command history ring. Selects and displays the next command in the command history ring. Displays the entire command history ring.

The command completion extension enables the system to complete long Forth word names by searching the dictionary for one or more matches based upon the alreadytyped portion of a word. After a user types in a portion of a word and types the command completion keystroke, the system behaves as follows:

s

If the system ﬁnds exactly one matching word, the remainder of the word is automatically displayed. If the system ﬁnds several possible matches, the system displays all of the characters that are common to all of the possibilities. If the system cannot ﬁnd a match for the already-typed characters, the system deletes characters from the right until there is at least one match for the remaining characters. The system beeps if it cannot determine an unambiguous match.

s

s

s

Testing FCode Programs

25

The command completion extension keys are:

Table 10 Keystroke Control-Space Control-? Control-/ Optional Command Completion Keystroke Commands Description Complete the name of the current word. Display all possible matches for the current word. Display all possible matches for the current word.

Using the User Interface to Test FCode Programs

A synopsis of standard FCode words for downloading and executing FCode source ﬁles is shown Table 11. FirmWorks/Sun extensions are shown in Table 12

Table 11 FCode begin-package File Download/Execute-related User Interface Commands Stack Notation Function

(arg-addr arg-len reg-addr reg-len path-addr path-len --) Creates a new node in the device tree in preparation for receiving FCode from the User Interface. (--) Completes a device tree entry and returns to the User Interface environment. Opens the speciﬁed device node and all of its parents. Closes the speciﬁed device and all of its parents. Unselect the active package, leaving none selected. Sets values returned by my-args, my-space and my-address for the current node. Executes the named command within the speciﬁed device tree node.

end-package

open-dev close-dev device-end

(path-addr path-len -- ihandle | 0) (ihandle --) (--)

set-args

(arg-addr arg-len reg-addr reg-len --)

execute-device-method (… path-addr path-len cmd-addr cmd-len -- … ok?)

Table 12 FCode select-dev select device-path begin-select-dev

FirmWorks/Sun File Download/Execute-related User Interface Extensions Stack Notation (path-addr path-len --) (--) (path-addr path-len --) Function Opens the speciﬁed device node and all of its parents, and makes the device the current instance. Opens the speciﬁed device node and all of its parents, and makes the device the current instance. Opens all of the parents of the speciﬁed device node but does not call the device’s open method.

26

Writing FCode Programs for PCI

Table 12 FCode

FirmWorks/Sun File Download/Execute-related User Interface Extensions Stack Notation Function Opens all of the parents of the speciﬁed device node but does not call the device’s open method. Closes the speciﬁed device node and all of its parents, and unselects the active package and current instance leaving none selected.

begin-select device-path (--) unselect-dev (--)

Using dl to Load From a Serial Port

dl can be used to load text ﬁles over a serial line connecting a “host” system (i.e. the system containing your source ﬁle) to a “target” system (i.e. the Open Firmware system on which you are going to test your code). dl loads text into memory until it receives a Control-D character (i.e. ASCII EOT, hex value 04), and then interprets the loaded text as Forth source code. Many different communications programs will work with dl. The following example shows how to download a ﬁle using the Windows™ Terminal terminal emulator program on an MS-DOS® system. 1. Connect the target system’s primary serial port to an available COM port, COMn, on the MS-DOS machine with a 3-wire “null modem” cable (i.e. a cable that connects Pin 3 to Pin 2, Pin 2 to Pin 3, and Pin 7 to Pin 7). For this example, we will assume the use of COM1 on the MS-DOS machine and TTYA on the target system. 2. Start Windows and open the Terminal application in the Accessories group. Check/correct the following menu settings (suggested values shown in italics): Settings Terminal Emulation DEC VT-100 (ANSI) Terminal Preferences Terminal modes Local echo off CR -> CR/LF Inbound off Outbound off Translations None Text Transfers Standard Flow Control Communications Baud Rate: 9600 Data Bits: 8 Stop Bits: 1 Parity: None Flow Control: None Connector: COM1

Testing FCode Programs

27

3. If you have not yet redirected the standard input and output to the target system’s serial port, on the target’s keyboard type:

ok ttya io

4. At the ok prompt in the Terminal window, type: dl which will produce the “Ready for download” prompt.

ok dl Ready for download. Send file then type ^D

5. In the Terminal window, perform the following steps: a. Select “Send Text File” on the Transfers menu. b. Select the correct drive, directory and name of the ﬁle to be downloaded. c. In the “Following CR” section of the menu, turn off both “Append LF” and “Strip LF”. d. Click “OK”. This begins the transfer whose progress can be monitored in the status bar at the bottom of the Terminal program’s window. The transfer is complete when the progress meter disappears. (If the ﬁle is short, the meter will come and go very quickly.) 6. Press Control-D in the Terminal window. After a delay while dl interprets the downloaded ﬁle, the ok prompt will appear in the Terminal window,

Downloading Multiple Files with dl and fload

Since dl merely downloads a text ﬁle without performing any interpretation of the text ﬁle until after the transfer is complete, any fload statements contained in a ﬁle downloaded with dl will not be processed correctly since the target system will not be able to locate the ﬁle associated with the fload statement. A simple technique for solving this problem is to fragment your program into a series of ﬁles which, when concatenated in the proper order, construct your complete program ﬁle. None of these source ﬁles may contain any fload statements. Once you have created such a series of ﬁles, the way to use them with dl depends upon the host’s operating system.

28

Writing FCode Programs for PCI

MS-DOS®

1. Create a batch ﬁle that concatenates all of your ﬁles into a single ﬁle. For example:

rem This batch file concatenates the component files of the Phantom rem driver. echo echo echo copy echo echo hex > outfile.fth 0 0 " 3" " /pci" begin-package >> outfile.fth make-properties >> outfile.fth outfile + header.fth + body.fth + trailer.fth outfile assign-addresses >> outfile.fth end-package >> outfile.fth

2. Use dl as described in the previous section.

Unix

1. Create a “load ﬁle” (in this example named loadcoad.fth) which consists of a series of fload statements that when executed sequentially will construct your complete program. For example:

\ id: loadcode.fth \ purpose: Load file for the Phantom driver \ copyright: Copyright (c) 1995 FirmWorks. All Rights Reserved. hex fload /home/code/header.fth fload /home/code/body.fth fload /home/code/trailer.fth

2. From this load ﬁle, create a “download ﬁle” (in this example named dlcode) to be used in the downloading process. To transform your ﬁrst load ﬁle into the second form: s On any non-comment line of the ﬁle that is not an fload command, preﬁx a Unix echo command. Note – Don’t forget to surround your begin-package command with single quotation marks to prevent the shell from removing the double quotation marks in the arguments.

s

s

s

s

Insert a begin-package statement prior to the ﬁrst fload command. This will automatically create a new device node into which to place your device methods. Insert a make-properties statement immediately after the begin-packages command. This will automatically create the default PCI properties. Insert an assign-addresses command after the last fload command. This will create the assigned-addresses property for your node, simulating the behavior of the PCI bus probing process in an Open Firmware system. Insert an end-package statement after the assign-addresses command. This will end the creation of your new device node.

Testing FCode Programs

29

s

Insert a Control-D after the end-package statement. This will cause dl to begin evaluating your FCode as soon as the downloading has been completed.

For example:

\ id: dlcode \ purpose: Download file for the Phantom driver \ copyright: Copyright (c) 1996 FirmWorks. All Rights Reserved. echo hex echo '0 0 " 3" " /pci" begin-package' echo make-properties fload /home/code/header.fth fload /home/code/body.fth fload /home/code/trailer.fth echo assign-addresses echo end-package ^D

Make the download ﬁle executable with chmod and rehash. Note – See the next section for a detailed explanation of the use of begin-package and end-package. 3. Create a shell script named fload with the following contents:

#! /bin/sh # This script enables the downloading of an FCode load file with dl cat $1

Make this fload shell script executable with chmod and rehash, and store it in some directory on your search path. You’ll be able to use this same shell script for all of your FCode development projects. 4. Assuming that you’re using the tip terminal emulator program, type: dl which will produce the “Ready for download” prompt.

ok dl Ready for download. Send file then type ^D

5. Type: ~C

30

Writing FCode Programs for PCI

which will produce a “local command” prompt from tip.

ok dl Ready for download. Send file then type ^D ~C (local command)

Note – The C is case-sensitive and must be capitalized. 6. At the “local command” prompt, type: ﬁlename where ﬁlename is the name of the download ﬁle created in Step 2. Execution of ﬁlename sends all of your ﬁles over the serial link. When dl completes the download and evaluation, the ok prompt will be displayed.

ok dl Ready for download. Send file then type ^D ~C (local command) dlcode ok

A nice feature of this technique is that other versions of the load ﬁle can be easily created to accomplish other purposes. For example, to create a load ﬁle suitable for creating an FCode image, modify the load ﬁle as follows:

\ id: loadfc.fth \ purpose: FCode load file for the Phantom driver \ copyright: Copyright (c) 1995 FirmWorks. All Rights Reserved. hex fcode-version2 fload /home/code/header.fth fload /home/code/body.fth fload /home/code/trailer.fth end0

Or to make an FCode image suitable for inclusion in a PCI expansion ROM, add the PCI Expansion ROM header as shown in “PCI Expansion ROM Header” on page 19. Breaking your source ﬁles up into smaller ﬁles not only allows you to use these various downloading/tokenizing techniques, but it also makes it easier for you to re-use code if you dedicate each of your ﬁles to implementing methods that address a single problem category.

Testing FCode Programs

31

Using the User Interface to Interpret an FCode Program

FCode program interpretation involves creating a device node on the device tree. Device nodes are also known as packages. Creating a device node from downloaded FCode involves the following steps: 1. Setting up the environment with begin-package For example, a begin-package call for creating a device node for a PCI card installed in PCI Slot 3 looks like:

ok 0 0 " 3" " /pci" begin-package

In the example, the string, /pci, indicates that the device node which will be created by the FCode program is to be a child node of the /pci node in the device tree. In general, any device node that supports child nodes - called parent nodes - can be used as this argument to begin-package. The device node deﬁned by the FCode program will be created as a child of that node. The full device pathname from the root node must be given. In the example, the string " 3" indicates the PCI slot number, 3. In general, this string is a pair of numbers separated by a comma. The ﬁrst number identiﬁes the PCI slot and the second number identiﬁes the function number within that slot. The form of this physical address depends on the physical address space deﬁned by the parent node. For children of a PCI node, the form is slot-number, function-number. Other types of parent nodes deﬁne different address spaces. The physical address pair value is retrieved within the FCode program with both the my-address and my-space FCodes. The slot ID string is converted to a binary form consisting of three values. Those values can be retrieved with the FCode Program by using my-address for the phys.lo and phys.mid components and my-space for the phys.hi component. See PCI Bus Binding to IEEE Standard 1275-1994 or Appendix C “PCI Bus Binding to Open Firmware” for a description of those three values. In the preceding example, the initial 0 0 represents a null argument string passed to the FCode program. If you wish to pass a non-null argument string to begin-package, you must deﬁne that string in a Forth word and use the execution of that word to place the string on the stack. This is necessitated by the fact that Open Firmware systems are only required to provide two temporary buffers for the assembling of strings from the command line. With a non-null argument string, the begin-package command would require three temporary buffers. For example:

ok : testargs " framus" ; ok testargs " 3" " /pci" begin-package

This argument string is retrieved within the FCode program with the my-args FCode. Generally, FCode programs do not take arguments at interpretation time so this will usually be the null string.

32

Writing FCode Programs for PCI

begin-package is deﬁned as:

: begin-package (arg-str arg-len reg-str reg-len dev-str dev-len --) select-dev new-device set-args ;

select-dev (parent-dev-str parent-dev-len --) - Opens the input device node (the parent node) and makes it the current instance. (See “Packages and Instances” on page 41 for a detailed description of current instance.) new-device (--) - Initializes a new device node as a child of the currently active node and makes it the current instance. set-args (arg-addr arg-len reg-addr reg-len --) - Sets the values returned by my-args, my-space, and my-address for the current instance. 2. Create default PCI properties with make-properties make-properties simulates the behavior of the PCI bus probing process by creating default properties based upon the information found in the device’s PCI Conﬁguration Space header. This is a User Interface word intended by use in the context of begin-package… end-package prior to the evaluation of the FCode for the node. 3. Interpreting the loaded FCode with byte-load byte-load is the User Interface command that invokes the FCode evaluator to compile the FCode program into the current instance. For FCode programs downloaded with load or dlfcode use:

ok load-base ' c@ byte-load

load-base is the system default load address. The argument, ' c@ , tells byte-load to use c@ as the access routine for reading the FCode. 4. Assign addresses to this node with assign-addresses assign-addresses is used from the User Interface in the context of begin-package … end-package to assign addresses to the current instance based on the current "reg" property value, and to create an "assigned-addresses" property reﬂecting those addresses. (The functionality of assign-addresses is normally automatically performed as part of the PCI probing process. However, this function must be done explicitly when a device node is being created manually with begin-package … endpackage. 5. Closing the environment with end-package end-package closes the device tree entry started with begin-package.

ok end-package

Testing FCode Programs

33

Using the User Interface to Browse a Device Node

The User Interface has many built-in commands to navigate the device tree. Table 13 lists the User Interface commands supporting device node browsing:

Table 13 Command .properties dev device-path dev node-name dev .. dev / device-end Commands for Browsing the Device Tree Description Display the names and values of the active package’s properties. Read device-path from the input stream and make the speciﬁed device node the active package. Search for a node with the given name in the sub-tree below the active package, and make the ﬁrst such node found the active package. Make the parent of the active package the new active package. Make the root machine node the active package. Deactivate the active package, leaving no active package. (name-addr name-len -- true | value-addr value-len false) Return property value of current instance or its parents (name-addr name-len -- true | value-addr value-len false) Return property value of current instance. Display the names of the active package’s children. Display the device path name that names the active package. Decompile the speciﬁed word. Display all the devices known to the system directly beneath a given level in the device hierarchy. show-devs used by itself shows the entire device tree. Display the names of the active package’s methods.

" device-path" find-device Identical to dev except that device-path is speciﬁed as a string on the stack. get-inherited-property get-my-property ls pwd see wordname show-devs [device-path] words

Once a device node has been created, you can use the User Interface to browse the node. See IEEE Standard 1275-1994 for a more complete discussion on this. Below is a brief synopsis of the available commands.

s s

show-devs displays all known devices in the device tree. dev sets the active package to a named node so its contents can be viewed. For example, to make the ACME company’s PCI device named “ACME,widget” the active package:

ok dev /pci/ACME,widget

s

find-device is essentially identical to dev differing only in the way the input pathname is passed.

ok " /pci/ACME,widget" find-device

s

.properties displays the names and values of all the properties created for the active package. get-my-property returns the value of the speciﬁed property from the active package.

s

34

Writing FCode Programs for PCI

s

get-inherited-property returns the location and length of the property value array of the speciﬁed property from the active package or its parents. dump can then be used to display the property value array. ls displays the names of all child nodes, if any, of the active package. see wordname displays the source code (without comments) for wordname. device-end undoes the effects of the dev or find-device command by unselecting the previously-selected device and leaving no device selected. pwd displays the device pathname of the active package. words displays the names of the active package’s words, if any. If there is no active package, words displays the names of all globally-visible words. The particular words displayed by words can be affected by the tokenizer directives external, headers and headerless, and by the state of the conﬁguration variable fcode-debug?. If the FCode program was interpreted from text source, the tokenizer directives have no affect on the words that are displayed. However, if the FCode program is ﬁrst tokenized and then evaluated, words displays: s All words which were created by the FCode evaluator while the tokenizer directive external was in effect. s All words created by the FCode evaluator while the tokenizer directive headers was in effect if the conﬁguration variable fcode-debug? was true when the FCode was evaluated. words never displays words created by the FCode evaluator while the headerless tokenizer directive was in effect.

s s s

s s

Using the User Interface to Test a Device Driver

The User Interface provides the capability to test the methods of an FCode program by allowing the user to execute individual methods from the User Interface prompt.

Device Node Methods

Using select-dev

select-dev initializes an execution environment for the methods of the package speciﬁed by its stack arguments. Although select-dev is not required by IEEE Standard 1275-1994, it can easily be synthesized if your implementation does not include it.

: select-dev (dev-str dev-len --) 2dup open-dev (dev-str dev-len ihandle) dup 0= abort" Can’t open device" (dev-str dev-len ihandle) to my-self (dev-str dev-len) find-device ;

Testing FCode Programs

35

After executing select-dev you can execute the device node’s methods directly by name. For example:

ok " /pci/ACME,widget" select-dev

select-dev performs the following:

s

Effectively calls “dev /pci/ACME,widget” to make the named device the active package. This makes all the device methods “visible” to the User Interface. Establishes a chained set of package instances for each node in the path. In particular, this makes the package’s instance-speciﬁc data items available to its methods. select-dev requires that each device node in the path, including the node under test, must have an open method.

s

s

Once these steps are performed you can execute the methods of the current device node by typing their name at the prompt. For example:

ok clear-widget-register ok fetch-widget-register . 0

As is generally true of the Forth language, if execution of a method exposes an error in the code, the error can be isolated by executing the component words of the method step-by-step. Use see to decompile the method, and then type the component words individually until the error is evident. For example:

ok see clear-widget-register : clear-widget-register enable-register-write 0 widget-register rl! disable-register-write ; ok enable-register-write ok 0 widget-register rl! ok disable-register-write

This process can be performed recursively by decompiling the component words and then individually executing their component words. This is much easier if most of the words were deﬁned with the headers directive since see can then display the names of the component words instead of hexadecimal codes. This process is also enhanced by executing showstack. showstack causes the stack’s contents to be displayed prior to every ok prompt. For example:

ok 1 2 ok showstack 1 2 ok . clear 3 4 2 3 4 ok

36

Writing FCode Programs for PCI

If your Open Firmware implementation supports the Forth source level debugger, you can use it to step through your program and test it. (For more information on the debugger, see “The Forth Source-level Debugger” on page 120 of Open Firmware Command Reference.) Device nodes can also be modiﬁed “on-the-ﬂy” with any of the following techniques:

s

Entering new methods deﬁnitions. These methods are compiled into the device node like the methods in the FCode program that created the node. Redeﬁning a method to include some function neglected in the ﬁrst deﬁnition. (Words that were previously deﬁned using the original deﬁnition of the method are unaffected.) For example:

ok : open open initialize-widget-register-2 ;

s

In general, such redeﬁnitions affect only external uses of the named method (i.e. calls from other packages via $call-method and the like) and interactive use via the User Interface. Previously compiled calls to the method within the same package are unaffected unless the method is called by name (e.g. with $call-self).

s

Use patch to edit word deﬁnitions. Such patches affect all uses of the method, both internal and external. (See “patch” on page 291 for information on how to use this command.)

Resetting the machine causes all such corrections to be lost. Consequently, once your words are debugged you’ll probably want to include any modiﬁcations in the FCode program source. unselect-dev reverses the effects of select-dev by calling the close method of each device in the path of the current active node, destroying the package instance of each node, and returning to the normal User Interface environment. Execute unselect-dev as follows:

ok unselect-dev

unselect-dev also is not required by IEEE Standard 1275-1994. Its deﬁnition is:

: unselect-dev (--) my-self close-dev 0 to my-self device-end ;

Using select

Some Open Firmware implementations provide the command select whose function is identical to select-dev except that select takes its argument from the command line rather than from the stack. For example:

ok select /pci/ACME,widget

Testing FCode Programs

37

Using begin-select-dev

Sometimes, select-dev will fail to work because the open method of a newlywritten package does not work correctly. In such a case, begin-select-dev can be used since it does everything that select-dev does except for opening the last child node. For example:

ok " /pci/ACME,widget" begin-select-dev

begin-select-dev is not required by IEEE Standard 1275-1994. If your implementation does not include it, the same affect can be achieved with the following:

ok ok ok ok dev /<full-path-to-device> : real-open open ; \ Create an alias for the original open : open true ; \ Create a dummy open that can’t fail. " /<full-path-to-device>" select-dev

However, begin-select-dev has the advantage that, since it does not attempt to use the target’s open method, you don’t have to create a null open method which hides the very open method that you want to debug.

Using begin-select

Some Open Firmware implementations provide the command begin-select whose function is identical to begin-select-dev except that begin-select takes its argument from the command line rather than from the stack. For example:

ok begin-select /pci/ACME,widget

Using execute-device-method

execute-device-method executes a method directly from the normal User Interface environment. That is, it is not necessary to manually make the device node the current instance before executing the method. For example:

ok " /pci/ACME,widget" " test-it" execute-device-method

execute-device-method returns false if the method could not be executed; otherwise it returns true on top of whatever results were placed on the stack by the successful execution of the method. execute-device-method performs the following steps:

s

s s

Establishes a chained set of package instances for each node in the path. In particular, this makes an instance of all data items of the device node available to its methods. Opens all device nodes in the name device path except the last device node in the pathname. Invokes the named method.

38

Writing FCode Programs for PCI

s s s s

Closes all the device nodes in the path (except the last one) destroying their package instances. Restores the current instance to the instance that was current prior to beginning this process. Restores the active package to the package that was active prior to beginning this process. Returns the results.

Note that, in contrast to select-dev, execute-device-method does not call the open method of the last device node in the path. Consequently, any method invoked in this manner must be able to stand alone i.e. not requiring any pre-established state which normally is created by open and not requiring close to be executed later to put the device back into a quiescent state. In summary, execute-device-method is provided to allow execution of device node methods which have been designed to provide their own state initialization and therefore to execute without previous execution of the open method. A typical example is a selftest method (which may, in fact, call the open and close methods itself).

Using apply

apply provides an alternative manner of invoking execute-device-method in that apply takes its arguments from the input stream instead of from the stack. The above example would be invoked with apply as follows:

ok apply test-it /pci/ACME,widget

Since apply invokes execute-device-method, all of the restrictions listed above for execute-device-method must be followed.

Testing FCode Programs in Source Form

The User Interface enables you to skip the tokenizer and download FCode program source directly. This practice is very useful early in the development of an FCode program. However, there are some disadvantages:

s

It may cause problems in the long run since generally the User Interface recognizes a larger number of words than does the FCode evaluator. So the FCode program developer who tests with FCode source may develop and test a program only to ﬁnd that some of the words she used are not FCode words and will not be accepted by the tokenizer and the FCode evaluator. This will require the developer to rewrite code. To load source you should comment out fcode-version2 and end0. Since the download commands accept only one ﬁle any floaded ﬁles must be put in-line.

s s

To load an ASCII Forth source ﬁle over a serial line, you use the command dl. In addition to loading the ﬁle over the serial line, dl compiles the Forth source while it is loading without requiring an extra command. See “Using dl to Load From a Serial Port” on page 27 for details on the use of dl.

Testing FCode Programs

39

Producing an FCode ROM

The output of the tokenizer program is used to make an actual FCode ROM. If your PROM burning tools do not accept the raw binary format of the tokenizer, you may need to develop a format conversion utility.

Exercising an Installed FCode ROM

You can either let Open Firmware automatically evaluate the FCode program from the ROM or you can remove the device from the Open Firmware probing as discussed earlier in “Conﬁguring the Target Machine” on page 21. The same process discussed for testing FCode programs that are loaded to system memory can be used to test FCode programs already loaded into ROM on the device. If you take the device out of the probing sequence, a device node can be built manually as in the following example for a device installed in PCI slot 1:

ok ok ok ok ok ok ok ok ok ok 10000 constant rom-size " /pci" select-dev " 1" decode-unit rom-size map-in new-device " " " 1,0" set-args dup 1 byte-load finish-device rom-size map-out unselect-dev

((((((

phys.lo phys.mid phys.hi) virt) virt) virt) virt) virt)

This is essentially the same sequence as outlined for evaluating FCode loaded into system memory except that the user must map in and map out the FCode ROM by using the decode-unit, map-in, and map-out methods of the parent device node. For more information about these methods, see Chapter 11 “Memory-Mapped Buses”. You can browse the device node and exercise the device methods in the same way as described earlier. You can also deﬁne new methods and patch existing ones. Of course these modiﬁcations will only remain until a system reset.

40

Writing FCode Programs for PCI

4

Chapter 4

Packages

A package is the set of methods, data and properties that resides in a device node. In many cases, the terms “device node” and “package” can be used interchangeably; conventionally, “package” emphasizes the capabilities of and the interface presented by the set of methods, while “device node” emphasizes the device’s physical nature or its presence and location within the device tree. Many packages implement a standard set of functions that provide a standard interface. Different packages often implement the same interface. For example, there might be two display device driver packages, each implementing the standard display device interface, but for two different display devices. A support package is a group of functions, or methods, that implements a speciﬁc interface. A support package implements a library of functions that may then be called, as needed, by FCode programs and/or by other packages. Support packages, which are provided by the system ﬁrmware, are independent of any particular hardware device, but are often related to a particular class of hardware device. For example, the disk-label support package provides services that are generally useful to device drivers for disk devices.

Packages and Instances

A package consists of three classes of information:

s

Methods A set of software procedures that deﬁne the package’s behavior. Example: a disk driver would have a read method whose purpose is to read data from a disk into memory.

s

Properties An externally visible list of names and associated values that identify the package and its associated device. Example: each package has a name property whose value is a text string giving the name of the package.

41

s

Data Package data can be global (i.e. static) or private (i.e. instance-speciﬁc), and it can be initialized or zero-ﬁlled. The initial values of the initialized data are stored within the package deﬁnition. Example: A disk driver package might have an initialized, global variable used to keep track of whether the driver has been previously opened.

Packages exist regardless of whether or not the package is being used. The active package is the package whose methods and properties are currently visible (i.e. can be inspected from the User Interface). dev and find-device can be used to change the active package. However, being the active package only makes a package’s methods visible; it does not enable the execution of those methods. Before a package’s methods may be executed, an instance of the package must be created. You can think of an instance as being a working copy of the package. Any number of package instances can be created from the same package. By analogy, an instance is to a package as a multi-processing operating system process is to the ﬁle containing the process’s executable image. In a multi-processing operating system, a new process is created each time a user executes a given program. Each such process contains the dynamically alterable data that is associated with the program. If the user decides to run the same program N times simultaneously, N processes will be running simultaneously, each with its own copy of the program’s private data. When the user terminates a process, that process’s copy of the data is destroyed and the memory used by that process is returned to the operating system without affecting any other copies of that same program that are running in separate processes. Similarly, an instance is created from a package by “opening” that package. The act of opening a package allocates an instance record (i.e. a block of memory used to store the instance’s data), sets the contents of the instance record to the initial, instance-speciﬁc values stored in the package, and returns an ihandle that is used to identify the instance subsequently. An instance record is shown in Figure 2

Back pointer allows re-use by all instances of methods, properties and static data Package

phandle Pointer

Word List (contains methods) Data Static Instance Speciﬁc

ihandle

Instance Data Instance Record

Properties

Figure 2 Relationship of Package to Instance Record

Just like the operating system process, multiple instances may be created from the same package, and may exist simultaneously. However, it is important to note that there is only one copy of static data and methods for a given package. All instances of

42

Writing FCode Programs for PCI

the package use that common copy. Consequently, instances can pass information to each other through static data items. Instance-speciﬁc data, on the other hand, is private to each instance. Changes made to the instance-speciﬁc data in one instance record have no affect on any other instance. Note – There is one exception to the last statement. A package for a plug-in device is created by evaluating the FCode of that device during the probing process. Since the evaluation process can execute device methods as well as deﬁne them, changes are sometimes made to the values of instance-speciﬁc data during FCode evaluation. At the end of the probing of the device, the instance-speciﬁc data values that exist at that time are stored in the package and are used as the initialization values for the instancespeciﬁc data for all subsequent usages of the package. An FCode driver can take advantage of this behavior to acquire information about a device’s conﬁguration in a particular system at probe time, and then pass this information to all subsequent instances. An instance exists until it is terminated by “closing” it. When it is closed, the instance’s instance record is freed and its ihandle becomes meaningless. To use the methods or data of a package, an instance of that package must be (at least temporarily) the current instance. The current instance is the instance whose ihandle is stored in the value word my-self. The data and methods of the current instance may be called directly by name. The methods (and subsequently the data) of all other instances can only be called after identifying their instance with its ihandle (as with $call-method). When a package method accesses a data item, it refers either to a static data item in the package or to the copy of an instance-speciﬁc data item that is stored in the current instance’s instance record. The package method has access to the current instance’s data; the data of all other instances is inaccessible. A package to be opened is described by a device path or device alias. The process of opening the package includes opening each of the nodes in the device path from the root node to the speciﬁed device (i.e. from the top of the chain to the bottom). As each of these nodes is opened, an instance is created for the node and all of these instances are linked together in an instance chain as shown in Figure 3. When a method is accessed using the ihandle of the chain, each node in the chain is able to access the methods of its parent with $call-parent using the my-parent links provided by the instance chain. (See “Inter-package Calling Methods” on page 49.)

Instance Chain data my-parent data my-parent ihandle data framus pci Device Tree /

Figure 3 An Instance Chain for /pci/framus

Packages

43

When the chain is no longer needed, the individual instances of the chain may be closed by successive calling the close method of each node or the entire chain may be closed by calling close-dev with the ihandle of the chain. In either case, the chain is closed from bottom to top to enable a given node’s close method to use parental methods. The current instance is a very dynamic entity and is changed in several different ways under several different circumstances. Speciﬁcally:

s

When a package is ﬁrst created, new-device:

„ „ „

Creates a new device node that is a child of the currently active package. Makes that new node the active package. Makes that new node’s instance the current instance.

This causes any instance data/methods that are subsequently created (prior to the execution of finish-device) to be added to this node, and enables their later execution when an instance of this node is made current.

s

When open-dev creates an instance chain, the current instance is repeatedly changed as each node of the instance chain is added to the instance chain (i.e. the root of the chain is ﬁrst made current while it is being added to the instance chain, then the ﬁrst child node is made current while it is added to the chain, and so on down to the leaf node). Immediately before terminating, open-dev restores the value in my-self to the value that my-self contained prior to the execution of open-dev and open-dev returns the ihandle of the leaf node of the newly-created instance chain. By manipulating the current instance in this way, open-dev is able to use instance-speciﬁc data as required. To execute a method not contained in the current instance, $call-method (or one of its derivatives) is used. $call-method:

„ „ „ „

s

Saves the current value of my-self. Stores its ihandle argument in my-self (thus changing the current instance). Executes the speciﬁed method. Restores the saved value of my-self.

s

From the User Interface, the current instance can be changed by the user by setting the value of my-self directly. This is most useful in a debugging scenario when testing the methods of an opened package. (The select-dev method discussed in “Using select-dev” on page 35 resets my-self for just this purpose.)

If a package is in the node /packages, $open-package can be used to create an instance of the package. Unlike packages opened with open-dev, packages opened with $open-package are opened by themselves without opening their ancestors. Each time a package instance is created by $open-package, that instance is attached to the instance that called $open-package. Figure 4 shows the modiﬁed instance chain that results when the /pci/framus instance opens the obp-tftp support package using $open-package. Notice that the only additional instance that is created is one for the obp-tftp package, and that this instance is linked to the /pci/framus instance. If another instance of obp-tftp were opened by an instance in another instance chain, the resulting instance of obp-tftp would have no association with the instance shown in Figure 4.

44

Writing FCode Programs for PCI

Instance Chain data my-parent data my-parent ihandle ihandle returned by $open-package data data my-parent framus pci

Device Tree /

packages

obp-tftp

Figure 4 An Instance Chain for /pci/framus with obp-tftp Support

Package Data

Package data is named, read/write RAM storage used by package methods. Individual data items can be either “initialized” or “zero-ﬁlled” and either “static” or “instancespeciﬁc”.

s

s

s s

“Static” data can be accessed at any time, regardless of whether or not the package has been opened. There is only one copy of each static data item, regardless of the number of currently-open instances of that package. The process of opening a package does not in itself alter the values of static data items (although you can, of course, write code to do so explicitly). “Instance-speciﬁc” data can only be accessed when a previously-opened instance of its package is the current instance. The process of opening a package creates copies of its instance-speciﬁc data items and establishes their initial values. “Zero-ﬁlled” data items are set to zero when a package is opened. “Initialized” data items are set to possibly-non-zero initial values when a package is opened. The initial values are established during the creation of the package.

Initialized data items are created by the Forth deﬁning words defer, value and variable. Uninitialized data items are created by buffer:. Preceding the deﬁning word with the Forth word instance causes the deﬁning word to create an instancespeciﬁc item; otherwise the deﬁning word creates a static data item. Static data items are used for information that applies equally to all instances of the associated package. For example, virtual addresses of shared hardware resources, reference counts and hardware dependent conﬁguration data are often stored as static data. Instance-speciﬁc data items are used for information that differs between instances of the same package. For example, a package that provides a driver for a SCSI host adapter might have several simultaneous instances on behalf of several different target devices; each instance might need to maintain individual state information (e.g. the negotiated synchronous transfer rate) for its target.

Packages

45

Static and Instance-speciﬁc Methods

There are two kinds of package methods, depending on the environment in which they are called and their use of static and instance-speciﬁc data. “Static methods” are methods that:

s s

Do not access instance-speciﬁc data either directly or by calling other instancespeciﬁc methods. Do not attempt to call methods of their parent.

Static methods can be called when there is no open instance of their package. When there is no instance, there is also no parent instance (which is the reason for the prohibition about calling parent methods). The most important example of static methods is the decode-unit method which is called by the system during the process of searching the device tree without opening all of the nodes that are encountered. “Instance-speciﬁc methods” are:

s s

Permitted to use instance-speciﬁc data Permitted to call the methods of their parent.

There is no structural difference between static and instance-speciﬁc methods. The concept of “static” methods is just a terse way of saying that some methods have to obey the restrictions outlined above. Instance-speciﬁc methods are the usual case; the static methods restrictions apply only to a very small set of special-purpose methods (typically residing in expansion bus device nodes).

Deﬁning Methods, Properties and Data

It is possible to add new methods and new properties to a package deﬁnition at any time, even after the package deﬁnition has been completed. To do so, make the package the active package with dev or find-device and create the new deﬁnitions or properties. When you are ﬁnished, use device-end to unselect the active package leaving no package active. Generally speaking, the commands to do this would be put into nvramrc. (See ““The Script” and the Open Firmware Startup Sequence” on page 22.) However, it is not possible to add new data items to a package deﬁnition after the package deﬁnition has been completed. This is due to the way in which package data is stored versus the way package methods and properties are stored. Package methods and properties are stored in linked lists like a dictionary entry. They are linked into the method or property list of the package just like those methods and properties that were created with the original package. Package data, on the other hand, is stored in a packed array associated with the package. This data storage method was chosen to improve the performance of data accesses.

46

Writing FCode Programs for PCI

At the time a package is ﬁrst created, Open Firmware allocates a large, temporary data space that is used to hold data items during package deﬁnition. When the package deﬁnition is completed, Open Firmware collapses this temporary area to the minimum size necessary to hold the data items actually deﬁned. Consequently, there is no place to store data items added later. Note – If you attempt to deﬁne a new data item within a package, the Open Firmware implementation that you are using may appear to have created a new data item for you. However, you may also discover “incorrect” data behavior (e.g. data declared with instance behaves like static data). Attempting to add new data items to a package after the package has been deﬁned will, at best, result in non-portable behavior.

Execution Tokens

A method is identiﬁed by its execution token, xt. For words in the package being deﬁned, the Forth word ['] returns an execution token. The execution token is returned by find-method for other packages. (See the following sections for more details.) The execution token is used to execute a method in another package, and also to schedule a method for automatic, repeated execution by the system clock interrupt. See the alarm FCode.

Intra-package Calling Methods

A package can call its own methods directly simply by naming the target method in a Forth colon deﬁnition. Such calls require neither a call-time name search nor a change of the current instance. The binding of name to execution behavior occurs at compile time so subsequent redeﬁnitions of a name do not affect previously-compiled references to old versions of that named method. Infrequently, it may be desirable to call a method in the same package so that the name search happens at run-time. To do so, use either $call-method or find-method/call-package with my-self as the ihandle argument. (See the next section for details.)

Accessing Other Packages

Packages often use methods of other previously-deﬁned packages. There are two types of packages whose methods can be used directly:

s s

The parent of the package being deﬁned. Support packages in the /packages node of the device tree.

Phandles and Ihandles A package deﬁnition is identiﬁed by its phandle. find-package returns the phandle of a package in the /packages node. The phandle can then used to open that support package or to examine its properties. For example:

" deblocker" find-package

Packages

47

returns either false (package not found), or phandle true. Opening a support package with open-package returns an ihandle. This ihandle is used primarily to call the methods of the support package, and to close the support package when it is no longer needed. An instance argument string must be supplied when opening any package (it may be null). The instance argument string can then be accessed from within the opened package with the my-args FCode (see below for details). For example (assume that phandle has already been found):

" 5,3,0" phandle open-package (ihandle)

If the package cannot be opened, an ihandle of 0 is returned. $open-package includes the functions of find-package and open-package. In most cases, it can be used in their place. The primitive functions find-package and open-package are rarely used directly, although find-package is sometimes used when it’s necessary to examine a support package’s properties without opening it. The following FCode functions are used to ﬁnd and open packages (within the /packages node):

Table 14 Name find-package Package Access FCodes Stack Comment (name-str name-len -- false | phandle true) Description Finds the package speciﬁed by the string name-str name-len within /packages. Returns the phandle of the package, or false if not found. Opens an instance of the package phandle. Returns ihandle for the opened package, or false if unsuccessful. The package is opened with an instance argument string speciﬁed by arg-str arg-len. Shortcut word to ﬁnd and open the package named name-str name-len within /packages in one operation. Returns ihandle for the opened package, or false if unsuccessful.

open-package

(arg-str arg-len phandle -- ihandle | false)

$open-package (arg-str arg-len name-addr name-len -- ihandle | false)

An example of using $open-package follows:

" 5,3,0" " deblocker" $open-package (ihandle | 0)

48

Writing FCode Programs for PCI

Table 15 Name my-self my-parent

Manipulating phandles and ihandles Description Return the instance handle of the currently-executing package instance. Return the instance handle of the parent of the currently-executing package instance. Close an instance of a package.

Stack Comment (-- ihandle) (-- ihandle)

ihandle>phandle (ihandle -- phandle) Convert an instance handle to a package handle. close-package (ihandle --)

Don’t confuse phandle with ihandle. Here’s how to use them: 1. Open the package with $open-package which returns an ihandle. 2. Use the ihandle to call the methods of the package. 3. When done calling the methods of the package, use the ihandle to close the instance of the package with close-package. A package’s phandle is primarily used to access the package’s properties which are never instance-speciﬁc. Use ihandle>phandle to ﬁnd the phandle of an open package. my-self and my-parent return ihandles, which can be converted into phandles with ihandle>phandle.

Inter-package Calling Methods

The following FCode functions enable the calling of methods of other packages:

Table 16 Name $call-method Method-Access Words Stack Comment (… method-str method-len ihandle -- ???) Description Shortcut word that ﬁnds and executes the method method-str method-len within the package instance ihandle. Executes the method xt within the instance ihandle. Executes the method method-str method-len within the parent’s package instance. Identical to calling my-parent $call-method. Executes the method method-str method-len in the package named dev-str dev-len. Returns false if the method could not be executed. Finds the method named method-str method-len within the package phandle. Returns false if not found.

call-package $call-parent

(… xt ihandle -- ???) (… method-str method-len -- ???)

execute-device-method (… dev-str dev-len method-str method-len -- … false | ??? true)

find-method

(method-str method-len phandle -- false | xt true)

$call-parent is used most-often, but is the least ﬂexible of the above methods; it is exactly equivalent to the sequence “my-parent $call-method”. Most inter-package method calling involves calling the methods of one’s parent; $call-parent conveniently encapsulates the process of doing so.

Packages

49

$call-method can call methods of non-parent packages. It is most commonly used for calling methods of support packages. The ihandle argument of $call-method identiﬁes the package instance whose method is to be called. For example:

$call-parent $open-package $call-method

Both $call-parent and $call-method identify their target method by name. The method-str method-len arguments denote a text string that $call-parent or $call-method uses to search for a method of the same name in the target instance’s list of methods. Obviously, this run-time name search is not as fast as directly executing a method whose address is already known. However: a) Most packages have a relatively small number of methods, b) Systems typically implement a reasonably-efﬁcient name search mechanism, and c) Inter-package calls tend to occur relatively infrequently. Consequently, the length of time spent searching is usually not a limiting factor. A more complete example demonstrates the use of $open-package and $call-method:

: add-offset (x.byte# -- x.byte#') my-args " disk-label" $open-package " offset" rot $call-method ;

(ihandle) (name-addr name-len ihandle)

For those rare cases where method name search time is a limiting factor, use find-method to perform the name search once and then use call-package repetitively thereafter. find-method returns, and call-package expects, an “execution token” by which a method can be called quickly as shown in the following example that is somewhat faster if called repeatedly:

0 value label-ihandle \ Place to save the other package’s ihandle 0 value offset-method \ Place to save found method’s xt : init (--) my-args " disk-label" $open-package (ihandle) to label-ihandle " offset" label-ihandle ihandle>phandle (name-adr name-len phndle) find-method if (xt) to offset-method else ." Error: can’t find method" then ; : add-offset (d.byte# -- d.byte#’) offset-method label-ihandle call-package ;

50

Writing FCode Programs for PCI

Because device access time often dominates I/O operations, the beneﬁt of this extra code probably won’t be noticed. It is only justiﬁed if the particular method will be called often. Another use of find-method is to determine whether or not a package has a method with a particular name. This allows the addition of new methods to an existing package interface deﬁnition without requiring version numbers to denote which new or optional methods a particular package implements. With $call-method and $call-parent, the method name search is performed on every call. Consequently, if a new method (either one with a new name or with the same name as a previously-existing name) is created, any subsequent uses of $call-method or $call-parent naming that method will ﬁnd the new one. On the other hand, find-method “binds” a name to an execution token and subsequent redeﬁnitions of that name do not affect the previous execution token, so subsequent uses of $call-method continue to call the previous deﬁnition. In practice, this difference is rarely important, since it is quite unusual for new methods to be created when a package is already open. The one case where methods are routinely redeﬁned “on the ﬂy” is when a programmer does it explicitly during a debugging session; doing such redeﬁnitions is a powerful debugging technique. All of the method calling functions described above change the current instance to the instance of the callee for the duration of the call, restoring it to the instance of the caller upon return.

execute-device-method and apply

In addition to the inter- and intra-package method calling techniques just described, there is another way of calling methods that is rarely used by FCode Programs. execute-device-method and its variant apply allow a user to invoke a method of a particular package as a “self-contained” operation without explicitly opening and closing the package as separate operations. execute-device-method ﬁrst opens all the package’s parents, then calls the named method, and then closes all the parents. apply performs the same functions as execute-device-method, but it takes its arguments from the command line instead of from the Forth stack. It is consequently somewhat more convenient to use interactively. execute-device-method and apply are most often used for methods like selftest. selftest methods are usually called with the test User Interface command which is usually implemented with execute-device-method. Methods that are intended to be called with execute-device-method or its ilk must not assume that the package’s open method has been called, because execute-device-method does not call the open method of the package containing the target method even though it opens all of the package’s parents. Consequently, the target method must explicitly perform whatever initialization actions it requires, perhaps by calling the open method in the same package, or by executing some subsequence thereof. Before exiting, the target method must perform the corresponding close actions to undo its initialization actions. execute-device-method was intentionally designed not to call the target’s open and close methods automatically since the complete initialization sequence of open is not always appropriate for methods intended for use with execute-device-method.

Packages

51

In particular, an open method usually puts its device in a “fully operational” state, while methods like selftest often need to perform a partial initialization of selected device functions. Although execute-device-method can be used with any “self-contained” operation, IEEE Standard 1275-1994 speciﬁes its use with the following methods:

s s s

selftest test test-all

The FirmWorks implementation uses execute-device-method with the following additional methods:

s s s s s

abort? (Used in the keyboard driver.) clear (Used in the keyboard driver.) eject (Used in the ﬂoppy driver.) show-children (Used by probe-scsi in the SCSI driver.) watch-net (Used in the Ethernet driver.)

Plug-in Device Drivers

Plug-in device drivers are plug-in packages implementing simple device drivers. The interfaces to these drivers are designed to provide basic I/O capability. Plug-in drivers are used for such functions as booting the operating system from a device or displaying text on a device before the operating system has activated its own drivers. Plug-in drivers are added to the device tree during the probing phase of the Open Firmware ROM start-up sequence. Plug-in drivers must be programmed to handle portability issues, such as hardware alignment restrictions and byte ordering of external devices. With care, you can write a driver so that it is portable to all of the systems in which the device could be used. Plug-in drivers are usually stored in ROM located on the device itself, so that the act of installing the device automatically makes its plug-in driver available to the Open Firmware ROM. For devices with no provision for such a plug-in driver ROM, the plug-in driver can be located elsewhere, perhaps in ROM located on a different device or in an otherwise unused portion of the main Open Firmware ROM. However, use of such a strategy limits such a device to certain systems and/or system conﬁgurations.

Common Package Methods

Different packages have different collections of methods depending upon the job(s) that the packages have to do. Having said that, the following four methods are found in many device drivers. None of them can be considered to be absolutely “required”, however, since the nature of a given driver governs the methods that the driver needs. open and close are found in many drivers, but even they are not universally required. open and close are needed only if the device will be used with open-dev or another method that calls open-dev. Any device that has read and/or write methods needs open and close, as does any parent device whose children could possibly be opened.

52

Writing FCode Programs for PCI

Another way of looking at this is that open and close are needed for devices that are used to perform a series of related operations distributed over a period of time, relative so some other calling package. open initializes the device state that is maintained during the series of later operations, and close destroys that state after the series is complete. To illustrate, a series of write calls generated by another package is such a series. Conversely, selftest is not such a series; selftest happens “atomically” as an indivisible self-contained operation.

Basic Methods

open (-- ok?) Prepares a package for subsequent use. open typically allocates resources, maps, initializes devices, and performs a brief sanity check (making no check at all may be acceptable). true is returned if successful, false if not. When open is called, the parent instance chain has already been opened, so this method may call its parent’s methods. close (--) Restores a package to its “not in use” state. close typically turns off devices, unmaps, and de-allocates resources. close is executed before the package’s parent is closed, so the parent’s methods are available to close. It is an error to close a package which is not open.

Supplemental Methods

The following methods are highly recommended. reset (--) Puts a package into a quiescent state. reset is not invoked by any standard Open Firmware functions, but may be explicitly executed for “problem” devices in a particular Open Firmware implementation. reset is primarily for packages that do not automatically assume a quiet state after a hardware reset, such as devices that turn on with interrupt requests asserted. selftest (-- error#) Note – United States Patent No. 4,633,466, "Self Testing Data Processing System with Processor Independent Test Program", issued December 30, 1986 may apply to some or all elements of Open Firmware selftest. Anyone implementing Open Firmware should take such steps as may be necessary to avoid infringement of that patent and any other applicable intellectual property rights. Tests the package. selftest is invoked by the Open Firmware test word. It returns 0 if no error found or a package-speciﬁc error number if a failure is detected. test does not open the package before executing selftest, so selftest is responsible for establishing any state necessary to perform its function prior to starting the tests, and for releasing any resources allocated after completing the tests. There should be no user interaction with selftest, as the word may be called from a program with no user present.

Packages

53

If the device was already open when selftest is called, a new instance will still be created and destroyed. A well-written selftest should handle this possibility correctly, if appropriate. If the device is already open, but it is not possible to perform a complete selftest without destroying the state of the device, the integrity of the open device should take precedence, and the selftest process should test only those aspects of the device that can be tested without destroying device state. The inability to fully test the device should not be reported as an error result; an error result should occur only if selftest actually ﬁnds a device fault. The “device already open” case happens most commonly for display devices, which are often used as the console output device, and thus remain open for long periods of time. When testing a display device that is already open, it is not necessary to preserve text that may already be on the screen, but the device state should be preserved to the extent that further text output can occur and be visible after selftest exits. Any error messages that are displayed by the selftest method will be sent to the console output device, so when testing an already-open display device, such error messages should be avoided during times when selftest has the device in a state where it is unable to display text. selftest is not executed within an open/close pair. Consequently, selftest should be written to do its own mapping and unmapping. When selftest executes, a new instance is created (and destroyed). It will have its own set of variables, values, and so forth. These quantities are not normally shared with an instance opened with the normal open routine for the package.

Package Data Deﬁnitions

The following examples show how to create static data items:

variable bar 5 value grinch defer stub create ival x , y , z , 7 buffer: foo ival foo 7 move

\ One way to initialize a buffer

The data areas deﬁned above are shared among all open instances of the package. If a value is changed, for instance, the new value will persist until it is changed again, independent of the creation and destruction of package instances. Any open instance of a package can access and change the value of a static data item, which changes it for all other instances. The following examples show how to create instance-speciﬁc data items, whose values are not shared among open instances:

instance variable bar 5 instance value grinch instance defer stub 7 instance buffer: foo

54

Writing FCode Programs for PCI

Instance-speciﬁc data areas are re-initialized every time a package instance is created (usually by opening the package), so each instance gets its own copy of the data area. For example, changes to bar in one instance will not affect the contents of bar in another instance. (Note that create operates across all the instances, and cannot be made instance-speciﬁc.) The total amount of data space needed for a package’s instance-speciﬁc data items is remembered as part of the package deﬁnition when finish-device ﬁnishes the package deﬁnition. Also, the contents of all the variables, values, and defers at the time finish-device executes are stored as part of the package deﬁnition. An instance of the package is created when that package is later opened. Data space is allocated for that instance (the amount of which was remembered in the package deﬁnition). The portion of that data space created with variable, value, or defer is initialized from the values stored in the package deﬁnition. Data space created with buffer: is set to zero. You can add new methods and new properties to a package deﬁnition at any time, even after finish-device has been executed for that package. To do so, select the package and create deﬁnitions or properties. However, it is not possible to add new data items to a package deﬁnition after finish-device has been executed for that package. finish-device sets the size of the data space for that package, and subsequently the size is ﬁxed. Note – If you attempt to deﬁne a new data item within a package, the Open Firmware implementation that you are using may appear to have created a new data item for you. However, you may also discover “incorrect” data behavior (e.g. data declared with instance behaves like static data). Attempting to add new data items to a package after the package has been deﬁned will, at best, result in non-portable behavior.

Instance Arguments and Parameters

An instance argument (my-args) is a string that is passed to a package when it is opened. The string may contain parameters of any sort, based on the needs of the package, or may simply be a null-string if no parameters are needed. A null string can be generated with either " " or 0 0. The instance argument passed can be accessed from inside the package with the my-args FCode. Note – A package is not required to inspect the passed arguments. If the argument string contains several parameters separated by delimiter characters, you can pick off the pieces from within the package with left-parse-string. You can use any character as the delimiter; a comma is commonly used for this. Note – Avoid using blanks or the / character, since these will confuse the parsing of pathnames.

Packages

55

A new value for my-args is passed every time a package is opened. This can happen under a number of circumstances: 1. The my-args string will be null when FCode on a PCI card is interpreted automatically by the Open Firmware system at power-on. 2. The my-args string is set by a parameter to begin-package, which is used to set up the device tree when Forth source code is downloaded and interpreted interactively. 3. The my-args string can be set with set-args before a particular slot is probed, if PCI probing is being controlled from nvramrc. The above three instances happen only once, when the package FCode is interpreted for the ﬁrst time. If you want to preserve the initial value for my-args, the FCode program should copy it into a static buffer to preserve the information. Whenever a package is re-opened, a new value for my-args is supplied at that time. The method for supplying this new value depends on the method used to open the package, as described below. 1. The instance argument (my-args) is supplied as a string parameter to the commands open-package or $open-package. 2. User Interface commands, such as open-dev, execute-device-method and test, supply the entire pathname to the device being opened. This approach lets an instance argument be included within the pathname. For example, to open the PCI device “INTL,bwtwo” with the argument string “5,3,0”, enter:

ok " /pci/INTL,bwtwo:5,3,0" open-dev

A more complicated (and ﬁctitious) example is the following:

ok " /pci/AAPL,fremly:test/grumpin@7,32:print/INTL,fht:1034,5" ok open-dev

Here the string “test” is passed to the AAPL,fremly package as it is opened, the string “print” is passed to the grumpin package as it is opened, and the string “1034,5” is passed to the INTL,fht package as it is opened.

Package Addresses

Another piece of information available to a package is its address relative to its parent package. Again, there are two main ways to pass this address to the package:

s s

Part of the pathname of the package A string parameter given to the probe words

As an example of the ﬁrst method, suppose the following package is being opened:

ok "/pci/scsi/disk@3,0:b" open-dev

56

Writing FCode Programs for PCI

Then the address of the /disk package relative to the /scsi package is 3,0. Note that this address must match the initial value of the "reg" property (if present) of the /disk package. The package can ﬁnd its relative address with my-unit, which returns the address as a pair of numbers. The ﬁrst number (high) is the number before the comma in the example above, and the second number (low) is the number after the comma. Note that these are numbers, not strings. As an example of the second method, suppose a test version of an FCode package is being interpreted:

ok 0 0 " 3,0" " /pci" begin-package

Here the my-args parameters for the new FCode are null, the initial address is 3,0 and it will be placed under the /pci node. The initial address can be obtained through my-address and my-space. Typically, you use my-space and my-address (plus an offset) to create the package’s "reg" property, and also to map in needed regions of the device.

Package Mappings

Mappings set up by a package persist across instances unless they are explicitly unmapped. Passing the mapped addresses between instances is not usually worth the convolutions involved. It is usually better for each new instance to do its own mappings, being sure to unmap resources as they are no longer needed. However, if it is unlikely that a particular package will have several open instances at the same time, it is usually a good idea to maintain only one mapping for all the open instances, using a reference counter to keep track of the number of open instances. The variables that store the reference counter and the mapped address must be static, not instance-speciﬁc. When the last instance is closed, the resources should be unmapped.

Modifying Package Properties

To modify the properties of a package, ﬁrst make it the active package with dev or find-device. Then create or modify properties by executing property or one of its short-hand forms. When you are ﬁnished, use device-end to unselect the active package leaving no package active. Generally speaking, the commands to do this would be put into nvramrc. See Chapter 5 “Properties“, for more information about properties.

Standard Support Packages

The /packages node of the device tree is special. It has children, but instead of describing a physical bus, /packages serves as a parent node for support packages. The children of /packages are general-purpose software packages not attached to any particular hardware device. The “physical address space” deﬁned by /packages is a trivial one: there are no addresses. Its children are distinguished by name alone.

Packages

57

The children of /packages were created to simplify the job of writing FCode drivers for those device types that have a signiﬁcant amount of work to do that is common to all devices of a given type and yet is not closely related to the hardware of any given device. By segregating this common code into the /packages node, individual FCode drivers are easier to write, are smaller in size, and are easier to debug since much of the work they must accomplish has been previously written and debugged. For example, there is a signiﬁcant amount of network protocol that must be implemented by every network device. Rather than make each network driver larger and more complex, the common functions were placed into the obp-tftp package for use by all network device drivers. Like any other package, the children of /packages cannot be used until they are opened, and they must be closed when they are no longer needed. The FCodes open-package, $open-package and close-package are speciﬁcally provided for opening and closing the children of /packages; these FCodes work only with children of /packages. IEEE Standard 1275-1994 deﬁnes three support packages that are children of /packages.

s s s

obp-tftp deblocker disk-label

Each of these is described in the following sections.

TFTP Booting Support Package

obp-tftp implements the Internet Trivial File Transfer Protocol (TFTP). obp-tftp allows users to specify the use of “reverse address resolution protocol” (RARP) or the BOOTP protocol for use in address resolution. obp-tftp is typically used by a network device driver for its ﬁrst stage network boot protocol. obp-tftp implements three methods, open, close and load as shown in Table 17.

Table 17 Name open close load Stack diagram (-- okay?) (--) (addr -- size) TFTP Package Methods Description Prepares the package for subsequent use, returning true if the operation succeeds and false otherwise. Frees all resources that were allocated by open. Reads a client program from the default TFTP server, placing the program at memory address addr and returning its length size.

open and close are used as with any other package to prepare the package for use and to return the package to an unused condition when it is no longer needed. The load method, however, is the most interesting method deﬁned by this package from the perspective of the FCode driver writer.

58

Writing FCode Programs for PCI

Instead of having to write the load method for a network device, the device’s load method can be implemented simply by calling the obp-tftp load method using $call-method as shown in the following code fragment.

-1 instance value obp-tftp : open (-- ok?) " obp-tftp" find-package if (phandle) my-args (phandle arg$) rot (arg$ phandle) open-package (ihandle | 0) else () 0 (0) then (ihandle | 0) dup 0= if (0) ." Can’t open obp-tftp package" exit then (ihandle) to obp-tftp () . . . true (true) ; : load (addr -- len) " load" obp-tftp $call-method (len) ;

To enable the use of the support package’s load method, the driver must provide read and write methods for use by the support package’s load method. For a more detailed explanation of the use of obp-tftp, see Chapter 8 “Network Devices”.

Deblocker Support Package

The deblocker support package makes it easy to implement byte-oriented device methods, using the block-oriented or record-oriented methods deﬁned by devices such as disks or tapes. It provides a layer of buffering between the high-level byte-oriented interface and the low-level block-oriented interface. The deblocker support package implements the following methods:

Table 18 Name open Deblocker Package Methods Description Prepares the package for subsequent use, allocating the buffers used by the deblocking process based upon the values returned by the parent instance’s max-transfer and block-size methods. Returns true if the operation succeeds and false otherwise. Frees all resources that were allocated by open.

Stack diagram (-- okay?)

close

(--)

Packages

59

Table 18 Name read

Deblocker Package Methods (Continued) Description Reads at most len bytes from the device into the memory buffer beginning at addr. Returns actual, the number of bytes actually read. If actual is zero or negative, the read operation failed. Uses the parent’s read-blocks method as necessary to satisfy the request, buffering any unused bytes for the next request. Writes at most len bytes from the device into the memory buffer beginning at addr. Returns actual, the number of bytes actually read. If actual is less than len, the write operation failed. Uses the parent’s write-blocks method as necessary to satisfy the request, buffering any unused bytes for the next request. Sets the device position at which the next read or write will take place. Returns 0 or 1 if the operation succeeds and -1 if it fails.

Stack diagram (addr len -- actual)

write

(addr len -- actual)

seek

(pos.lo pos.hi -- status)

deblocker (which is often used in combination with disk-label) is used to implement a block device’s read, write and seek methods as shown in the following code fragment.

-1 instance value deblocker : open (-- ok?) my-unit " set-address" $call-parent timed-spin if false exit then block-size to /block init-deblocker 0= if false exit then init-label-package 0= if deblocker close-package false exit then true ; : init-deblocker (-- ok?) " " " deblocker" $open-package dup to deblocker if true else ." Can’t open deblocker package" cr false then ; : read (addr len -- #read) " read" deblocker $call-method ; : write (addr len -- #written) " write" deblocker $call-method ; : seek (pos.lo pos.hi -- status) offset-low offset-high d+ " seek" deblocker $call-method ;

To enable the deblocker, a device driver must provide the block-size, dma-alloc, dma-free, max-transfer, read-blocks and write-blocks methods. For a more detailed explanation of the use of deblocker, see Chapter 7 “Block and Byte Devices”.

60

Writing FCode Programs for PCI

Disk-Label Support Package

Disk (block) devices are random-access, block-oriented storage devices with ﬁxedlength blocks. Disks may be subdivided into several logical “partitions”, as deﬁned by a disk label—a special disk block, usually the ﬁrst one, containing information about the disk. The disk driver is responsible for appropriately interpreting a disk label. The driver may use the standard support package disk-label if it does not implement a specialized label. disk-label interprets the host system’s standard disk label, reading any “partitioning” information contained in it. It includes a ﬁrst stage disk boot protocol for the standard label. In addition, in some systems (e.g. PowerPC systems) disk-label understands some set of ﬁle systems such that individual ﬁles can be accessed. The disk-label support package implements the following methods:

Table 19 Name open close load Stack diagram (-- okay?) (--) (addr -- size) Disk Label Package Methods Description Prepare this package for subsequent use. Returns true if the operation succeeds and false otherwise. Frees all resources that were allocated by open. Reads a client program from the “standard” disk boot block location for the partition speciﬁed when the package was opened. Places the program at memory address addr, returning its length size. Returns the 64-bit absolute byte offset d.abs corresponding to the 64-bit partition-relative byte offset d.rel. In other words, adds the byte location of the beginning of the selected partition to the number on the stack.

offset

(d.rel-- d.abs)

To enable disk-label, a device driver must provide the read and seek methods. Since deblocker is often used to implement those methods for a driver, disk-label and deblocker are often both used by a block device. For a more detailed explanation of the use of disk-label, see Chapter 7 “Block and Byte Devices”. disk-label is used to implement a block device’s load and offset methods as shown in the following code fragment.

-1 instance value disk-label : init-label-package 0 to offset-high 0 to offset-low my-args " disk-label" $open-package dup to disk-label if 0 0 " offset" disk-label $call-method to offset-high to offset-low true else ." Can’t open disk label package" cr false then ; : load (addr -- len) " load" disk-label $call-method ;

Packages

61

62

Writing FCode Programs for PCI

5

Chapter 5

Properties

Properties describe characteristics of hardware devices, software and user choices. Properties are associated with the device node in which they are created and are accessible both by Open Firmware routines and by client programs. Properties can be inspected and, in some cases, modiﬁed. Each property has a property name and a property value.

s

Property names are human-readable strings consisting of one to 31 printable, lowercase letters and symbols not including “/”, “\”, “:”, “[“, “]” or “@”. Property names beginning with “+” are reserved for future use by IEEE Standard 1275-1994 Property values specify the contents, or value, of a particular property. The value is an array of bytes that may be used to encode integer numbers, text strings, or other forms of information.

s

Properties are accessed by name. Given a property’s name, it is possible to determine whether that property has been deﬁned and, if so, what its value is. Property values are encoded as arrays of zero or more bytes for portability across machine architectures. The encoding and decoding procedures are deﬁned by IEEE Standard 1275-1994. The encoding format is independent of hardware byte order and alignment characteristics. The encoded byte order is big-endian and the bytes are stored in successive memory locations without any padding. The format of the property value array associated with a given property name is speciﬁc to that property name. There are ﬁve basic types of property value array formats:

s

ﬂag Since property value arrays may be of zero length, properties may convey “true” or “false” information by their presence or absence.

s

byte An array of 1 or more bytes is stored in a property value array as a series of sequential bytes in the property value array.

63

s

32-bit integer A 32-bit integer is stored in a property value array in four successive bytes with the most signiﬁcant byte of the integer in the next available address in the property value array followed by the high middle, low middle and least signiﬁcant bytes of the integer (i.e. in big-endian format).

s

text string A text string of n printable characters is stored in a property value array in n+1 successive locations by storing the string in the ﬁrst n locations followed by a byte of zero value (i.e. a null terminated string).

s

composite A composite value is made up of the concatenation of encoded bytes, encoded 32-bit integers and/or encoded strings. Each such primitive is stored immediately after the preceding primitive with no intervening space (i.e. the items are “packed”). Some examples of composite values are: s physical address range. Encoded as 4 integers: phys.lo phys.mid phys.hi size s array. The concatenation of n items of some type. s structure. The concatenation of an arbitrary collection of other types with no padding or internal alignment.

The standard deﬁnes a number of standard properties with speciﬁed names and value formats. If a package uses one of these standard properties then the value format of the property must be as deﬁned by the standard. Packages may deﬁne other properties whose names do not conﬂict with the list of standard properties. Such newly deﬁned properties may have any value format. Properties may be created by FCode programs. The CPU’s Open Firmware understands certain property names that tell it such things as the type of a device (e.g. disk, tape, network, display, etc.). The ﬁrmware system uses this information to determine how to use the device (if at all) during the boot process. Some operating systems understand other property names that give information used for conﬁguring the operating system automatically. These properties include the driver name, the addresses and sizes of the device’s registers, and interrupt levels and interrupt vectors used by the device. Other properties may be used by individual operating system device drivers. The names of such properties and the interpretation of their values is subject to agreement between the writers of the FCode programs and the operating system driver, but may otherwise be arbitrarily chosen. For example, a display device might declare width, height, and depth properties to allow a single operating system driver to automatically conﬁgure itself for one of several similar but different devices. A package’s properties identify the characteristics of the package and its associated physical device, if any. You can create a property either with the property FCode, or with the name, reg, model, and device-type FCodes, described below. For example, a framebuffer package might export its register addresses, interrupt levels, and framebuffer size. Every package has an associated property list, which is arbitrarily extensible. The user interface command .properties displays the names and values of the current node’s properties.

64

Writing FCode Programs for PCI

For example, if a property named foo is created in a device node which already has a property named foo, the new property supersedes the old one. New properties can be added during the lifetime of a product. For backward compatibility, an FCode or device driver program that needs the value of a particular property should determine whether or not the property exists and, if not, the program should supply its own default value.

Standard FCode Properties

IEEE Standard 1275-1994 deﬁnes the following standard properties. A package should never create any property using any of the following names, unless the deﬁned meanings and structures are used.

Standard Property Names

This group of properties applies to all device nodes regardless of type. The "name" property is required in all packages. The remaining properties are optional.

s

"name" Deﬁnes the name of the package.

s

"reg" Deﬁnes the package’s address space(s).

s

"device_type" Deﬁnes the characteristics that the device is expected to have.

s

"model" Deﬁnes the manufacturer’s model number.

s

"interrupts" Deﬁnes the interrupts used by the device.

s

"address" Speciﬁes the virtual addresses of one or more memory-mapped regions of the device.

s

"compatible" Speciﬁes a list of devices with which this device is compatible.

s

"status" Indicates the operational status of the device.

Display Device Properties

Display devices include bit-mapped frame buffers, graphics displays and charactermapped displays. Display devices are typically used for console output. The following properties are speciﬁc to display devices:

s

"big-endian-aperture" Speciﬁes the big endian aperture of the frame buffer.

Properties

65

s

"character-set" Speciﬁes the character set (e.g. ISO8859-1).

s

"depth" Speciﬁes the number of bits in each pixel of the display.

s

"height" Speciﬁes the number of pixels in the “y” direction of the display.

s

"linebytes" Speciﬁes the number of pixels between consecutive scan lines of the display.

s

"little-endian-aperture" Speciﬁes the little endian aperture of the frame buffer.

s

"width" Speciﬁes the number of pixels in the “x” direction of the display.

Network Device Properties

Network devices are packet-oriented devices capable of sending and receiving Ethernet packets. Network devices are typically used for booting.

s

"local-mac-address" Speciﬁes the pre-assigned network address.

s

"mac-address" Speciﬁes the last used network address.

s

"address-bits" Speciﬁes the number of address bits needed to address this device on the physical layer.

s

"max-frame-size" Speciﬁes the maximum packet size that the device can transmit at one time.

Memory Device Properties

Memory devices are traditional random-access memory, suitable for temporary storage of data.

s

"reg" Speciﬁes the physical addresses actually installed in the system.

s

"available" Speciﬁes the regions of physical addresses that are currently unallocated by Open Firmware.

MMU Properties

A memory management unit (MMU) is a device that performs address translation between a CPU’s virtual addresses and the physical addresses of some bus, typically the bus represented by the root node.

66

Writing FCode Programs for PCI

s

"available" Speciﬁes the regions of physical addresses that are currently unallocated by Open Firmware.

s

"existing" Speciﬁes all of the regions physical addresses actually installed in the system.

s

"page-size" Speciﬁes the number of bytes in the smallest mappable region of virtual address space.

s

"translations" Describes the address translations currently in use by Open Firmware.

General Properties For Parent Nodes

s

"#address-cells" Deﬁnes a device node’s address format.

s

"#size-cells" Speciﬁes the number of cells that are used to encode the size ﬁeld of a child’s "reg" property.

s

"ranges" Deﬁnes the relationship between the physical address spaces of the parent and child nodes.

Properties For PCI Parent Nodes

s

"#address-cells" The value of this property for a PCI bus node is 3.

s

"#size-cells" The value of this property for a PCI bus node is 2, reﬂecting the 64-bit address space of PCI.

s

"device_type" The value of this property for a PCI bus node is “pci”.

s

"reg" For nodes representing PCI-to-PCI bridges, the value denotes the Conﬁguration Space address of the bridges’s conﬁguration registers. The format is the same as that for PCI child nodes. For nodes representing bridges from some other bus to PCI, the format is as deﬁned for the other bus.

s

"bus-range" Speciﬁes the range of bus numbers controlled by this PCI bus.

s

"slot-names" Describes the external labeling of add-in slots.

Properties

67

Properties for PCI Child Nodes

The following deﬁnitions are speciﬁed by the PCI Bus Binding to IEEE Standard 12751994.

s

"reg" This standard property is mandatory for PCI Child nodes.

s

"interrupts" The presence of this property indicates that the function represented by this node is connected to a PCI expansion connector’s interrupt line.

s

"alternate-reg" Deﬁnes alternate access paths for addressable regions.

s

"has-fcode" The presence of this property indicates that this node was created by the evaluation of an FCode program.

s

"assigned-addresses" Deﬁnes the Conﬁguration Space’s base address and size.

s

"power-consumption" Describes the device’s maximum power consumption categorized by the various power rails and the device’s power-management state.

Each of the following PCI child node properties is created during the probing process, after the device node has been created, and before evaluating the device’s FCode (if any). The property values are those found in the standard PCI conﬁguration registers. Unless otherwise speciﬁed, each of the following properties has a property value created by encoding the value contained in the associated hardware register with encode-int.

s s s s s

"vendor-id" "device-id" "revision-id" "class-code" "interrupts" This property is present only if the Interrupt Pin register is non-zero.

s s s s

"min-grant" "max-latency" "devsel-speed" "fast-back-to-back" This property is present only if the “fast-back-to-back” bit (Bit 7) of the function’s Status Register is set.

68

Writing FCode Programs for PCI

Detailed Descriptions of Standard Properties

"#address-cells" This property applies only to bus nodes. It speciﬁes the number of cells that are used to represent a physical address with a bus’ address space. The value for PCI bus nodes is 3. "#size-cells" This property applies only to bus nodes. It speciﬁes the number of cells used to represent the length of a physical address range (i.e. the “size” ﬁeld of a child’s "reg" property. The value for PCI bus nodes is 2. "address" This property declares currently-mapped device virtual addresses. It is generally used to declare large regions of existing mappings, in order to enable the operating system device driver to re-use those mappings, thus conserving system resources. This property should be created after virtual addresses have been assigned by mapping operations, and should be deleted when the corresponding virtual addresses are unmapped. The property value is an arbitrary number of virtual addresses. The correspondence between declared addresses and the set of mappable regions of a particular device is device-dependent.

-1 value my-buffers -1 value my-dma-addr : map-me (--) my-address my-space 1.0000 " map-in" $call-parent (virt1) to my-buffers 2000 " dma-alloc" $call-parent (virt2) to my-dma-addr my-buffers encode-int my-dma-addr encode-int encode+ " address" property ; : unmap-me (--) my-dma-addr 2000 " dma-free" $call-parent my-buffers 1.0000 " map-out" $call-parent " address" delete-property ;

See also: free-virtual, property "address-bits" This property, when declared in “network” devices, indicates the number of address bits needed to address this device on its network. Used as:

d# 48 encode-int " address-bits" property

See also: property and Chapter 8 “Network Devices”.

Properties

69

"alternate-reg" This property describes alternative access paths for the addressable regions described by the "reg" property. Typically, an alternative access path exists when a particular part of a device can be accessed either in memory space or in I/O space, with a separate base address register for each of the two access paths. The primary access paths are described by the "reg" property and the secondary access paths, if any, are described by the "alternate-reg" property. If no alternative paths exist, the "alternate-reg" property should not be deﬁned. If the device has alternative access paths, each entry (i.e. each phys-addr size pair) of its value represents the secondary access path for the addressable region whose primary access path is in the corresponding entry of the "reg" property value. If the number of "alternate-reg" entries exceeds the number of "reg" property entries, the additional entries denote addressable regions that are not represented by "reg" property entries, and are thus not intended to be used in normal operation; such regions might, for example, be used for diagnostic functions. If the number of "alternate-reg" entries is less than the number of "reg" entries, the regions described by the extra "reg" entries do not have alternative access paths. An "alternate-reg" entry whose phys.hi component is zero indicates that the corresponding region does not have an alternative access path; such an entry can be used as a “place holder” to preserve the positions of later entries relative to the corresponding "reg" entries. The ﬁrst "alternate-reg" entry, corresponding to the "reg" entry describing the function’s Conﬁguration Space registers, has a phys.hi component of zero. The property value is an arbitrary number of (phys-addr, size) pairs where:

s s

phys-addr is (phys.lo phys.mid phys.hi), encoded with encode-phys. size is a pair of integers, each encoded with encode-int. The ﬁrst integer denotes the most-signiﬁcant 32 bits of the 64-bit region size and the second integer denotes the least-signiﬁcant 32 bits thereof.

"assigned-addresses" This property describes the location and size of regions of physical address space that are speciﬁed in the device’s Conﬁguration Space base address registers. The property value is zero to six (phys-addr, size) pairs where:

s s

phys-addr is (phys.lo phys.mid phys.hi), encoded with encode-phys. size is a pair of integers, each encoded with encode-int. The ﬁrst integer denotes the most-signiﬁcant 32 bits of the 64-bit region size and the second integer denotes the least-signiﬁcant 32 bits thereof.

Each entry [i.e. (phys-addr, size) pair] in this property value corresponds to one (or two in the case of 64-bit-address Memory Space) of the function’s Conﬁguration Space base address registers. The entry indicates the physical address that has been assigned to that base address register, and the size in bytes of the assigned region. The size is a power of two (since the structure of PCI Base Address registers forces the decoding granularity to powers of two). Please see the glossary entry for this property for a complete description of the formatting details.

70

Writing FCode Programs for PCI

Note: There is no implied correspondence between the order of entries in the "reg" property value and order of entries in the "assigned-addresses" property value. The correspondence between the "reg" entries and "assigned-addresses" entries is determined by matching the ﬁelds denoting the Base Address register. "available" This property deﬁnes the resources that are managed by this package (i.e. /memory or /mmu) that are currently available for use by a client program. The property value is an arbitrary number of (phys-addr, length) pairs where:

s s

phys-addr is a phys.lo phys.mid phys.hi list of integers encoded with encode-int. length (whose format depends on the package) is one or more integers, each encoded with encode-int.

"big-endian-aperture" This property is associated with "display" devices. Encoded identically to "reg" for the corresponding bus, the property value contains the address of the big endian “aperture” of the frame buffer (i.e. the address range through which the frame buffer can be addressed in big endian mode). "bus-range" This property speciﬁes the range of bus numbers controlled by this PCI bus. The property value is two integers, each encoded with encode-int. The ﬁrst integer represents the bus number of the PCI bus implemented by the bus controller represented by this node. The second integer represents the largest bus number of any PCI bus in the portion of the PCI domain that is subordinate to this node. "character-set" This property, when declared in “display” devices, indicates the recognized character set for the device. The property value is a text string. A typical value is “ISO8859-1”. 8859-1 is the number of the ISO speciﬁcation for that particular character set, which essentially covers the full range of western European languages. To get a list of possible values, consult the X registry for which there is an address in the X11R5 documentation. Used as:

" ISO8859-1" encode-string " character-set" property

See also: property, Chapter 10 “Display Devices” "class-code" This property contains the value of the “Class Code” register from the Conﬁguration Space header. That register identiﬁes the generic function of the device and (in some cases) a speciﬁc register-level programming interface. The property value is the register’s value encoded with encode-int. See also: PCI Local Bus Speciﬁcation

Properties

71

"compatible" This property speciﬁes a list of devices with which this device is compatible. The property is typically used by client programs to determine the correct driver to use with the device in those cases where the client program does not have a driver which matches the "name" property. The property value is the concatenation (with encode+) of an arbitrary number of text strings (encoded with encode-string) wherein each text string follows the formatting conventions as described for the "name" property. Note – At the time of this writing, the Open Firmware Working Group is considering the adoption of a new “recommended practice” on the topic “Generic Names”. Once this recommended practice is adopted, you are strongly encouraged to follow its recommendations which affect the usage of the name and compatible properties. Recommended practice documents can be obtained as described in “Related Books and Speciﬁcations” on page xvi. See also: "name" "depth" This property is associated with "display" devices. Encoded with encode-int, the property value speciﬁes the number of bits in each pixel of the display. "device-id" This property contains the value of the “Device ID” register from the Conﬁguration Space header. That register identiﬁes the particular device. The encoding of the register is determined by the device vendor. The property value is the register’s value encoded with encode-int. See also: PCI Local Bus Speciﬁcation "device_type" This property declares the type of this plug-in device. The type need not be declared, unless this device is intended to be usable for booting. If this property is declared, using one of the following key values, the FCode program must follow the required conventions for that particular type of device, by implementing a speciﬁed set of properties and procedures (methods). Used as:

" display" encode-string " device_type" property

Deﬁned values for this property are:

Table 20 Device Type block byte Standard Device Types Device Characteristics Random-access, block-oriented device, such as a disk drive, usable as a boot ﬁle source. See Chapter 7 “Block and Byte Devices” for the requirements of this type of device. Random-access, byte-oriented device, such as a tape drive, usable as a boot ﬁle source. See Chapter 7 “Block and Byte Devices” for the requirements of this type of device.

72

Writing FCode Programs for PCI

Table 20 Device Type display memory network pci serial

Standard Device Types (Continued) Device Characteristics

Framebuffer or other similar display device, usable for message display during booting. See Chapter 10 “Display Devices” for the requirements of this type of device. Random-access memory device. See IEEE Standard 1275-1994 for the requirements of this type of device. Packet-oriented network device, such as Ethernet, usable as a boot ﬁle source. See Chapter 8 “Network Devices” for the requirements of this type of device. A PCI bus node to which PCI plug-in devices can be attached. See Chapter 11 “Memory-Mapped Buses” for the requirements of this type of device. Byte-oriented device, such as a serial port, usable for console input and/or console output. See Chapter 9 “Serial Devices” for the requirements of this type of device.

See also: device-type, property "devsel-speed" This property contains the value of the “DEVSEL timing” ﬁeld (Bits 9-10) of the “Status” register from the Conﬁguration Space header. That ﬁeld describes the timing of the DEVSEL# output of the device. The property value is the register’s value encoded with encode-int. A value of 0 indicates “fast”, 1 indicates “medium” and 2 indicates “slow” timing. See also: PCI Local Bus Speciﬁcation

s

"existing" Speciﬁes all of the regions physical addresses actually installed in the system.

"fast-back-to-back" This property should be present only if the “Fast Back-to-Back Capable” ﬁeld (Bit 7) is set in the “Status” register from the Conﬁguration Space header. That ﬁeld indicates whether the device is capable of accepting fast back-to-back transactions when the transactions are not to the same agent. See also: PCI Local Bus Speciﬁcation "has-fcode" This property should be present only if the creation of this device node involved the evaluation of an FCode program as opposed to completely automatic creation from information in conﬁguration registers. "height" This property is associated with "display" devices. Encoded with encode-int, the property value speciﬁes the number of displayable pixels in the “y” direction of the display. "interrupts" For PCI devices, this property should be present only if the function represented by this node is connected to a PCI expansion connector’s interrupt line. The value of this property is determined from the contents of the “Interrupt Pin” register from the Conﬁguration Space header.

Properties

73

The property value is the register’s value encoded with encode-int. The deﬁned values are:

Table 21 Value 1 2 3 4 "interrupts" Property Value Encoding Description The device uses the INTA# interrupt line The device uses the INTB# interrupt line The device uses the INTC# interrupt line The device uses the INTD# interrupt line

The "interrupts" property is used to report the interrupt pin that the card uses, strictly within the domain of interrupts deﬁned by the PCI speciﬁcation. It is the responsibility of the operating system’s PCI bus driver code to translate the interrupts reported by its children into the interrupt domain of its parent. This makes it possible to write portable, system-independent FCode drivers, because the FCode driver does not need to know system-speciﬁc information about the way that the system handles interrupts. The system-speciﬁc information is known by the code that handles the system component that actually performs the hardware mapping from PCI interrupt pins to whatever interrupt facitilies exist on the system. In some cases, the mapping may even be hierarchical. For example, a NuBus-to-PCIBus bridge might translate PCI interrupt pins into NuBus interrupt vectors, then a VMEBus-to-NuBus bridge might translate NuBus interrupt vectors into VME levels, then a host-to-VMEBus bridge might translate VME levels into IRQs. See also: PCI Local Bus Speciﬁcation "linebytes" This property is associated with "display" devices. Encoded with encode-int, the property value speciﬁes the number of pixels between consecutive scan lines of the display. "little-endian-aperture" This property is associated with "display" devices. Encoded identically to "reg" for the corresponding bus, the property value contains the address of the little endian “aperture” of the frame buffer (i.e. the address range through which the frame buffer can be addressed in little endian mode). "local-mac-address" This property, used with devices whose "device_type" is “network”, should be present only if the device has a built-in, 48-bit, IEEE 802.3-style Media Access Control (MAC) address. The system may or may not use this address in order to access this device. Used as:

" "(08,04,fe,23,46,9e)" encode-bytes " local-mac-address" property

See also: mac-address, "mac-address", property, and Chapter 8 “Network

74

Writing FCode Programs for PCI

Devices”. "mac-address" This property must be created by the open method of “network” devices to indicate the Media Access Control (MAC) address that this device is currently using. This value may or may not be the same as the "local-mac-address" property, if any. This property is typically used by client programs that need to determine which network address was used by the network interface from which the client program was loaded. The property value is the six byte MAC address encoded with encode-byte. Here’s how it all ﬁts together. 1. If a plug-in device has an assigned MAC address from the factory, this address is published as the value for "local-mac-address". 2. The system (based on various factors such as presence or absence of "local-mac-address" and/or the value of the NVRAM parameter "local-mac-address?") decides which address it prefers the plug-in device to use. The value returned by the mac-address FCode is set to this address. 3. The plug-in device then reports the address which it is actually using by publishing the "mac-address" property. The following are code examples for three typical situations. For a well-behaved plug-in “network” device (which has a factory-unique MAC address but can use another system-supplied MAC address if desired by the system), the FCode would appear as:

" "(08,04,fe,23,46,9e)" encode-bytes " local-mac-address" mac-address encode-bytes " mac-address" (plus code to "assign" the correct mac-address value into registers) property property

For a plug-in “network” device that has a factory-unique MAC address and is unable to alter its behavior to a different address, the FCode would appear as:

" "(08,04,fe,23,46,9e)" encode-bytes " "(08,04,fe,23,46,9e)" encode-bytes " local-mac-address" property " mac-address" property

For a plug-in “network” device which does not have any built-in MAC address, the FCode would appear as:

mac-address encode-bytes " mac-address" property (plus code to "assign" the correct mac-address value into registers)

See also: mac-address, "local-mac-address", property and Chapter 8 “Network Devices”.

Properties

75

"max-frame-size" This property, when declared in “network” devices, indicates the maximum packet size (in bytes) that the physical layer of the device can transmit. This property is can be used by client programs to allocate buffers of the appropriate length. Used as:

4000 encode-int " max-frame-size" property

See also: property and Chapter 8 “Network Devices”. "max-latency" This property contains the value of the “Max_Lat” register from the Conﬁguration Space header. That register speciﬁes how frequently the device needs to gain access to the PCI bus. The value is given in units of 250 nanoseconds. A value of zero indicates that the device has no major requirements for the setting of the Latency Timers. The property value is the register’s value encoded with encode-int. See also: PCI Local Bus Speciﬁcation "min-grant" This property contains the value of the “Min_Gnt” register from the Conﬁguration Space header. That register speciﬁes how long a burst period the device needs assuming a clock frequency of 33 MHz. The value is given in units of 250 nanoseconds. A value of zero indicates that the device has no major requirements for the setting of the Latency Timers. The property value is the register’s value encoded with encode-int. See also: PCI Local Bus Speciﬁcation "model" This property identiﬁes the model name and number (including revision) for a device, for manufacturing and ﬁeld-service purposes. The "model" property is useful to identify the speciﬁc piece of hardware (the plug-in card), as opposed to the "name" property (since several different but functionallyequivalent cards would have the same "name" property, thus calling the same device driver). Although the "model" property is good to have in general, it generally does not have any other speciﬁc purpose. The property value format is arbitrary, but conventional usage is to begin the string with the manufacturer’s name (as with the "name" property) and to end the string with the revision level. Used as:

" INTL,501-1415-1" encode-string " model" property

See also: "name", model, property

76

Writing FCode Programs for PCI

"name" This property speciﬁes the manufacturer’s name and device name of the device. All device nodes must publish this property. The "name" property can be used to match a particular operating system device driver with the device. The property value is an arbitrary string consisting of one to 31, case-sensitive letters, numbers and/or characters from the set { , . _ + - }. The string may contain at most one comma. Embedded spaces are not allowed. IEEE Standard 1275-1994 speciﬁes three different formats for the manufacturer’s name portion of the property value. For United States companies that have publicly listed stock, the most practical form of name is to use the company’s stock symbol (e.g. INTL for Intel Corporation). This option is also available to any company anywhere in the world provided that there is no duplication of the company’s stock symbol on either the New York Stock Exchange or the NASDAQ exchange. If a non-U.S. company’s stock is traded as an American Depository Receipt (ADR), the ADR symbol satisﬁes this requirement. A prime advantage of this form of manufacturer’s name is that such stock symbols are very human-readable. An alternative is to obtain an organizationally unique identiﬁer (OUI) from the IEEE Registration Authority Committee. This is a 24-bit number that is guaranteed to be unique world-wide. Companies that have obtained an OUI would use a sequence of hexadecimal digits of the form “0NNNNNN” for the manufacturer’s name portion of the property. This form of name has the disadvantage that the manufacturer is not easily recognizable. For those companies that neither have stock that trades publically on a U. S. stock exchange nor have an OUI, a name may be constructed that contains at least one lower case letter or is longer than ﬁve characters thereby making it unlike a stock symbol (e.g. Fujitsu). Each manufacturer may devise its own format for the device name portion of the property value. An example usage is:

" INTL,bison-printer" encode-string " name" property

The device-name method may also be used to create this property. Note – At the time of this writing, the Open Firmware Working Group is considering the adoption of a new “recommended practice” on the topic “Generic Names”. Once this recommended practice is adopted, you are strongly encouraged to follow its recommendations which affect the usage of the name and compatible properties. Recommended practice documents can be obtained as described in “Related Books and Speciﬁcations” on page xvi. See also: device-name, property, compatible

Properties

77

"page-size" This property speciﬁes the number of bytes in the smallest mappable region of virtual address space managed by the /mmu package. "power-consumption" This property describes the device’s maximum power consumption (in microwatts) categorized by the various power rails and the device’s power-management state (standby or fully-on). The property value is a list of up to ten integers encoded with encode-int in the following order:

s s s s s s s s s s

unspeciﬁed standby unspeciﬁed full-on +5V standby +5V full-on +3.3V standby +3.3V full-on I/O power standby I/O power full-on reserved standby reserved full-on

The “unspeciﬁed” entries indicate that it is unknown how the power is divided among the various rails. The “unspeciﬁed” entries must be zero if any of the other entries are non-zero. The “unspeciﬁed” entries are provided so that the "power-consumption" property can be created for devices without FCode, from the information on the PRSNT1# and PRSNT2# connector pins. If the number of integers in the encoded property value is less than ten, the power consumption is zero for the cases corresponding to the missing entries. For example, if there are four integers, they correspond to the two “unspeciﬁed” and the two “+5” quantities, and the others are zero. The following code would create a "power-consumption" property for a device with +5V standby consumption of 100 mA and +5V full-on consumption of 2.5A:

0 encode-int 0 encode-int encode+ \ Set unspecified values to zero 500000 encode-int encode+ \ 100 mA@5V = 500,000 uW standby 12500000 encode-int encode+ \ 2.5A@5V = 12,500,000 uW full-on " power-consumption" property

"ranges" The "ranges" property is a list of child-to-parent bus-speciﬁc address translations required for most bus node devices. "ranges" is a property for those bus devices whose children can be accessed with CPU load and store operations (as opposed to buses like SCSI, whose children are accessed with a command protocol).

78

Writing FCode Programs for PCI

The "ranges" property value describes the bus-speciﬁc address translation that deﬁnes the correspondence between the part of the physical address space of the bus node’s parent available for use by the bus node (the parent address space), and the physical address space deﬁned by the bus node for its children (the child address space). The "ranges" property value is a sequence of (child-phys, parent-phys, size) speciﬁcations where:

s s s

child-phys is a starting address in the child physical address space deﬁned by the bus node. parent-phys is a starting address in the physical address space of the parent of the bus node. size is the length in bytes of the child’s address range.

The speciﬁcation means that there is a one-to-one correspondence between the child addresses and the parent addresses within that range. The parent addresses given are always relative to the parent’s address space. child-phys is an address in the child address space encoded with encode-phys. For PCI, this means an address speciﬁcation of the form phys.hi phys.mid phys.lo. parent-phys is an address in the parent address space encoded with encode-phys. The number of integers in each size entry is determined by the value of the #size-cells property of the node in which the ranges property appears. In the case of PCI, size is a list of two integers. The integers of the size entry are encoded with encode-int. For a PCI node in a PowerPC Reference Platform (PPCRP) compliant machine, the total size of each such speciﬁcation is six 32-bit numbers (one for the parent address space, three for the child address space, and two for the size). Successive speciﬁcations are encoded sequentially. A space with length 2**(number of bits in a machine word) is represented with a size of 0. It is recommended (and not required) that the speciﬁcations be sorted in ascending order of child-phys. The address ranges thus described need not be contiguous in either the child space or the parent space. Also, the entire child space must be described in terms of parent addresses, but not all of the parent address space available to the bus device need be used for child addresses (the bus device might reserve some addresses for its own purposes, for instance). In the PPCRP machine example, consider a 4-slot 32-bit PCI bus attached to a machine whose physical address space consists of a 32-bit “memory” space (Bit 31 = 0) and a 32bit “I/O” space (Bit 31 = 1).

s s s

s s s

ISA I/O space appears in the parent’s “I/O” space at 0x8000.0000 and has a size of 0x1.0000. A reserved block of addresses begins at 0x8001.0000 and has a size of 0x7f.0000. PCI conﬁguration space begins at 0x8080.0000 and has a size of 0x80.0000. The conﬁguration registers of the individual PCI slots appear at addresses 0x8080.1000, 0x8080.2000, 0x8080.4000, and 0x8080.8000. PCI I/O space begins at 0x8100.0000 and has a size of 3e80.0000. Parity/interrupt vectors begin at 0xbf80.0000 and have a size of 0x80.0000. PCI memory space begins at 0xc000.0000 and has a size of 3f00.0000.

Properties

79

The PCI device deﬁnes:

s s s s

Conﬁguration spaces for Devices 1 through 4 that each begin at 0x0000.0000 and have a size of 0x100 bytes. ISA I/O space that begins at 0x0000.0000 and has a size of 0x1.0000. PCI I/O space that begins at 0x0100.0000 and has a size of 0x3e80.0000. A 32-bit, PCI memory space that begins at 0x0000.0000 and has a size of 0x3f00.0000.

The "ranges" property for the PCI device would contain the encoded form of the following sequence of numbers:

Table 22 Function SIO SCSI Slot A Slot B Slot C ISA I/O space PCI I/O space PCI Memory space Child-Parent Address Relationships for a PCI Node in a PPCRP Machine Child Address phys.hi 0000.0000 0000.0800 0000.1000 0000.1800 0000.2000 0100.0000 0100.0000 0200.0000 phys.mid 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 phys.lo 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0100.0000 0000.0000 Parent Address 8080.0800 8080.1000 8080.2000 8080.4000 8080.8000 8000.0000 8100.0000 c000.0000 Size size.hi 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 size.lo 0000.0800 0000.0800 0000.0800 0000.0800 0000.0800 0001.0000 3e80.0000 3f00.0000

Here the phys.hi component of the child address represents the type of address space and the PCI device numbers, and Bit 31 of the parent address represents “I/O space.” (Please see the PCI Bus Binding to IEEE Standard 1275-1994 for a detailed description of the encoding of the phys.hi ﬁeld.) The code to create this "ranges" property is:

\ SIO Configuration Space 0000.0000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+ 8080.0800 encode-int encode+ 0 encode-int encode+ 800 encode-int encode+ \ SCSI Configuration 0000.0800 encode-int 8080.1000 encode-int 0 encode-int encode+ Space encode+ 0 encode-int encode+ 0 encode-int encode+ encode+ 800 encode-int encode+

\ Slot A Configuration Space 0000.1000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+ 8080.2000 encode-int encode+ 0 encode-int encode+ 800 encode-int encode+ \ Slot B Configuration Space 0000.1800 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+ 8080.4000 encode-int encode+ 0 encode-int encode+ 800 encode-int encode+

80

Writing FCode Programs for PCI

\ Slot C Configuration Space 0000.2000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+ 8080.8000 encode-int encode+ 0 encode-int encode+ 800 encode-int encode+ \ ISA I/O space 0100.0000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+ 8000.0000 encode-int encode+ 0 encode-int encode+ 1.0000 encode-int encode+ \ PCI I/O space 0100.0000 encode-int encode+ 0 encode-int encode+ 100.0000 encode-int encode+ 8100.0000 encode-int encode+ 0 encode-int encode+ 3e80.0000 encode-int encode+ \ PCI Memory space 0200.0000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+ c000.0000 encode-int encode+ 0 encode-int encode+ 3f00.0000 encode-int encode+ " ranges" property

If "ranges" exists but its value is of 0 length, the bus’s child address space is identical to its parent address space. If the "ranges" property for a particular bus device node is nonexistent, code using that device should use an appropriate default interpretation. Some examples include the following:

s

Root node: The root node has no parent. Therefore the correspondence between its child and parent address spaces is meaningless, and there is no need for "ranges". SCSI host adapter node: The child address space is not directly addressable, thus "ranges" would be meaningless. For memory-mapped bus devices where a "ranges" property would be meaningful, the absence of a "ranges" property is conventionally interpreted to mean that the parent and child address spaces are identical.

s

s

The distinction between "reg" and "ranges" is as follows:

s

"reg" represents the actual device registers in the parent address space. For a bus adapter, this would be such as conﬁguration/mode/initialization registers. "ranges" represents the correspondence between a bus adapter’s child and parent address spaces.

s

Most packages do not need to be concerned with "ranges". This property is mainly used for bus bridges. The ﬁrmware system does not itself use the "ranges" property. "ranges" is mainly used by operating systems that wish to auto-conﬁgure themselves. See also: Chapter 11 “Memory-Mapped Buses”. "reg" This property defines the device’s addressable regions in its parent’s address space.

Properties

81

This property is mandatory for PCI Child Nodes, as deﬁned by IEEE Standard 12751994. The property value consists of a sequence of (phys-addr, size) pairs. In the ﬁrst such pair, the phys-addr component is the Conﬁguration Space address of the beginning of the function’s set of conﬁguration registers and the size component is zero. Each additional (phys-addr, size) pair speciﬁes the address and characteristics of an addressable region of Memory Space or I/O Space associated with the function including the PCI Expansion ROM. For a PCI device, the order of the pairs should be:

s s s s

An entry describing the Conﬁguration Space for the device. An entry for each active base address register (BAR), in Conﬁguration Space order, describing the entire space mapped by that BAR. An entry describing the Expansion ROM BAR, if the device has an Expansion ROM. An entry for each non-relocatable addressable resource.

In the event that a function has an addressable region that can be accessed relative to more than one Base Address Register (for example, in Memory Space relative to one Base Register, and in I/O Space relative to another), only the primary access path (typically, the one in Memory Space) is listed in the "reg" property, and the secondary access path is listed in the "alternate-reg" property. The property value consists of one or more (phys-addr size) pairs. For PCI, phys-addr is (phys.lo phys.mid phys.hi), encoded with encode-phys, and size is a pair of integers, each encoded with encode-int. The ﬁrst integer denotes the most-signiﬁcant 32 bits of the 64-bit region size, and the second integer denotes the least-signiﬁcant 32 bits thereof. For example, to declare a PCI device with:

s

A register ﬁeld of size 0x100 in 32-bit memory space that is controlled by the ﬁrst 32-bit base address register. A register ﬁeld of size 0x380 in I/O space that is controlled by the second 32-bit base address register. The register ﬁeld of interest is offset from the base address register by 0x20.0000. A 128Kbyte PCI Expansion ROM. A non-relocatable ﬁeld at 0-fff in I/O space.

s

s s

use the following:

hex my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+ 0 0 my-space 0200.0010 or encode-phys encode+ 0 encode-int encode+ 100 encode-int encode+ 20.0000 0 my-space 0100.0014 or encode-phys encode+ 0 encode-int encode+ 380 encode-int encode+ 0 0 0 0 " 0 my-space 0200.0030 or encode-phys encode+ encode-int encode+ 2.0000 encode-int encode+ 0 my-space 8100.0000 or encode-phys encode+ encode-int encode+ 1000 encode-int encode+ reg" property

\ Config space regs \ \ \ \ Memory space BAR at 0x10 I/O space BAR at 0x14

\ \ \ \

PCI Expansion ROM memory space Non-relocatable memory space

82

Writing FCode Programs for PCI

In some non-PCI cases, the reg command may also be used to create this property. However, reg may only be used on buses for which #size-cells is one and only when a single "reg" property component is required. Consequently, reg is never used with PCI devices which require at least three "reg" property component (i.e. one component for the card’s Conﬁguration Space registers, at least one for the device’s functional registers and one for the PCI Expansion ROM). Note – The contents of the "reg" property are used by Open Firmware to determine how large a portion of the system’s virtual address space to reserve for use by the card. It is important that the size arguments be as large as the actual available addressable resource. If the size argument for a region were to be declared smaller than that actually available, and if the driver or a user were to later add a legitimate offset that was larger than size to the base address of the region, the resulting virtual address might be within the virtual address space of another card. See the PCI Bus Binding to IEEE Standard 1275-1994 for the encoding details. See also: reg, property "revision-id" This property contains the value of the “Revision ID” register from the Conﬁguration Space header. That register speciﬁes a device-speciﬁc revision identiﬁer that is chosen by the vendor. Zero is an acceptable value. The property value is the register’s value encoded with encode-int. See also: PCI Local Bus Speciﬁcation "slot-names" This property describes the external labeling of plug-in slots. The property value is an integer, encoded with encode-int, followed by a list of strings, each encoded with encode-string. The integer portion of the property value is a bit mask of available slots; for each addin slot on the bus, the bit corresponding to that slot’s Device Number is set. The leastsigniﬁcant bit corresponds to Device Number 0, the next bit corresponds to Device Number 1, etc. The number of following strings is the same as the number of slots; the ﬁrst string gives the label that is printed on the chassis for the slot with the smallest Device Number, and so on. "status" This optional property indicates the operational status of the device. Absence of this property means that the operational status of the device is unknown or okay. If this property is present, the value is a string indicating the status of the device, as follows:

Table 23 Status Value "okay" The device is believed to be operational. "status" Property Values Meaning

Properties

83

Table 23 Status Value "disabled" "fail"

"status" Property Values (Continued) Meaning

The device represented by this node is not operational, but it might become operational in the future (e.g. an external switch is turned off, or something isn’t plugged in). The device represented by this node is not operational because a fault has been detected, and it is unlikely that the device will become operational without repair. No additional failure details are available. The device represented by this node is not operational because a fault has been detected, and it is unlikely that the device will become operational without repair. “xxx” is additional human-readable information about the particular fault condition that was detected.

"fail-xxx"

Used as:

" disabled" encode-string " status" property

See also: property. "translations" This property contains an array of (phys-addr, virt-addr, size) entries describing the address translations currently in use by Open Firmware. Those OSs desiring to use Open Firmware services while taking over the memory management function must create all of the translations described by this property’s value. "vendor-id" This property contains the value of the “Vendor ID” register from the Conﬁguration Space header. That register identiﬁes the manufacturer of the device. Vendor identiﬁers are assigned by the PCI SIG to ensure uniqueness. 0xffff is an invalid value for vendorid. The property value is the register’s value encoded with encode-int. See also: PCI Local Bus Speciﬁcation "width" This property is associated with "display" devices. Encoded with encode-int, the property value speciﬁes the number of displayable pixels in the “x” direction of the display.

Manipulating Properties

Property Creation and Modiﬁcation

The FCode Function property is the most general means for creating new properties or modifying the values of existing properties. There are some special property publishing FCodes, designed for use in common situations:

s s

device-name is a short-hand way to create the "name" property. model is a short-hand way to create the "model" property.

84

Writing FCode Programs for PCI

s

reg is a short-hand way to create a "reg" property that describes where the package’s physical resources are located.

Note – The reg method is not useful in a PCI environment since the "reg" property for a PCI device will contain information about conﬁguration space, I/O and/or memory space, and the PCI Expansion ROM.

s

delete-property completely removes a property.

Property Values

Various kinds of information can be stored in a property value byte array by using property encoding and decoding methods. The encoding format is machineindependent; the representation of the property values is independent of the byte organization and word alignment characteristics of any particular processor. The data type of any particular property must be implicitly known by any software that wishes to use it. In other words, property value data types are not self-identifying. Furthermore, the presence or absence of a property with a particular name can encode a true/false ﬂag; such a property may have a zero-length property value.

Property Encoding

There are three FCodes for encoding a basic piece of data into a property value and one FCode for concatenating the basic pieces for a property that has multiple values.

s s s s s

encode-int encodes a number encode-string encodes a string encode-bytes encodes a sequence of bytes encode+ is used to concatenate two previously encoded, basic pieces of data. encode-phys is an FCode that encodes a physical address (hiding all the relative addressing information). encode-phys is derived from encode-int and encode+.

Property Retrieval

There are three property value retrieving words, get-my-property, get-inherited-property, and get-package-property.

s

Use get-my-property if the property desired already exists for the package being deﬁned. Use get-package-property if the property exists in some other package. In this case, you must ﬁrst ﬁnd the phandle of the other package, perhaps by using find-package. Use get-inherited-property if the property in question is one that exists somewhere in the chain of parent instances between the package being deﬁned and the root node of the machine. (Using get-inherited-property is usually a bad idea because you don’t know who supplied the data.)

s

s

Properties

85

FCode Programs do not often need to retrieve property values. Such programs usually know the values of their own properties implicitly, and often interact with their parents by calling well-known parent methods. For an example, suppose a particular PCI FCode package wants to use DVMA to transfer some data between a device and memory. It could use my-parent ihandle>phandle get-package-property to ﬁnd the value of a property named slave-only. slave-only will be a property of the parent node of the package being deﬁned, if it exists. The value of the property is a bit mask of the PCI slots that do not support DVMA. Then the package would look at my-unit or my-space to get its slot number. The two pieces of information will tell the package whether or not it can use DVMA.

Property Decoding

Once a package has found the value of a property of interest, it must decode the value to forms it can understand. If the value is the representation of an integer, use decode-int to generate the actual number as a binary number on the stack. If the value of interest is the representation of a string, use decode-string. Both of these FCodes act as parsers — they will also return the unused portion of the value for further decoding. Other kinds of values can be decoded by left-parse-string or package-speciﬁc decoders. Note that the package must know how to decode the value of a property it wishes to use. There is no decode-bytes function, but it is easy to synthesize if you need it.

: decode-bytes (addr1 len1 #bytes -- addr len2 addr1 #bytes) tuck (addr1 #bytes len2) >r 2dup + (addr1 #bytes addr2) (R: len2) r> 2swap ;

86

Writing FCode Programs for PCI

Property-Speciﬁc FCodes

Following is a summary of property-speciﬁc FCodes. See the individual dictionary entries in Chapter 12 “Open Firmware Dictionary” for more information.

Table 24 Name Property Creation/Destruction property (prop-addr prop-len name-addr name-len --) Create a property named name-addr name-len with the value prop-addr prop-len. Shorthand word to create the "device_type" property with the value addr len. Shorthand word to create the "model" property with the value addr len. Shorthand macro to create the "name" property with the value addr len. Shorthand word to create the "reg" property. Delete the speciﬁed property. Converts an integer to a prop-encoded-array. Converts a physical unit pair to a prop-encoded-array. Converts a text string to a prop-encoded-array. Concatenate two prop-encodedarray structures. They must have been created sequentially. Converts a byte array to a prop-encoded-array. Similar to encode-string, except no trailing null is appended. Property-speciﬁc FCodes Stack Comment Description

device-type

(addr len --)

model

(addr len --)

device-name

(addr len --)

reg

(phys.lo … phys.hi size --)

delete-property (name-addr name-len --) Property Encoding encode-int encode-phys encode-string encode+ (n -- prop-addr prop-len) (phys.lo … phys.hi -- prop-addr prop-len) (addr len -- prop-addr prop-len) (prop-addr1 prop-len1 prop-addr2 prop-len2 -- prop-addr prop-len1+2) (addr len -- prop-addr prop-len)

encode-bytes

Properties

87

Table 24 Name Property Decoding decode-bytes

Property-speciﬁc FCodes (Continued) Stack Comment Description Decodes data-len bytes from the start of a prop-encoded-array returning the byte array and the rest of the prop-encoded-array. Decodes an integer from the start of a prop-encoded-array returning the integer and the remainder of the prop-encoded-array. Decodes a unit address from the start of a prop-encoded-array returning the address and the rest of the prop-encoded-array. Decodes a string from the start of a prop-encoded-array returning the string and the remainder of the prop-encoded-array.

(prop-addr prop-len data-len -- prop-addr2 prop-len2 data-addr data-len)

decode-int

(prop-addr prop-len -- prop-addr2 prop-len2 n)

decode-phys

(prop-addr prop-len -- prop-addr2 prop-len2 phys.lo … phys.hi)

decode-string

(prop-addr prop-len -- prop-addr2 prop-len2 str len)

Property Retrieval get-my-property (name-addr name-len -- true | prop-addr prop-len false) Returns the prop-encoded-array contents for the property addr len within the current instance, or true if not found. get-packageproperty (addr len phandle -- true | prop-addr prop-len false) Returns the prop-encoded-array contents for the property addr len within the package phandle, or true if not found. Returns the prop-encoded-array contents for the property addr len, or true if not found. The current package instance is searched ﬁrst. If not found, the parent is searched next, then the parent’s parent, and so on.

get-inheritedproperty

(addr len -- true | prop-addr prop-len false)

88

Writing FCode Programs for PCI

6

Chapter 6

FCode Basic Concepts

This chapter contains information about a number of FCode concepts that apply to FCode drivers in general. Before reading the chapter(s) devoted to the speciﬁc device type(s) of interest to you, please review the information in this chapter. It provides a context for understanding the basic structure and function of an FCode driver.

Parent-Relative Addressing

One of the most powerful concepts of Open Firmware is that of parent-relative addressing. This concept simply means that any given device in the system is only required to understand addresses in terms of its own parent’s address space. (And the parent is only required to understand the address space of his parent, and so on.) This concept is a key to FCode portability across systems having vastly different bus topologies. To support this concept, Open Firmware makes the following provisions:

s

A device can only know its address within a system by asking its parent. The methods my-address and my-space are provided for this purpose. The phrase my-address my-space always returns phys.lo … phys.hi where the total number of cells returned is speciﬁed by the value of the device’s parent’s #address-cells property. my-space always returns the phys.hi cell of a physical address. my-address always returns the remaining cells phys.lo … . For any given bus, the detailed description of a physical address is given in the Open Firmware bus binding document. For the PCI bus, #address-cells is 3, and a physical address consists of phys.lo phys.mid phys.hi. (See PCI Bus Binding to IEEE Standard 1275-1994 for more details.)

s

A device must ask its parent to translate a physical address known to the device into a virtual address that can be used by the CPU for accessing device resources. As will be seen in “Open Firmware Memory Types” on page 93, a number of mapping methods are provided by a parent that enable a child device to request that such a translation be performed on behalf of the device.

s

A device must be able to identify its parent by ihandle and must be able to invoke parental methods.

89

A device’s instance record contains a value named my-parent which contains the ihandle of the device’s parent. A child may invoke a parental method with the phrase my-parent $call-method. To simplify this process, the method $call-parent is provided which is equivalent to the phrase my-parent $call-method.

PCI Conﬁguration Space

PCI Conﬁguration Space is a 256 byte region on each PCI device that is used primarily during device initialization. Conﬁguration space must be accessed with special “conﬁguration read” and “conﬁguration write” bus cycles. A more complete description can be found in PCI Local Bus Speciﬁcation, Revision 2.1 (or later). The PCI Bus Binding to IEEE Standard 1275-1994 requires that a /pci bus node provide the following family of access methods for conﬁguration space.

s s s s s s

config-b@ config-w@ config-l@ config-b! config-w! config-l!

(config-addr -- byte) (config-addr -- word) (config-addr -- long) (byte config-addr --) (word config-addr --) (long config-addr --)

The conﬁg-addr argument represents the address in conﬁguration space of the desired memory location. The address of the ﬁrst location of a device’s conﬁguration space is the value returned by my-space (i.e. phys.hi). The addresses of the remaining locations are calculated by adding offsets to the value returned by my-space. Since these are methods of /pci, $call-parent is typically used in a device driver to invoke these methods as shown in the following code fragment.

\ Enable PCI I/O space accesses. 4 constant cmd-reg-offset 1 constant io-space-enable my-space cmd-reg-offset + dup " config-w@" $call-parent io-space-enable or swap " config-w!" $call-parent (cmd-addr cmd-addr) (cmd-addr cmd-val) (cmd-addr cmd-val’) ()

90

Writing FCode Programs for PCI

PCI Conﬁguration Space Header

Figure 5 shows the layout of the conﬁguration space header used by PCI peripheral devices. Device ID Status Class Code BIST Header Type Latency Timer Vendor ID Command Revision ID Cache Line Size

00h 04h 08h 0Ch 10h 14h

Base Address Registers

18h 1Ch 20h 24h

Cardbus CIS Pointer Subsystem ID Subsystem Vendor ID

28h 2Ch 30h 34h 38h

Expansion ROM Base Address Reserved Reserved Max_Lat Min_Gnt Interrupt Pin Interrupt Line

3Ch

Figure 5 PCI Conﬁguration Space Header Type 00h

Device ID / Vendor ID

The Open Firmware FCode probing process for the PCI bus uses the values returned for the “device ID” and “vendor ID” ﬁelds to differentiate empty and non-empty slots.

s s

A returned value of 0xFFFFFFFF indicates an empty slot. All other values indicate a card present.

On PR*P and CHRP machines, the PCI conﬁguration space header for Slot N is located at Address N*0x800. The following code scans the 32 possible PCI slot numbers on

FCode Basic Concepts

91

such a machine and prints a formatted listing of the device ID/vendor ID for each slot.

hex dev /pci 20 0 do i 3 u.r loop device-end

i 800 * config-l@ 9 u.r

Command Register

In an FCode driver context, the “command” register is primarily used to enable/disable accesses to the card’s various address spaces and to control whether the device is enabled to act as a bus master.

Bit 0 1 2 Description When set, enables card’s response to I/O space accesses. State after PCI bus reset is 0. When set, enables card’s response to memory space accesses. State after PCI bus reset is 0. When set, enables card’s ability to act as a PCI bus master. State after PCI bus reset is 0.

The following code fragment enables memory space accesses.

\ Enable PCI memory space accesses. 4 constant cmd-reg-offset 2 constant memory-space-enable my-space cmd-reg-offset + dup " config-w@" $call-parent memory-space-enable or swap " config-w!" $call-parent (cmd-addr cmd-addr) (cmd-addr cmd-val) (cmd-addr cmd-val’) ()

Base Address Registers

The “base address” registers enable the relocation of a card’s addressable resources. Bit 0 is read-only and indicates whether a given base address register maps a memory space resource or an I/O space resource.

s s

The value 0 indicates a memory space resource. The value 1 indicates an I/O space resource.

For memory space, the base address register (BAR) bits have the following meanings:

Bit 0 1-2 3 0 00 - Locate anywhere in 32-bit memory space 01 - Locate below 1 MB 10 - Locate anywhere in 64-bit memory space 11 - Reserved Set to 1 if region is prefetchable Description

4 - 31 Base address

92

Writing FCode Programs for PCI

For I/O space, the bits of a base address register have the following meanings:

Bit 0 1 1 Reserved. Must return 0. Description

2 - 31 Base address

The size of the addressable resource associated with a given BAR can be determined by writing 0xFFFFFFFF to the BAR, reading back the result and interpreting the returned value. In an FCode/Open Firmware context, the system ﬁrmware is responsible for determining the size of the associated region and for making the virtual address assignments. The FCode driver is not involved in the assignment of virtual addresses to the base address registers. In fact, drivers should not ever explicitly access the address values in the base address registers or cache them for later use. Doing so can cause malfunctions of the device driver since there is no guarantee that the value of the base address register will be constant over a given power-cycle of the host machine. FCode drivers should only deal with the values in the base address registers through the various mapping methods provided by Open Firmware. (These methods and their use in a PCI context will be discussed in detail in “Open Firmware Memory Types.) In a PCI context, the arguments of these methods need:

s s

The register number of the associated BAR (passed in phys.hi) The offset, if any, of the region of interest from the base address of the space (passed in phys.lo phys.mid).

At probe time, the base address register has not been set to its permanent value. A mapping request performed at probe time results in the base address register being loaded with a temporary value for use at probe time. Final base address register assignments are almost guaranteed to be different from any probe time assignments that may have been made.

Open Firmware Memory Types

From the perspective of an FCode programmer, Open Firmware-based systems have four different types of memory. The following sections describe each of these types and how they are used. For the purposes of the following discussions, please refer to Figure 6 which shows a generalized system including an expansion bus and a plug-in peripheral card.

System Memory

The term “system memory” refers to the host system’s CPU memory irrespective of whether there is a memory cache involved. System memory is generally obtained with the data structure creation methods constant, value, variable or buffer: . Accesses to system memory have no “side effects” (i.e. no other system state changes as a result). FCode programs access this memory with the @ and ! families of methods (i.e. @, c@, w@, l@ and x@, and !, c!, w!, l! and x!). These methods are not required to be atomic

FCode Basic Concepts

93

CPU Board

CPU Cache RAM

Peripheral Board

Device Memory Device Registers

MMU

DMA Engine

Standard Bus

Figure 6 Hypothetical System with Plug-in Peripheral Card

(e.g. an Open Firmware implementation can choose to do multi-byte fetches and stores as a series of byte fetches and stores).

Scratch Buffer

The term “scratch buffer” refers to a region of system memory that is acquired for use with alloc-mem and is returned after use with free-mem. As with “system memory”, accesses to a scratch buffer has no side effects, and FCode programs access this memory with the @ and ! families of methods. For example:

50 constant buf-len -1 value buf-addr buf-len alloc-mem to buf-addr ... h# 1234 buf-addr 2+ w! ... buf-addr buf-len free-mem \ Conventionally set to -1 when invalid \ Obtain memory buffer and virtual address \ of first location in buffer \ Store virtual address \ Write 1234 to second word in buffer \ Free buffer and return virtual address

DMA Memory

The term “DMA memory” refers to regions of system memory that can be accessed both by the system’s CPU and by a DMA engine on a peripheral card (i.e. a “bus master” card) on an expansion bus. From the perspective of the FCode driver, this memory appears in the memory space of the device’s parent. Thus, DMA memory is directly accessible by the device’s DMA engine and is usually directly accessible by the CPU. It is very important to note that, in the general case, the addresses used by the DMA engine and by the CPU are not necessarily the same address. The DMA address is the

94

Writing FCode Programs for PCI

address that appears on the bus to which the bus master device is directly connected. In general, the bridges between that DMA bus and the system’s memory bus may perform some address translation. The address translation through those bridges in the direction from CPU to memory is not necessarily the same as the translation in the direction from bus master device to memory. One source of confusion is the fact that, in some systems and for some buses, the translation may just happen to be the same in some pairs of cases. If you get used to writing drivers for systems where this is the case, it often comes as a surprise when you must make the distinction. Two methods are used to obtain DMA memory and to create the appropriate address translations for the use of that memory by the CPU and the bus master device.

s

dma-alloc allocates a region of physical memory suitable for use with DMA and returns a virtual address for the CPU’s use. dma-map-in converts that CPU virtual address into a DMA physical address suitable for use by the device’s DMA engine.

s

Since some systems include a memory cache as shown in Figure 6, the information stored in the DMA memory and in the cache may not be identical until the cache is ﬂushed. The dma-sync method is provided for this purpose and should always be included in an FCode driver. On those systems that do not include a cache, dma-sync will be a no-op and so will cause no problems. Failure to include dma-sync will cause a driver to fail if it is ever used in a system that includes a cache. Memory obtained with dma-alloc must be freed with dma-free. In addition, DMA mappings created with dma-map-in are destroyed with dma-map-out. An FCode driver will normally use the various DMA memory management methods of its parent. For example:

50 constant dma-buf-len -1 value cpu-addr -1 value dev-addr dma-buf-len " dma-alloc" $call-parent to cpu-addr cpu-addr dma-buf-len true " dma-map-in" $call-parent to dev-addr ... cpu-addr dev-addr dma-buf-len " dma-sync" $call-parent ... cpu-addr dev-addr dma-buf-len " dma-map-out" $call-parent cpu-addr dma-buf-len " dma-free" $call-parent

In summary, the general algorithm for using DMA memory is:

s

The required DMA-accessible memory is obtained with dma-alloc which allocates the requested memory and returns the virtual address used by the CPU. dma-map-in is used to translate the CPU virtual address into a physical address for use by the bus master device. In the case of moving data to the device:

„

s

s

The data is written into the DMA memory by the CPU using its virtual address and dma-sync is invoked to ﬂush any cache that might be present. The DMA engine controller is set up using the address returned by dma-map-in and the DMA process is started.

„

FCode Basic Concepts

95

s

In the case of moving data from the device:

„

The DMA engine controller is set up and started. When the DMA process completes, dma-sync is invoked to ﬂush any cache that might be present. The data is read from the memory by the CPU.

„ s

When all of the DMA operations are complete, dma-map-out is invoked to return the DMA physical address. dma-free is invoked to free the allocated DMA memory and to return the CPU virtual address.

Device Memory

The term “device memory” refers to memory and/or registers located on a peripheral card. Since the address of this memory is known to the driver in terms of a physical address in the device’s parent’s address space, the map-in method is used to convert such a physical address into a virtual address suitable for use by the CPU. map-out is used to return the virtual address when the address is no longer needed. Accesses to device memory may have “side effects”. For example, the reading of an interrupt status register may affect the contents of that register. Consequently, there are special families of @ and ! methods for accessing device memory. These methods, rb@, rw@, rl@ and rx@, and rb!, rw!, rl! and rx!, are guaranteed to be atomic (e.g. Open Firmware ensures that the access resulting from the use of one of these methods is complete before any other method is allowed to be executed).

PCI Device Register Mapping and Use

The following examples shown how to map several different styles of device memory on a PCI device. Refer to PCI Bus Binding to IEEE Standard 1275-1994 for a detailed explanation of the various bits in the phys.lo … phys.hi arguments. The ﬁrst example shows how to map relocatable memory in 32-bit memory space. The example assumes that the region of interest is 8 bytes in size and is associated with the base address register located at offset 0x10 in the PCI Conﬁguration Space header.

8 constant /mem-regs -1 value reg-mem-addr \ Device has 8 byte-wide registers \ Storage to hold virtual address

my-address my-space (phys.lo phys.mid phys.hi) \ Modify phys.hi to indicate relocatable 32-bit memory space using the \ BAR @ offset h# 10 0200.0010 or (phys.lo phys.mid phys.hi’) /mem-regs (phys.lo phys.mid phys.hi’ size) " map-in" $call-parent (virt) to reg-mem-addr () ... 33 reg-mem-addr 5 + rb! \ Stores 33 to sixth byte in mapped region ... reg-mem-addr /mem-regs (virt size) " map-out" $call-parent ()

The next example shows how to map relocatable memory in I/O space. The example assumes that the region of interest is 16 bytes in size and is offset by 32 bytes from the

96

Writing FCode Programs for PCI

start of the region associated with the base address register located at offset 0x14 in the PCI Conﬁguration Space header.

10 constant /io-regs \ Device has 16 byte-wide registers 20 constant reg-io-offset \ Offset from start of region described by BAR -1 value reg-io-addr \ Storage to hold virtual address my-address reg-io-offset 0 d+ (phys.lo’ phys.mid) my-space (phys.lo’ phys.mid phys.hi) \ Modify phys.hi to indicate relocatable I/O space using the BAR @ \ offset h# 14 0100.0014 or (phys.lo’ phys.mid phys.hi’) /io-regs (phys.lo’ phys.mid phys.hi’ size) " map-in" $call-parent (virt) to reg-io-addr () ... 1234 reg-io-addr e + rw! \ Stores 1234 to last word in mapped region ... reg-io-addr /io-regs (virt size) " map-out" $call-parent ()

The last example shows how to map non-relocatable memory in I/O space. The example assumes that the region of interest is located at absolute address 0xABCD and is 256 bytes in size. There is no associated base address register since this is nonrelocatable space.

100 constant /io-regs -1 value reg-io-addr \ Device has 256 byte-wide registers \ Storage to hold virtual address

abcd 0 my-space (phys.lo phys.mid phys.hi) \ Modify phys.hi to indicate non-relocatable I/O space 8100.0000 or (phys.lo phys.mid phys.hi’) /io-regs (phys.lo phys.mid phys.hi’ size) " map-in" $call-parent (virt) to reg-io-addr () ... \ Stores 12345678 to first long word in mapped region 12345678 reg-io-addr rl! ... reg-io-addr /io-regs (virt size) " map-out" $call-parent ()

All of the examples above are written using the virtual address pointer directly to calculate the address in which to store data. However, experienced Forth/FCode programmers would “factor” this operation (i.e. create another word which does the address calculation internally). A very common “factoring” in this situation would be to create a family of access words that take an offset as an argument and either fetch or store data to that offset. For example, if the non-relocatable region mapped in the last example were always accessed as long words, the following two methods would be an appropriate factoring of the code.

: iol! (data offset --) reg-io-addr + rl! ;

FCode Basic Concepts

97

: iol@ (offset -- data) reg-io-addr + rl@ ;

Factoring your code will make it easier to write, test and debug. It will also make your FCode image smaller. Most importantly, it takes advantage of the inexpensive context switches made possible by the Forth language and uses them to their best effect. After you have mapped PCI device memory, you must also enable memory and/or I/O space accesses before your mapping(s) will work correctly. Before your device can act as a bus master, bus mastering must also be enabled. The enable bits for all of these functions are contained in the “command” register of the PCI Conﬁguration Space header. See “Command Register” on page 92 for more details and for a code example of enabling memory space. When a driver no longer needs access to an address space, it should disable accesses to that space. The following code fragment disables memory space accesses.

\ Disable PCI memory space accesses. 4 constant cmd-reg-offset 2 constant memory-space-enable my-space cmd-reg-offset + dup " config-w@" $call-parent memory-space-enable not and swap " config-w!" $call-parent (cmd-addr cmd-addr) (cmd-addr cmd-val) (cmd-addr cmd-val’) ()

98

Writing FCode Programs for PCI

7

Chapter 7

Block and Byte Devices

Block Devices

Block devices are nonvolatile mass storage devices whose information can be accessed in any order. Examples of block devices include hard disks, ﬂoppy disks, and CD-ROMs. Open Firmware typically uses block devices for booting. This device type generally applies to disk devices, but as far as Open Firmware is concerned, it simply means that the device “looks like a disk” at the Open Firmware software interface level. The block device’s FCode must declare the block device type, and must implement the methods open and close, as well as the methods described below in “Required Methods” on page 100. Although packages of the block device type present a byte-oriented interface to the rest of the system, the associated hardware devices are usually block-oriented i.e. the device reads and writes data in “blocks” (groups of, for example, 512 or 2048 bytes). The standard /deblocker support package assists in the presentation of a byteoriented interface “on top of” an underlying block-oriented interface, implementing a layer of buffering that “hides” the underlying “block” length. Block devices are often subdivided into several logical “partitions”, as deﬁned by a disk label - a special block, usually the ﬁrst one on the device, which contains information about the device. The driver is responsible for appropriately interpreting a disk label. The driver may use the standard disk-label support package if the device does not implement a specialized label. The disk-label support package interprets one or more system-dependent label formats. Since the disk booting protocol usually depends upon the label format, the standard disk-label support package also implements a load method for the corresponding boot protocol.

Byte Devices

Byte devices are sequential-access mass storage devices, for example tape devices. Open Firmware typically uses byte devices for booting.

99

The byte device’s FCode program must declare the byte device type, and must implement the open and close methods in addition to those described in “Required Methods”. Although packages of the byte device type present a byte-oriented interface to the rest of the system, the associated hardware devices are usually record-oriented; the device reads and writes data in records containing more than one byte. The records may be ﬁxed length or variable length. The standard deblocker support package assists in presenting a byte-oriented interface on top of an underlying record-oriented interface, implementing a layer of buffering that hides the underlying record structure.

Required Methods

block-size (-- block-len) Return the record size block-len (in bytes) of all data transfers to or from the device. The most common value for block-len is 512. This method is only required if the deblocker support package is used. dma-alloc (size -- virt) Allocates size bytes of memory, contiguous within the direct-memory-access address space of the device’s bus, suitable for DMA. Returns the virtual address virt. This method is only required if the deblocker support package is used. dma-free (virt size --) Frees size bytes of memory at virtual address virt that were previously allocated with dma-alloc. This method is only required if the deblocker support package is used. load (addr -- size) load works a bit differently for block and byte devices: With block devices, it loads a stand-alone program from the device into memory at addr. size is the size in bytes of the program loaded. If the device can contain several such programs, the instance arguments returned by my-args can be used to select the speciﬁc program desired. open is executed before load is invoked. With byte devices, load reads a stand-alone program from the tape ﬁle speciﬁed by the value of the argument string given by my-args. That value is the string representation of a decimal integer. If the argument string is null, tape ﬁle 0 is used. load places the program in memory at addr, returning the size of the read-in program in bytes. max-transfer (-- max-len) Return the size in bytes of the largest single transfer that the device can perform. max-transfer is expected to be a multiple of block-size. This method is only required if the deblocker support package is used. read (addr len -- actual) Read at most len bytes from the device into memory at addr. actual is the number of bytes actually read. If the number of bytes read is 0 or negative, the read failed. Note that len need not be a multiple of the device’s normal block size.

100

Writing FCode Programs for PCI

read-blocks (addr block# #blocks -- #read) Read #blocks records of length block-size bytes each from the device, starting at device block block#, into memory at address addr. #read is the number of blocks actually read. This method is only required if the deblocker support package is used. seek (pos.lo pos.hi -- status) for block; (offset ﬁle# -- error?) for byte seek works a bit differently depending on whether it’s being used with a block or byte device. For block devices, seek sets the device position for the next read or write. The position is the byte offset from the beginning of the device speciﬁed by the 64-bit number which is the concatenation of poshigh and poslow. status is -1 if the seek fails, and 0 or 1 if it succeeds. For byte devices, it seeks to the byte offset within ﬁle ﬁle#. If offset and ﬁle# are both 0, rewind the tape. error? is -1 if seek fails, and 0 if seek succeeds. write (addr len -- actual) Write len bytes from memory at addr to the device. actual is the number of bytes actually written. If actual is less than len, the write did not succeed. len need not be a multiple of the device’s normal block size. write-blocks (addr block# #blocks -- #written) Write #blocks records of length block-size bytes each to the device, starting at block block#, from memory at addr. #written is the number of blocks actually written. If the device is not capable of random access (e.g. a sequential access tape device), block# is ignored. This method is only required if the deblocker support package is used.

Required Properties

Table 25 Property Name name reg device_type " FirmWorks,googly" list of registers (device-dependent) " block" or " byte" Required Properties of Block and Byte Devices Sample Value

Block and Byte Devices

101

Device Driver Examples

The structure of the device tree for the sample card supported by the sample device drivers in this chapter is as follows:

pci

… FirmWorks,my-scsi

…

sd

st

Figure 7

Sample Device Tree

Simple Block Device Driver

Code Example 7-1 Simple Block Device Driver \ This is at a stage where each leaf node can be used only as a non-bootable device. \ It only creates nodes and publishes necessary properties to identify the device. fcode-version2 hex : copyright (--) ." Copyright (c) 1994-1996 FirmWorks. All Rights Reserved." cr ; " FirmWorks,my-scsi" encode-string " name" property h# 20.0000 h# 40 constant scsi-offset constant /scsi

\ Define "reg" property \ PCI Configuration Space my-address my-space encode-phys

0 encode-int encode+

0 encode-int encode+

\ Memory Space Base Address Register 10 my-address scsi-offset 0 d+ my-space 0200.0010 or encode-phys 0 encode-int encode+ /scsi encode-int encode+ \ PCI Expansion ROM my-address my-space h# 200.0030 or encode-phys encode+ 0 encode-int encode+ h# 10.0000 encode-int encode+ " reg" property new-device \ missing "reg" indicates a SCSI "wild-card" node " sd" encode-string " name" property finish-device

encode+

102

Writing FCode Programs for PCI

Code Example 7-1 Simple Block Device Driver (Continued) new-device \ missing "reg" indicates a SCSI "wild-card" node " st" encode-string " name" property finish-device fcode-end

Block and Byte Devices

103

Extended Block Device Driver

Code Example 7-2 Sample Driver for "my-scsi" Device \ \ \ \ \ sample driver for "my-scsi" device It is still a non-bootable device. The purpose is to show how an intermediate stage of driver can be used to debug board during development. In addition to publishing the properties, this sample driver shows methods to access, test and control "FirmWorks,my-scsi" device.

\ The following main methods are provided for "FirmWorks,my-scsi" device. \ open (-- okay?) \ close (--) \ reset (--) \ selftest (-- error?) fcode-version2 hex headers : copyright (--) ." Copyright (c) 1994-1996 FirmWorks. ; h# 20.0000 constant scsi-offset h# 40 constant /scsi d# 25.000.000 constant clock-frequency " FirmWorks,my-scsi" device-name \ Define "reg" property \ PCI Configuration Space my-address my-space encode-phys

All Rights Reserved." cr

0 encode-int encode+

0 encode-int encode+

\ Memory Space Base Address Register 10 my-address scsi-offset 0 d+ my-space 0200.0010 or encode-phys 0 encode-int encode+ /scsi encode-int encode+ \ PCI Expansion ROM my-address my-space h# 200.0030 or encode-phys encode+ 0 encode-int encode+ h# 10.0000 encode-int encode+ " reg" property \ Configuration register access words : my-w@ (offset -- w) my-space + " config-w@" $call-parent ; : my-w! (w offset --) my-space + " config-w!" $call-parent ; h# 10.0000 constant dma-offset h# 10 constant /dma -1 instance value dma-chip

encode+

\ : : : : : :

Methods to access/control DMA registers during development dmaaddress (-- addr) dma-chip 4 + ; dmacount (-- addr) dma-chip 8 + ; dmaaddr@ (-- n) dmaaddress rl@ ; dmaaddr! (n --) dmaaddress rl! ; dmacount@ (-- n) dmacount rl@ ; dmacount! (n --) dmacount rl! ;

104

Writing FCode Programs for PCI

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued) : : : : : dma-chip@ dma-chip! dma-btest dma-bset dma-breset (((((-- n n -mask mask mask) dma-chip rl@ ;) dma-chip rl! ; -- flag) dma-chip@ and ; --) dma-chip@ or dma-chip! --) not dma-btest dma-chip! ;

;

external \ : : : \ \ : : Methods to allocate, map, unmap, free DMA buffers decode-unit (addr len -- low high) decode-2int ; dma-alloc (size -- vaddr) " dma-alloc" $call-parent ; dma-free (vaddr size --) " dma-free" $call-parent ; Since the PCI bus uses physical addressing, devaddr returned by dma-map-in is the physical address associated with vaddr. dma-map-in (vaddr size cache? -- devaddr) " dma-map-in" $call-parent ; dma-map-out (vaddr devaddr size --) " dma-map-out" $call-parent ;

\ dma-sync could be a dummy routine if the parent device doesn't support. : dma-sync (virt-addr dev-addr size --) " dma-sync" my-parent ['] $call-method catch if 2drop 2drop 2drop then ; : map-in : map-out (addr space size -- virt) (virt size --) " map-in" $call-parent " map-out" $call-parent ; ;

\ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The \ bug causes phys.lo and phys.mid to be treated as absolute addresses rather than \ offsets even when working with relocatable addresses. \ \ \ \ \ To overcome this bug, the Open Firmware Working Group in conjunction with Apple has adopted a workaround that is keyed to the presence or absence of the add-range method in the PCI node. If the add-range method is present in an Apple ROM, the map-in method is broken. If the add-range property is absent, the map-in method behaves correctly.

\ The following methods allow the FCode driver to accomodate both broken and working \ map-in methods. : map-in-broken? (-- flag) \ Look for the method that is present when the bug is present " add-range" my-parent ihandle>phandle (adr len phandle) find-method dup if nip then (flag) \ Discard xt if present ;

\ Return phys.lo and phys.mid of the address assigned to the PCI base address \ register indicated by phys.hi . : get-base-address (phys.hi -- phys.lo phys.mid phys.hi) " assigned-addresses" get-my-property if (phys.hi) ." No address property found!" cr 0 0 rot exit \ Error exit then (phys.hi adr len)

Block and Byte Devices

105

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued) rot >r (adr len) (r: phys.hi) \ Found assigned-addresses, get address begin dup while (adr len') \ Loop over entries decode-phys (adr len' phys.lo phys.mid phys.hi) h# ff and r@ h# ff and = if (adr len' phys.lo phys.mid) \ This one? 2swap 2drop (phys.lo phys.mid) \ This is the one r> exit (phys.lo phys.mid phys.hi) else (adr len' phys.lo phys.mid) \ Not this one 2drop (adr len') then (adr len') decode-int drop decode-int drop \ Discard boring fields repeat 2drop () ." Base address not assigned!" cr 0 0 r> ; headers : dma-open (--) my-address dma-offset 0 d+ my-space /dma map-in to dma-chip ; : dma-close (--) dma-chip /dma map-out -1 to dma-chip ; -1 instance value scsi-init-id -1 instance value scsi-chip h# 20 constant /mbuf -1 instance value mbuf -1 instance value mbuf-dma d# 6 constant /sense -1 instance value sense-command -1 instance value sense-cmd-dma d# -1 -1 -1 d# -1 -1 -1 8 constant #sense-bytes instance value sense-buf instance value sense-buf-dma instance value mbuf0 12 constant /cmdbuf instance value cmdbuf instance value cmdbuf-dma instance value scsi-statbuf (0 0 phys.hi)

\ Mapping and allocation routines for SCSI. : map-scsi-chip (--) map-in-broken? if my-space h# 8200.0010 or get-base-address else my-address my-space h# 200.0010 or then

(phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi)

106

Writing FCode Programs for PCI

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued) /scsi map-in to scsi-chip

4 dup my-w@ 6 or swap my-w! \ Enable memory space and bus mastering scsi-chip encode-int " address" property ; : unmap-scsi-chip (--) 4 dup my-w@ 6 invert and swap my-w! \ Disable memory space and bus mastering scsi-chip /scsi map-out -1 to scsi-chip " address" delete-property ; \ \ \ \ \ : After any changes to sense-command by CPU or any changes to sense-cmd-dma by device, synchronize changes by issuing " sense-command sense-cmd-dma /sense dma-sync " Similarly after any changes to sense-buf, sense-buf-dma, mbuf, mbuf-dma, cmdbuf or cmdbuf-dma, synchronize changes by appropriately issuing dma-sync map scsi chip and allocate buffers for "sense" command and status map-scsi (--) map-scsi-chip /sense dma-alloc to sense-command sense-command /sense false dma-map-in to sense-cmd-dma #sense-bytes dma-alloc to sense-buf sense-buf #sense-bytes false dma-map-in to sense-buf-dma 2 alloc-mem to scsi-statbuf

; \ free buffers for "sense" command and status and unmap scsi chip : unmap-scsi (--) scsi-statbuf 2 free-mem sense-buf sense-buf-dma #sense-bytes dma-sync \ redundant sense-buf sense-buf-dma #sense-bytes dma-map-out sense-buf #sense-bytes dma-free sense-command sense-cmd-dma /sense dma-sync \ redundant sense-command sense-cmd-dma /sense dma-map-out sense-command /sense dma-free -1 to sense-command -1 to sense-cmd-dma -1 to sense-buf -1 to scsi-statbuf -1 to sense-buf-dma unmap-scsi-chip ; \ constants related to scsi commands h# 0 constant nop h# 1 constant flush-fifo h# 2 constant reset-chip h# 3 constant reset-scsi h# 80 constant dma-nop \ \ : : : : : Methods to get SCSI register addresses. Each chip register is one byte, aligned on a 4-byte boundary. scsi+ (offset -- addr) scsi-chip + ; transfer-count-lo (-- addr) h# 0 scsi+ ; transfer-count-hi (-- addr) h# 4 scsi+ ; fifo (-- addr) h# 8 scsi+ ; command (-- addr) h# c scsi+ ;

Block and Byte Devices

107

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued) : : \ : : : : \ : : : : : \ : : : : : : : : : : : : : configuration (-scsi-test-reg (-Read only registers: scsi-status (-interrupt-status (-sequence-step (-fifo-flags (-Write only registers: select/reconnect-bus-id (select/reconnect-timeout (sync-period (sync-offset (clock-conversion-factor (addr) addr) addr addr addr addr -----)))) h# 20 scsi+ h# 28 scsi+ h# h# h# h#))))) 10 14 18 1c h# h# h# h# h# scsi+ scsi+ scsi+ scsi+ 10 14 18 1c 24 ; ; ; ; ; ; ; ; ; ; ;

addr addr addr addr addr

scsi+ scsi+ scsi+ scsi+ scsi+

Methods to read from/store to SCSI registers. cnt@ (-- w) transfer-count-lo rb@ transfer-count-hi rb@ bwjoin ; fifo@ (-- c) fifo rb@ ; cmd@ (-- c) command rb@ ; stat@ (-- c) scsi-status rb@ ; istat@ (-- c) interrupt-status rb@ ; fifo-cnt (-- c) fifo-flags rb@ h# 1f and ; data@ (-- c) begin fifo-cnt until fifo@ ; seq@ (-- c) sequence-step rb@ h# 7 and ; fifo! (c --) fifo rb! ; cmd! (c --) command rb! ; cnt! (w --) wbsplit transfer-count-hi rb! transfer-count-lo rb! ; targ! (c --) select/reconnect-bus-id rb! ; data! (c --) begin fifo-cnt d# 16 <> until fifo! ;

\ SCSI chip NOOP and initialization : scsi-nop (--) nop cmd! ; : init-scsi (--) reset-chip cmd!

scsi-nop

;

: wait-istat-clear (-- error?) d# 1000 begin 1 ms 1- (count) dup 0= (count expired?) istat@ (count expired? istat) 0= or (count clear?) until (count) 0= if istat@ 0<> if cr ." Can't clear ESP interrupts: " ." Check SCSI Term. Power Fuse." cr true exit then then false ; : clk-conv-factor (-- n) clock-frequency d# 5.000.000 / 7 and

;

\ Initialize SCSI chip, tune time amount, set async operation mode, and set scsi \ bus id : reset-my-scsi (-- error?) init-scsi h# 93 select/reconnect-timeout rb!

108

Writing FCode Programs for PCI

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued) 0 sync-offset rb! clk-conv-factor clock-conversion-factor rb! h# 4 scsi-init-id 7 and or configuration rb! wait-istat-clear ; : reset-bus (-- error?) reset-scsi cmd! wait-istat-clear ; : init-n-test (-- ok?) reset-my-scsi 0= ;

: get-buffers (--) h# 8000 dma-alloc to mbuf0 /cmdbuf dma-alloc to cmdbuf cmdbuf /cmdbuf false dma-map-in ;

to cmdbuf-dma

: give-buffers (--) mbuf0 h# 8000 dma-free -1 to mbuf0 cmdbuf cmdbuf-dma /cmdbuf dma-sync cmdbuf cmdbuf-dma /cmdbuf dma-map-out cmdbuf /cmdbuf dma-free -1 to cmdbuf -1 to cmdbuf-dma ; : scsi-selftest (-- fail?) reset-my-scsi ;

\ redundant

\ dma-alloc and dma-map-in mbuf-dma : mbuf-alloc (--) /mbuf dma-alloc to mbuf mbuf /mbuf false dma-map-in to mbuf-dma ; \ dma-map-out and dma-free mbuf-dma : mbuf-free (--) mbuf mbuf-dma /mbuf dma-sync mbuf mbuf-dma /mbuf dma-map-out mbuf /mbuf dma-free -1 to mbuf -1 to mbuf-dma ; external

\ redundant

\ \ \ :

If any routine were using buffers allocated by dma-alloc, and were using dma mapped by dma-map-in, it would have to dma-sync those buffers after making any changes to them. open (-- success?) dma-open " scsi-initiator-id" get-inherited-property 0= if decode-int to scsi-init-id

Block and Byte Devices

109

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued) 2drop map-scsi init-n-test dup if get-buffers else unmap-scsi dma-close then else ." Missing initiator id" cr dma-close then

(ok?) (true) (true) (false) (success?) false (success?)

; : close (--) give-buffers unmap-scsi dma-close ; : reset (--) dma-open map-scsi h# 80 dma-breset reset-my-scsi drop reset-bus drop unmap-scsi dma-close ; \ If scsi-selftest were actually using buffers allocated by mbuf-alloc, it would \ have to do dma-sync after any changes to mbuf or mbuf-dma. : selftest (-- fail?) map-scsi mbuf-alloc scsi-selftest mbuf-free unmap-scsi ; new-device \ missing "reg" indicates a SCSI "wild-card" node " sd" encode-string " name" property finish-device new-device \ missing "reg" indicates a SCSI "wild-card" node " st" encode-string " name" property finish-device fcode-end

110

Writing FCode Programs for PCI

Complete Block and Byte Device Driver

Code Example 7-3 Sample Driver for Bootable Devices \ Sample bootable block and byte device driver \ This driver supports "block" and "byte" type bootable devices, by using standard \ "deblocker"and "disk-label" packages. \ The following main methods are provided for "FirmWorks,my-scsi" device. \ open (-- okay?) \ close (--) \ reset (--) \ selftest (-- error?) fcode-version2 hex headers : copyright (--) ." Copyright (c) 1994-1996 FirmWorks. ; h# 20.0000 constant scsi-offset h# 40 constant /scsi d# 25.000.000 constant clock-frequency h# 10.0000 constant dma-offset h# 10 constant /dma -1 instance value dma-chip " FirmWorks,my-scsi" device-name " scsi" device-type \ Define "reg" property \ PCI Configuration Space my-address my-space encode-phys

All Rights Reserved." cr

0 encode-int encode+

0 encode-int encode+

\ Memory Space Base Address Register 10 my-address scsi-offset 0 d+ my-space 0200.0010 or encode-phys 0 encode-int encode+ /scsi encode-int encode+ \ PCI Expansion ROM my-address my-space h# 200.0030 or encode-phys encode+ 0 encode-int encode+ h# 10.0000 encode-int encode+ " reg" property \ Configuration register access words : my-w@ (offset -- w) my-space + " config-w@" $call-parent ; : my-w! (w offset --) my-space + " config-w!" $call-parent ; external \ : : : \ \ : :

encode+

Methods to allocate, map, unmap, free DMA buffers decode-unit (addr len -- low high) decode-2int ; dma-alloc (size -- vaddr) " dma-alloc" $call-parent ; dma-free (vaddr size --) " dma-free" $call-parent ; Since the PCI bus uses physical addressing, devaddr returned by dma-map-in is the physical address associated with vaddr. dma-map-in (vaddr size cache? -- devaddr) " dma-map-in" $call-parent ; dma-map-out (vaddr devaddr size --) " dma-map-out" $call-parent ;

Block and Byte Devices

111

Code Example 7-3 Sample Driver for Bootable Devices (Continued) \ dma-sync could be dummy routine if parent device doesn't support. : dma-sync (virt-addr dev-addr size --) " dma-sync" my-parent ['] $call-method catch if 2drop 2drop 2drop then ; : map-in (addr space size -- virt) " map-in" $call-parent ; : map-out (virt size --) " map-out" $call-parent ; \ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The \ bug causes phys.lo and phys.mid to be treated as absolute addresses rather than \ offsets even when working with relocatable addresses. \ \ \ \ \ To overcome this bug, the Open Firmware Working Group in conjunction with Apple has adopted a workaround that is keyed to the presence or absence of the add-range method in the PCI node. If the add-range method is present in an Apple ROM, the map-in method is broken. If the add-range property is absent, the map-in method behaves correctly.

\ The following methods allow the FCode driver to accomodate both broken and working \ map-in methods. : map-in-broken? (-- flag) \ Look for the method that is present when the bug is present " add-range" my-parent ihandle>phandle (adr len phandle) find-method dup if nip then (flag) \ Discard xt if present ; \ Return phys.lo and phys.mid of the address assigned to the PCI base address \ register indicated by phys.hi . : get-base-address (phys.hi -- phys.lo phys.mid phys.hi) " assigned-addresses" get-my-property if (phys.hi) ." No address property found!" cr 0 0 rot exit \ Error exit then (phys.hi adr len) rot >r (adr len) (r: phys.hi) \ Found assigned-addresses, get address begin dup while (adr len') \ Loop over entries decode-phys (adr len' phys.lo phys.mid phys.hi) h# ff and r@ h# ff and = if (adr len' phys.lo phys.mid) \ This one? 2swap 2drop (phys.lo phys.mid) \ This is the one r> exit (phys.lo phys.mid phys.hi) else (adr len' phys.lo phys.mid) \ Not this one 2drop (adr len') then (adr len') decode-int drop decode-int drop \ Discard boring fields repeat 2drop () ." Base address not assigned!" cr 0 0 r> ; headers \ variables/values for sending commands, mapping, etc. -1 instance value scsi-init-id (0 0 phys.hi)

112

Writing FCode Programs for PCI

Code Example 7-3 Sample Driver for Bootable Devices (Continued) -1 h# -1 -1 d# -1 -1 d# -1 -1 -1 d# -1 -1 -1 instance value scsi-chip 20 constant /mbuf instance value mbuf instance value mbuf-dma 6 constant /sense instance value sense-command instance value sense-cmd-dma 8 constant #sense-bytes instance value sense-buf instance value sense-buf-dma instance value mbuf0 12 constant /cmdbuf instance value cmdbuf instance value cmdbuf-dma instance value scsi-statbuf

\ Mapping and allocation routines for SCSI : map-scsi-chip (--) map-in-broken? if my-space h# 8200.0010 or get-base-address else my-address my-space h# 200.0010 or then /scsi map-in to scsi-chip

(phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi)

4 dup my-w@ 6 or swap my-w! \ Enable memory space and bus mastering scsi-chip encode-int " address" property ; : unmap-scsi-chip (--) 4 dup my-w@ 6 invert and swap my-w! \ Disable memory space and bus mastering scsi-chip /scsi map-out -1 to scsi-chip " address" delete-property ; : map-scsi (--) map-scsi-chip \ allocate buffers etc. for "sense" command and status ... ; : unmap-scsi (--) \ free buffers etc. for "sense" command and status ... unmap-scsi-chip ; \ words related to scsi commands and register access. ... : reset-my-scsi (-- error?) ... : reset-bus (-- error?) ... ; : : : : init-n-test (-- ok?) ... ; get-buffers (--) ... ; give-buffers (--) ... ; scsi-selftest (-- fail?) ... ;

;

d# 512 constant ublock

Block and Byte Devices

113

Code Example 7-3 Sample Driver for Bootable Devices (Continued) 0 instance value /block 0 instance value /tapeblock instance variable fixed-len? ... external : set-timeout

(n --) ...

;

: send-diagnostic (-- error?) \ run diagnostics and return any error. ... ; : device-present? : mode-sense (lun target -- present?) ... ; ; ;

(-- true | block-size false) ...

: read-capacity

(-- true | block-size false) ...

\ Spin up a SCSI disk, coping with a possible wedged SCSI bus : timed-spin (target lun --) ... ; : disk-r/w-blocks (addr block# #blocks direction? -- #xfered) ... (#xfered) ; \ Execute "mode-sense" command. If failed, execute read-capacity command. \ If this also failed, return d# 512 as the block size. : disk-block-size (-- n) mode-sense if read-capacity if d# 512 then then dup to /block ; : tape-block-size (-- n) ... : fixed-or-variable : tape-r/w-some headers : dma-open : dma-close (--) (--) my-address dma-offset 0 d+ dma-chip /dma map-out my-space /dma map-in ; to dma-chip ; ; ... ; ;

(-- max-block fixed?)

(addr block# #blks read? -- actual# error?) ...

-1 to dma-chip

\ After any changes to mbuf by CPU or any changes to mbuf-dma by device, synchronize \ changes by issuing " mbuf mbuf-dma /mbuf dma-sync " : mbuf-alloc (--) /mbuf dma-alloc to mbuf mbuf /mbuf false dma-map-in to mbuf-dma ; \ dma-map-out and dma-free mbuf-dma : mbuf-free (--) mbuf mbuf-dma /mbuf dma-sync mbuf mbuf-dma /mbuf dma-map-out mbuf /mbuf dma-free

\ redundant

114

Writing FCode Programs for PCI

Code Example 7-3 Sample Driver for Bootable Devices (Continued) -1 to mbuf -1 to mbuf-dma ; external \ \ \ : If any routine were using buffers allocated by dma-alloc, and were using DMA mapped by dma-map-in, it would have to dma-sync those buffers after making any changes to them. open (-- success?) dma-open " scsi-initiator-id" get-inherited-property 0= if decode-int to scsi-init-id 2drop map-scsi init-n-test (ok?) dup if (true) get-buffers (true) else unmap-scsi dma-close (false) then (success?) else ." Missing initiator id" cr false dma-close then (success?)

; : close (--) give-buffers unmap-scsi dma-close ;

: reset (--) dma-open map-scsi ... reset-my-scsi drop reset-bus drop unmap-scsi dma-close ; \ If scsi-selftest were actually using buffers allocated by mbuf-alloc, it would \ have to do dma-sync after any changes to mbuf or mbuf-dma. : selftest (-- fail?) map-scsi mbuf-alloc scsi-selftest mbuf-free unmap-scsi ; headers new-device \ Start of child block device \ Missing "reg" property indicates this is a SCSI "wild-card" node " sd" device-name " block" device-type 0 instance value offset-low 0 instance value offset-high 0 instance value label-package

Block and Byte Devices

115

Code Example 7-3 Sample Driver for Bootable Devices (Continued) 0 instance value deblocker

\ \ \ :

The "disk-label" package interprets any partition information contained in the disk label. The "load" method of the "block" device uses the load method provided by "disk-label" init-label-package (-- okay?) 0 to offset-high 0 to offset-low my-args " disk-label" $open-package to label-package label-package if 0 0 " offset" label-package $call-method to offset-high to offset-low true else ." Can't open disk label package" cr false then

; : init-deblocker (-- okay?) " " " deblocker" $open-package to deblocker deblocker if true else ." Can't open deblocker package" cr false then ; : device-present? (lun target -- present?) " device-present?" $call-parent ; \ \ \ \ \ The following methods are needed for "block" device: open, close, selftest, reset, read, write, load, seek, block-size, max-transfer,read-blocks, write-blocks. Carefully notice the relationship between the methods for the "block" device and the methods pre-defined for "disk-label" and "deblocker" \ external methods for "block" device ("sd" node) (--) my-unit " timed-spin" $call-parent ;

external : spin-up

: open (-- ok?) my-unit device-present? 0= if false exit spin-up \ Start the disk if necessary init-deblocker 0= if false exit then init-label-package 0= if deblocker close-package false exit then true ; : close (--) label-package close-package

then

0 to label-package

116

Writing FCode Programs for PCI

Code Example 7-3 Sample Driver for Bootable Devices (Continued) deblocker close-package ; 0 to deblocker

: selftest (-- fail?) my-unit device-present? if " send-diagnostic" $call-parent else true then ; : reset (--) ... ; \ \ \ \

(fail?) (error)

The "deblocker" package assists in the implementation of byte-oriented read and write methods for disks and tapes. The deblocker provides a layer of buffering to implement a high level byte-oriented interface "on top of" a low-level block-oriented interface.

\ The "seek", "read" and "write" methods of this block device use corresponding \ methods provided by "deblocker" \ \ \ \ \ In order to be able to use the "deblocker" package this device has to define the following six methods, which the deblocker uses as its low-level interface to the device: 1) block-size, 2) max-transfer, 3) read-blocks, 4) write-blocks 5) dma-alloc and 6) dma-free ;

: block-size (-- n) " disk-block-size" $call-parent : max-transfer (-- n) block-size h# 40 * ;

: read-blocks (addr block# #blocks -- #read) true " disk-r/w-blocks" $call-parent ; : write-blocks (addr block# #blocks -- #written) false " disk-r/w-blocks" $call-parent ; : dma-alloc (#bytes -- vadr) " dma-alloc" $call-parent ; : dma-free (vadr #bytes --) " dma-free" $call-parent ; : seek (offset.low offset.high offset-low offset-high x+ " ; : read (addr len -- actual-len : write (addr len -- actual-len : load (addr -- size) finish-device headers new-device \ start of child byte device \ missing "reg" indicates this is a SCSI "wild-card" node " st" device-name " byte" device-type -- okay?) seek" deblocker $call-method)) " read" deblocker $call-method ; " write" deblocker $call-method ; " load" label-package $call-method

;

\ finishing "block" device "sd"

Block and Byte Devices

117

Code Example 7-3 Sample Driver for Bootable Devices (Continued) false instance value write-eof-mark? instance variable file-mark? true instance value scsi-tape-first-install : scsi-tape-rewind (-- [[xstatbuf] f-hw] error?) ... ; : write-eof (-- [[xstatbuf] f-hw] error?) ... ; 0 instance value deblocker : init-deblocker (-- okay?) " " " deblocker" $open-package to deblocker deblocker if true else ." Can't open deblocker package" cr false then ; : flush-deblocker (--) deblocker close-package init-deblocker drop ; : fixed-or-variable (-- max-block fixed?) " fixed-or-variable" $call-parent ; : device-present? (lun target -- present?) " device-present?" $call-parent ; \ \ \ \ \ The following methods are needed for "byte" devices: open, close, selftest, reset, read, write, load, seek, block-size, max-transfer, read-blocks, write-blocks. Carefully notice the relationship between the methods for "byte" devices and the methods pre-defined for the standard deblocker package. \ external methods for "byte" device ("st" node)

external \ \ \ \

The "deblocker" package assists in the implementation of byte-oriented read and write methods for disks and tapes. The deblocker provides a layer of buffering to implement a high level byte-oriented interface "on top of" a low-level block-oriented interface.

\ The "read" and "write" methods of this "byte" device use the corresponding \ methods provided by the "deblocker" \ \ \ \ In order to be able to use the "deblocker" package this device has to define the following six methods which the deblocker uses as its low-level interface to the device: 1) block-size, 2) max-transfer, 3) read-blocks, 4) write-blocks 5) dma-alloc and 6) dma-free (-- n) " tape-block-size" $call-parent ;

: block-size

: max-transfer (-- n) fixed-or-variable (max-block fixed?) if h# fe00 over / * \ Use the largest multiple of /tapeblock that is <= h# fe00 then ; : read-blocks (addr block# #blocks -- #read)

118

Writing FCode Programs for PCI

Code Example 7-3 Sample Driver for Bootable Devices (Continued) file-mark? @ 0= if true " tape-r/w-some" $call-parent else 3drop 0 then file-mark? ! (#read)

; : write-blocks (addr block# #blocks -- #written) false " tape-r/w-some" $call-parent file-mark? ! ; : dma-alloc : dma-free (#bytes -- vaddr) (vaddr #bytes --) " dma-alloc" $call-parent " dma-free" $call-parent ; ;

: open (-- okay?) \ open for tape my-unit device-present? 0= if false exit scsi-tape-first-install if scsi-tape-rewind if ." Can't rewind tape" cr 0= if drop then false exit then false to scsi-tape-first-install then \ Set fixed-len? and /tapeblock fixed-or-variable 2drop init-deblocker 0= if false exit then true ; : close (--) deblocker close-package 0 to deblocker write-eof-mark? if write-eof if ." Can't write EOF Marker." 0= if drop then then then ; : reset (--) ... ;

then

: selftest (-- fail?) my-unit device-present? if " send-diagnostic" $call-parent else true then ; : read (addr len -- actual-len)

(fail?) (error)

" read"

deblocker $call-method

;

: write (addr len -- actual-len) true to write-eof-mark? " write" deblocker $call-method ;

Block and Byte Devices

119

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

: load (addr -- size) \ use my-args to get tape file-no ... (addr file#) \ position at requested file ... dup begin dup max-transfer read dup 0> while + repeat drop swap ; : seek (byte# file# -- error?) \ position at requested file ... (byte#) flush-deblocker begin dup 0> while " mbuf0" $call-parent over ublock min read dup 0= if 2drop true exit then repeat drop false ; finish-device fcode-end \ finishing "byte" device "st" (byte#) (#remaining) (#remaining #read) (#remaining 0) (((((error) #remaining #read) #remaining') 0) no-error)

(((((((

start-addr start-addr start-addr start-addr start-addr start-addr size)

next-addr) next-addr #read) next-addr #read got-some?) next-addr #read) next-addr') end-addr 0)

120

Writing FCode Programs for PCI

8

Chapter 8

Network Devices

Network devices are packet-oriented devices capable of sending and receiving packets addressed according to IEEE 802.3 (Ethernet). Open Firmware ﬁrmware typically uses network devices for diskless booting. The standard obp-tftp support package assists in the implementation of the load method for this device type. This chapter describes how to implement network device drivers. The example is based upon a hypothetical network device that is similar to existing devices. This hypothetical device was used to reduce the number of details that might otherwise obscure the design of the driver. A driver for a real-world device is likely to be more complex in that state of the art Ethernet chip sets tend to have somewhat more elaborate schemes for managing transmit and receive buffers.

Required Methods

The network device FCode must set the value of its device_type property to network and must implement the following methods: open (-- ok?) Prepare the device for use by performing those hardware-dependent actions required to allocate resources and start the device. Create a "mac-address" property with the value returned by mac-address. Return true if the open method succeeds; false otherwise. close (--) Return the device to its “not-in-use” state by performing those hardware-dependent actions required to stop the device and de-allocate resources. read (addr len -- actual) Receive a network packet, placing at most the ﬁrst len bytes in memory at addr. Return the actual number of bytes received (not the number copied), or -2 if no packet is currently available. Packets with hardware-detected errors are discarded as though they were not received. Do not wait for a packet (non-blocking). The received packet format is shown in Figure 8.

121

write (addr len -- actual) Transmit the network packet of size len bytes starting at memory address addr. The format of the buffer at addr is shown in Figure 8. Return the number of bytes actually transmitted. The packet must be complete with all addressing information, including source hardware address, as shown in Figure 9. load (addr -- len) Read the default stand-alone program into memory starting at addr using the default network booting protocol. len is the size in bytes of the program read in. A suitable deﬁnition of load is:

Code Example 8-1 : load (addr -- len) my-args " obp-tftp" $open-package >r (addr) (r: ihandle) r@ 0= abort" Can’t open TFTP package" (addr) (r: ihandle) >r " load" r@ $call-method (len) (r: ihandle) r> close-package ;

Required Device Properties

The required properties for a network device are:

Table 26 Name name reg device_type mac-address " INTL,my-net" list of registers {device-dependent} " network" 8 0 0x20 0x0c 0xea 0x41 {the MAC address currently being used.} Required Network Device Properties Typical Value

Optional Device Properties

Several other properties may be declared for network devices:

Table 27 Property Name max-frame-size address-bits local-mac-address 0x4000 48 8 0 0x20 0x0c 0xea 0x41 {the built-in Media Access Control address.} Optional Network Device Properties Typical Property Value

network Device Driver Issues

write Buffer Format

The write method of a network device driver receives a buffer whose contents are shown in Figure 8. It should be noted that the driver is not intended to interpret the “length/Ethernet type” ﬁeld since it may contain either a length or an Ethernet type. It

122

Writing FCode Programs for PCI

is the responsibility of whoever is calling the write method to ﬁll in that ﬁeld appropriately. addr Destination Address 6 bytes Source Address 6 bytes len Length/Ethernet Type 2 bytes LLC Data

Figure 8 write Method Input Buffer Format

The driver is responsible for ensuring that the packet that is sent on the network has the form shown in Figure 9. In reality, the hardware will almost certainly automatically supply the “preamble”, “start frame delimiter” and “frame check sequence”. Hardware will often provide the “pad” in those cases where the “data” is shorter than the minimum required 64 bytes. However, the driver must supply any of this information that the hardware does not.

Start Frame Delimiter 1 byte Preamble 7 bytes Destination Address 6 bytes Source Address 6 bytes Length/Ethernet Type 2 bytes LLC Data Pad (if required) Frame Check Sequence 4 bytes

Figure 9 Network Packet Format

Network Devices

123

read Buffer Format

Because of the ambiguity of the “length/Ethernet type” ﬁeld as shown in Figure 8, a network driver is not expected to and should not try to remove any “pad” bytes that may be passed to it by the hardware. The driver should simply pass the data supplied to it by the hardware (subject to the limitations of its len argument).

Use of DMA

The obp-tftp package is not required by IEEE Standard 1275-1994 to provide packets in buffers that are suitable for DMA. To use DMA, a network driver must:

s s s s

Provide its own DMA-accessible packet buffers with dma-alloc and dma-map-in. Flush any caches with dma-sync and copy received data from a DMA buffer into a buffer provided as an argument to the read method. Copy data to be transmitted from a buffer supplied as an argument to the write method into a DMA buffer and ﬂush any caches with dma-sync. Return its DMA buffers with dma-free and dma-map-out.

selftest

Note – United States Patent No. 4,633,466, "Self Testing Data Processing System with Processor Independent Test Program", issued December 30, 1986 may apply to some or all elements of Open Firmware selftest. Anyone implementing Open Firmware should take such steps as may be necessary to avoid infringement of that patent and any other applicable intellectual property rights. The example below shows a bootable network driver. It implements the selftest method callable by Open Firmware test and test-all commands and the watch-net method callable by Open Firmware watch-net and watch-net-all commands. Since the inclusion of a selftest method on a plug-in card may infringe the patent mentioned above, writers of drivers for network plug-in cards may wish to omit the selftest method. However, writers of drivers for network devices that are built onto a system motherboard are encouraged to include the selftest method.

Device Driver Examples

Simple Bootable Network Device Example

The example below shows a complete version of a simple bootable network driver.

Code Example 8-2 \ \ \ \ \ \ \ Simple Bootable Ethernet Driver

This driver assumes a hypothetical Ethernet adapter as described below. While it would be possible to design an Ethernet adapter similar to this (and, in fact, many early Ethernet adapters were reminiscent of this design), in practice modern Ethernet adapters are somewhat more complicated. This hypothetical adapter is deficient in at least the following ways: a) The need to copy packets in and out through a single byte-wide

124

Writing FCode Programs for PCI

Code Example 8-2 \

Simple Bootable Ethernet Driver (Continued)

register is a performance bottleneck. Most modern Ethernet adapters use DMA. b) The single transmit buffer prevents the adapter from sending consecutive packets with the mininum Ethernet interpacket gap. c) There is no provision for interrupts. This does not affect FCode drivers, which assume a single-task polled environment, but it would be a problem for a real system. The hypothetical adapter has a control register with six bits: 01 \ Reset chip 02 \ Enable reception 04 \ Release receive buffer 08 \ Start transmission 10 \ Enable promiscuous reception 20 \ Enable internal loopback Writing a one to a control register bit causes it to perform the indicated action. There is a single transmit buffer. When the xmit-status register is not zero, the hardware is ready to send a packet. To send the packet, the host gives the packet to the adapter by writing it to the xmit-fifo register one byte at a time. Then the host writes the number of bytes to transmit to the xmit-len register. Finally, the host writes "8" to the control register to begin the transmission. The adapter responds by setting the xmit-status register to zero and initiating transmission. When transmission is complete, the adapter sets the xmit-status register to one if the transmission was successful, or to some value other than zero or one to indicate an error. If the value written to the xmit-len register is greater than the number of bytes that were written to the xmit-fifo register, the adapter transmits zeroes after transmitting the bytes that were written to the FIFO. There are numerous receive buffers organized as a queue. When a packet is received, the adapter sets the rcv-rdy register to the number of currently-available packets and sets the rcv-len register to the length of the first available packet. If that packet is defective, the adapter also sets the 0x8000 bit of the rcv-len register. The host accepts the packet by copying one byte at a time from the rcv-fifo register. When the host has copied all the bytes of that packet that it wants, the host writes "4" to the control register, which causes the adapter to make that packet buffer available for other incoming packets, to decrement the rcv-rdy buffer available for other incoming packets, to decrement the rcv-rdy register, and to update the rcv-len register to reflect the next available packet. The adapter reports the 6-byte Ethernet address that its manufacturer assigned to it via six registers beginning with the "local-addr" register. The adapter compares incoming packets to the 6 registers beginning with the "unicast-addr" register, receiving those whose destination address matches and discarding others (except for broadcast packets, which it always receives). The host must set this unicast address before enabling reception. The host software decides whether to use the manufacturer-assigned Ethernet address or some other Ethernet address for this purpose.

fcode-version2 hex headers : copyright (--) ." Copyright (c) 1995-1996 FirmWorks. All Rights Reserved." cr ; \ Register offsets from the adapter’s base address 0 constant control \ 1 byte W/O - writing one bits causes things to happen

Network Devices

125

Code Example 8-2

Simple Bootable Ethernet Driver (Continued)

2 constant unicast-addr \ 6 bytes R/W - Ethernet address for reception 8 constant xmit-status 9 constant xmit-fifo a constant xmit-len c constant rcv-rdy d constant rcv-fifo e constant rcv-len 10 constant local-addr 16 constant /regs : map-in : map-out \ 1 byte - 0 => busy 1 => okay else => error \ 1 byte - write repetitively to setup packet \ 16 bits - length of packet to send \ 1 byte - count of waiting packets \ 1 byte - read repetitively to remove first packet \ 16 bits \ 6 bytes R/O - Factory-assigned Ethernet address \ Total size of adapter’s register bank " map-in" $call-parent " map-out" $call-parent ; ;

(addr space size -- virt) (virt size --)

: my-w@ (offset -- w) my-space + " config-w@" $call-parent ; : my-w! (w offset --) my-space + " config-w!" $call-parent ; " FirmWorks,ethernet" device-name " network" device-type " FirmWorks,54321" model \ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The \ bug causes phys.lo and phys.mid to be treated as absolute addresses rather than \ offsets even when working with relocatable addresses. \ \ \ \ \ To overcome this bug, the Open Firmware Working Group in conjunction with Apple has adopted a workaround that is keyed to the presence or absence of the add-range method in the PCI node. If the add-range method is present in an Apple ROM, the map-in method is broken. If the add-range property is absent, the map-in method behaves correctly.

\ The following methods allow the FCode driver to accomodate both broken and working \ map-in methods. : map-in-broken? (-- flag) \ Look for the method that is present when the bug is present " add-range" my-parent ihandle>phandle (adr len phandle) find-method dup if nip then (flag) \ Discard xt if present ; \ Return phys.lo and phys.mid of the address assigned to the PCI base address \ register indicated by phys.hi . : get-base-address (phys.hi -- phys.lo phys.mid phys.hi) " assigned-addresses" get-my-property if (phys.hi) ." No address property found!" cr 0 0 rot exit \ Error exit then (phys.hi adr len) rot >r (\ Found assigned-addresses, begin dup while (decode-phys (h# ff and r@ h# ff and 2swap 2drop (adr len) (r: phys.hi) get address adr len') \ Loop over entries adr len' phys.lo phys.mid phys.hi) = if (adr len' phys.lo phys.mid) \ This one? phys.lo phys.mid) \ This is the one

126

Writing FCode Programs for PCI

Code Example 8-2

Simple Bootable Ethernet Driver (Continued)

r> exit (phys.lo phys.mid phys.hi) else (adr len' phys.lo phys.mid) \ Not this one 2drop (adr len') then (adr len') decode-int drop decode-int drop \ Discard boring fields repeat 2drop () ." Base address not assigned!" cr 0 0 r> ; \ String comparision : $= (adr0 len0 adr1 len1 -- equal?) 2 pick <> if 3drop false exit then swap comp 0= ; (0 0 phys.hi)

(adr0 len0 adr1)

\ Define "reg" property \ PCI Configuration Space my-address my-space encode-phys

0 encode-int encode+

0 encode-int encode+

\ Memory Space Base Address Register 10 my-address my-space 0200.0010 or encode-phys encode+ 0 encode-int encode+ /regs encode-int encode+ \ PCI Expansion ROM my-address my-space h# 200.0030 or encode-phys encode+ 0 encode-int encode+ h# 10.0000 encode-int encode+ " reg" property -1 instance value chipbase : map-regs (--) map-in-broken? if my-space h# 8200.0010 or get-base-address else my-address my-space h# 200.0010 or then /regs map-in to chipbase

(phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi)

4 dup my-w@ 4 or swap my-w! \ Enable memory space chipbase encode-int " address" property ; : unmap-regs (--) 4 dup my-w@ 4 invert and swap my-w! \ Disable memory space chipbase /regs map-out -1 to chipbase " address" delete-property ; : e@ (register -- byte) chipbase + rb@ ; : e! (byte register --) chipbase + rb! ; : ew@ (register -- 16-bits) chipbase + rw@ ;

Network Devices

127

Code Example 8-2 : ew! : : : : : : : : :

Simple Bootable Ethernet Driver (Continued) chipbase + rw! ;

(16-bits register --)

control-on (control-bit --) control e@ or control e! ; control-off (control-bit --) invert control e@ and control e! reset-chip (--) 1 control e! ; receive-on (--) 2 control-on ; return-buffer (--) 4 control-on ; start-xmit (--) 8 control-on ; promiscuous (--) 10 control-on ; loopback-on (--) 20 control-on ; loopback-off (--) 20 control-off ; rcv-rdy e@ ; receive-ready?

;

: receive-ready? (-- #pkts-waiting) : wait-for-packet (--) begin key?

or

until

;

\ Create local-mac-address property from the information map-regs 6 alloc-mem (6 0 do local-addr i + rb@ over i + c! loop (6 2dup encode-string " local-mac-address" property (free-mem unmap-regs : initchip (--) reset-chip

in the chip mem-addr) mem-addr) mem-addr 6)

\ Ask the host system for the station address and give it to the adapter mac-address 0 do (addr) dup i + c@ unicast-addr i + e! (addr) loop drop receive-on \ Enable reception ; : net-init (-- succeeded?) loopback-on loopback-test loopback-off if init-chip true else ; \ Check for incoming Ethernet packets while using promiscuous mode. : watch-test (--) ." Looking for Ethernet packets." cr ." '.' is a good packet. 'X' is a bad packet." cr ." Press any key to stop." cr Begin wait-for-packet receive-ready? if rcv-len ew@ 8000 and 0= if ." ." else ." X" then return-buffer then key? dup if key drop then until ; : (watch-net) (--) map-regs promiscuous net-init if watch-test reset-chip then unmap-regs ; : le-selftest (-- passed?) net-init

false

then

128

Writing FCode Programs for PCI

Code Example 8-2 dup ; if net-off then

Simple Bootable Ethernet Driver (Continued)

external : read (addr requested-len -- actual-len) \ Exit if packet not yet available receive-ready? 0= if 2drop -2 exit then rcv-len ew@ dup 8000 and = if (addr requested-len packet-len) 3drop return-buffer \ Discard bad packet -1 exit then (addr requested-len packet-len) \ Truncate to fit into the supplied buffer min (addr actual-len) \ Note: For a DMA-based adapter, the driver would have to synchronize caches (e.g. \ with "dma-sync") and copy the packet from the DMA buffer into the result buffer. tuck bounds ?do return-buffer ; : close (--) mem-port i c! loop (actual-len) (actual-len) ;

reset-chip

unmap-regs

: open (-- ok?) map-regs mac-address encode-string initchip my-args " promiscuous" $=

" mac-address" property if promiscuous then

\ Note: For a DMA-based adapter, the driver would have to allocate DMA memory for \ packet buffers, construct buffer descriptor data structures, and possibly \ synchronize caches (e.g. with "dma-sync"). true ; : write (addr len -- actual) begin xmit-status e@ 0<> until \ Note: For a DMA-based adapter, the driver would have to copy the \ packet into the DMA buffer and synchronize caches (e.g. with "dma-sync"). \ Copy packet into chip tuck bounds ?do i c@

xmit-fifo e!

loop

\ Set length register dup h# 64 max xmit-len ew! start-xmit ; : load (addr -- len) " obp-tftp" find-package if my-args rot open-package else 0 then

(((((

addr addr addr addr addr

phandle) ihandle|0)) 0) ihandle|0)

Network Devices

129

Code Example 8-2 dup 0=

Simple Bootable Ethernet Driver (Continued) (addr ihandle)

abort" Can’t open obp-tftp support package"

>r " load" r@ $call-method r> close-package ; : selftest (-- failed?) map-regs le-selftest 0= unmap-regs ; : watch-net (--) selftest 0= if (watch-net) ; fcode-end

(len)

then

130

Writing FCode Programs for PCI

9

Chapter 9

Serial Devices

Serial devices are byte-oriented, sequentially-accessed devices such as asynchronous communication lines (often attached to a “dumb” terminal).

Required Methods

The serial device driver must declare the serial device type, and must implement the methods open and close, as well as the following: install-abort (--) Instruct the driver to begin periodic polling for a keyboard abort sequence. install-abort is executed when the device is selected as the console input device. read (addr len -- actual) Read len bytes of data from the device into memory starting at addr. Return the number of bytes actually read, actual, or -2 if no bytes are currently available from the device. -1 is returned if other errors occur. remove-abort (--) Instruct the driver to cease periodic polling for a keyboard abort sequence. remove-abort is executed when the console input device is changed from this device to another. write (addr len -- actual) Write len bytes of data to the device from memory starting at addr. Return the number of bytes actually written, actual.

Required Properties

The standard properties of a serial driver are:

Table 28 Property Name name reg device_type " INTL,thingy" list of registers { device-dependent} " serial" Serial Driver Required Properties Value

131

Device Driver Examples

The examples that follow are serial device drivers for the Zilog 8530 SCC (UART) chip.

s s

The ﬁrst sample is a short driver which simply creates a device node and declare the properties for the device. The second sample shows the complete serial device driver. The open method accepts an argument of the form [p][,s] where:

„ „

p is an optional argument indicating which port of the device is to be used. Valid values are a and b. If p is not speciﬁed, Port A is used. s is an optional argument specifying the speed to which the port should be set in decimal. Valid values are 4800, 9600, 19200 and 38400. If s is not speciﬁed, 9600 is used.

Simple Serial FCode Program

Code Example 9-1 Simple Serial Device Driver \ This driver creates a device node and publishes the minimum required set of \ properties. fcode-version2 hex " INTL,zs" device-name " serial" device-type \ Define "reg" property \ PCI Configuration Space my-address my-space encode-phys

0 encode-int encode+

0 encode-int encode+

\ Memory Aperture my-address my-space 0200.0010 or encode-phys 0 encode-int encode+ 8 encode-int encode+

encode+

\ PCI Expansion ROM my-address my-space h# 200.0030 or encode-phys encode+ 0 encode-int encode+ h# 10.0000 encode-int encode+ "reg" property fcode-end

Complete Serial FCode Program

Code Example 9-2 Complete Serial FCode Program \ \ \ \ \ \ \ \ \ \ \ Complete Serial driver. In addition to publishing properties, this sample driver provides methods to initialize, test, access and control the serial ports. The following main methods are provided: - usea (--) Selects serial port A. All subsequent operations will be directed to port A. - useb (--) Selects serial port B. All subsequent operations will be directed to port B. - uemit (char --) Emits a given character to the selected serial port.

132

Writing FCode Programs for PCI

Code Example 9-2 Complete Serial FCode Program (Continued) \ - ukey (-- char) Retrieves a character from the selected serial port. - read (addr len -- #read) Reads "len" number of characters from the selected port, and stores them at "addr". Returns the actual number read.

- write (addr len -- #written) Writes "len" number of characters from the buffer located at "addr" to the selected port. Returns the actual number written. - inituarts (--) Initializes both serial ports A and B. - open (-- okay?) Maps in the uart chip. Selects port A on default, then checks my-args. If port B was specified, then selects port B instead. - close (--) Unmap the uart chip. - selftest (--) Performs selftest on both Port A and B. - install-abort (--) Sets up alarm to do poll-tty every 10 milliseconds. - remove-abort (--) Removes the poll-tty alarm.

fcode-version2 hex headers : copyright (--) ." Copyright (c) 1995-1996 FirmWorks. ; " INTL,zs" device-name " serial" device-type 8 constant /regs \ Total size of adapter’s register bank

All Rights Reserved." cr

\ Define "reg" property \ PCI Configuration Space my-address my-space encode-phys

0 encode-int encode+

0 encode-int encode+

\ Memory Aperture my-address my-space 0200.0010 or encode-phys encode+ 0 encode-int encode+ /regs encode-int encode+ \ PCI Expansion ROM my-address my-space h# 0200.0030 or encode-phys encode+ 0 encode-int encode+ h# 10.0000 encode-int encode+ " reg" property : map-in (phys.lo phys.mid phys.hi size -- virt) : map-out (virt size --) " map-out" $call-parent " map-in" $call-parent ; ;

: my-w@ (offset -- w) my-space + " config-w@" $call-parent ; : my-w! (w offset --) my-space + " config-w!" $call-parent ;

Serial Devices

133

Code Example 9-2 Complete Serial FCode Program (Continued) : /string headerless \ \ \ \ \ \ \ \ \ \ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The bug causes phys.lo and phys.mid to be treated as absolute addresses rather than offsets even when working with relocatable addresses. To overcome this bug, the Open Firmware Working Group in conjunction with Apple has adopted a workaround that is keyed to the presence or absence of the add-range method in the PCI node. If the add-range method is present in an Apple ROM, the map-in method is broken. If the add-range property is absent, the map-in method behaves correctly. The following methods allow the FCode driver to accomodate both broken and working map-in methods. (addr len n -- addr+n len-n) tuck -rot + swap ;

: map-in-broken? (-- flag) \ Look for the method that is present when the bug is present " add-range" my-parent ihandle>phandle (adr len phandle) find-method dup if nip then (flag) \ Discard xt if present ; \ Return phys.lo and phys.mid of the address assigned to the PCI base address \ register indicated by phys.hi . : get-base-address (phys.hi -- phys.lo phys.mid phys.hi) " assigned-addresses" get-my-property if (phys.hi) ." No address property found!" cr 0 0 rot exit \ Error exit then (phys.hi adr len) rot >r (adr len) (r: phys.hi) \ Found assigned-addresses, get address begin dup while (adr len') \ Loop over entries decode-phys (adr len' phys.lo phys.mid phys.hi) h# ff and r@ h# ff and = if (adr len' phys.lo phys.mid) \ This one? 2swap 2drop (phys.lo phys.mid) \ This is the one r> exit (phys.lo phys.mid phys.hi) else (adr len' phys.lo phys.mid) \ Not this one 2drop (adr len') then (adr len') decode-int drop decode-int drop \ Discard boring fields repeat 2drop () ." Base address not assigned!" cr 0 0 r> ; headers -1 0 h# ff 6 true instance instance instance instance instance value uartbase value uart \ define uart as an "per-instance" value. value mask-#data \ mask for #data bits value tc \ Baud rate time constant. Init’d to value for 9600 value usea? \ Which port did user specify? (0 0 phys.hi)

134

Writing FCode Programs for PCI

Code Example 9-2 Complete Serial FCode Program (Continued) \ : : : : The following line assumes that A2 selects the channel within the chip usea (--) uartbase 4 + to uart ; useb (--) uartbase to uart ; uctl! (c --) uart rb! ; uctl@ (-- c) uart rb@ ;

\ The following line assumes that A1 chooses the command vs. data port : udata! (c --) uart 2 + rb! ; : udata@ (-- c) uart 2 + rb@ ; \ Write the initialization sequence to both UARTs : inituart (--) \ Reg Value Description 9 uctl! 2 uctl! \ Don't respond to intack cycles (02) 4 uctl! 44 uctl! \ No parity (00), 1 stop bit (04), x16 clock (40) 3 uctl! c0 uctl! \ receive 8 bit characters (c0) 5 uctl! 60 uctl! \ transmit 8 bits (60) e uctl! 82 uctl! \ Processor clock is baud rate source (02) b uctl! 55 uctl! \ TRxC = xmit clk (01), enable TRxC (04), Tx clk is baud (10), \ Rx clk is baud (40) c uctl! tc uctl! \ Time constant low d uctl! 0 uctl! \ Time constant high 3 uctl! c1 uctl! \ receive 8 bit characters (c0), enable (01) 5 uctl! 68 uctl! \ transmit 8 bits (60), enable (08) e uctl! 83 uctl! \ Processor clock is baud rate source (02), Tx enable (01) 0 uctl! 10 uctl! \ Reset status bit latches ; : inituarts inituarts \ Test for "break" character received. : ubreak? (-- break?) 10 uctl! uctl@ : clear-break (--) \ Clear begin ubreak? 0= until \ udata@ drop \ 30 uctl! \ ; 1 constant RXREADY 4 constant TXREADY (--) usea inituart useb inituart ;

h# 80 and

0<>

;

the break flag Let break finish Eat the null character Reset errors

\ received character available \ transmit buffer empty

: uemit? (-- emit?) uctl@ TXREADY and 0<> ; : uemit (char --) begin uemit? until udata! : ukey? (-- key?) uctl@ RXREADY and 0<> ; : ukey (-- key) begin ukey? until udata@ : poll-tty ubreak? ; (--) if clear-break

;

;

user-abort

then

Serial Devices

135

Code Example 9-2 Complete Serial FCode Program (Continued) : which-port? (arg-str arg-len -- speed-str speed-len) ascii , left-parse-string if (speed-str speed-len port-str) c@ lcc case (speed-str speed-len) ascii a of true endof (speed-str speed-len flag) ascii b of false endof (speed-str speed-len) 1 throw \ Throw an error on an unrecognized port letter endcase (speed-str speed-len flag) else (speed-str speed-len port-str) drop true (speed-str speed-len flag) then (speed-str speed-len flag) to usea? (speed-str speed-len) ; : set-baud-rate (speed-str speed-len --) dup if base @ decimal (base) \ Change to decimal at run-time and save old base $number if (base | base baud-rate) base ! 2 throw \ Throw an error on a non-decimal speed specification then (base baud-rate) case (base baud-rate) d# 9600 of 6 endof d# 38400 of 0 endof d# 19200 of 2 endof d# 4800 of e endof drop base ! 3 throw \ Throw an error on an invalid speed specification endcase (base time-constant) swap base ! (time-constant) else (speed-str 0) 2drop 6 (6) \ Time constant for 9600 (default) then (time-constant) to tc () ; external : open (-- okay?) map-in-broken? if my-space h# 8200.0010 or get-base-address else my-address my-space h# 200.0010 or then /regs map-in to uartbase

(phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi)

4 dup my-w@ 4 or swap my-w! \ Enable memory space uartbase encode-int " address" property my-args (['] which-port? catch if (2drop false (else (['] set-baud-rate catch if (2drop false (else (usea? if usea else useb then (then (; arg-str arg-len) arg-str arg-len | speed-str speed-len) false) speed-str speed-len) speed-str speed-len | <nothing>) false)) then inituart true (true) okay?) okay?)

136

Writing FCode Programs for PCI

Code Example 9-2 Complete Serial FCode Program (Continued) : close (--) 4 dup my-w@ 4 invert and swap my-w! \ Disable memory space uartbase /regs map-out -1 to uartbase " address" delete-property ; headers : utest external : selftest (-- error?) open 0= if ." Can't open device" true exit then my-args if (addr) c@ lcc case ascii a of usea endof ascii b of useb endof (default) ." Bad zs port letter = " emit close false exit endcase utest (fail?) else \ No port letter so test both ports. drop usea utest useb utest or (fail?) then close ; : read (addr len -- #read) \ #read = -2 == none available right now ukey? 0= if 2drop -2 exit then (addr len) tuck (len addr len) begin dup 0<> ukey? and while (len addr len) over ukey mask-#data and swap c! (len addr len) 1 /string (len addr' len') repeat (len addr' len') nip (#read) ; : write (addr len -- #written) tuck bounds ?do (len) i c@ uemit (len) loop (len) ; : install-abort : remove-abort (--) (--) ['] poll-tty d# 10 alarm ['] poll-tty 0 alarm ; ; (-- 0) h# 7f bl do i uemit loop 0 ;

\ "seek" might be implemented to select a load file name \ Implement "load" (optional) fcode-end

Serial Devices

137

138

Writing FCode Programs for PCI

10

Chapter 10

Display Devices

The display device type applies to framebuffers and other devices that appear to be memory to the processor with associated hardware to convert the memory image to a visual display. Display devices can be used as console output devices.

Required Methods

To be usable as the console output device during Open Firmware start up, a display device’s FCode must set the value of its device_type property to display. It must also implement the methods open and close, and may optionally implement the selftest method. However, for historical reasons, the open, close and selftest methods are not created directly in the driver FCode as they are for other device types. Unlike other device types that obtain support services from the system ﬁrmware through the /packages node, display devices interact with system ﬁrmware with a special defer word interface used exclusively by display devices. When writing an FCode program for a display device, you create methods whose behavior is later “installed” into the defer words of the display device interface. The FCodes is-install, is-remove and is-selftest are used to attach the methods deﬁned in your FCode program to the defer word interface, and to create the open, close and optional selftest routines for your display device. In addition, the set-font FCode initializes the values of fontbytes, char-height and char-width, all of which are used to conﬁgure the low level display device interface defer words. The lists of FCodes speciﬁcally designed for use with display devices are listed in Note – Table 82 through Table 89 in Appendix A, “FCode Reference”.

139

Required Properties

Table 29 Property Name name reg device_type character-set height width depth linebytes " FirmWorks,generic-vga" list of registers {device dependent} " display" {required for display devices} " ISO8859-1" (device dependent) #scanlines (device dependent) /scanline (device dependent) 8 (device dependent) #scanlines (device dependent) Required Display Device Properties Typical Value

Structure of a display Device Driver

The Open Firmware system ﬁrmware provides support to display device drivers with the terminal emulator and the low level display device interface defer words. This support requires that an FCode program create certain properties and do certain operations in a certain order at probe time. In addition, the words installed with is-install and is-remove must perform certain operations in a certain order.

Probe Time Actions

s s s

s s s

Create required properties. Create manufacturer-speciﬁc properties (if any). Create terminal emulator properties. s height, width, depth and linebytes s If appropriate, iso6429-1983-colors is-install is-remove is-selftest, if desired.

is-install Actions

The word whose execution token is installed with is-install must:

s s s

s s s

Map in the frame buffer. Enable PCI memory and/or I/O space access as required. Initialize the graphics hardware. Initialize the color palette. s default-colors s set-colors Initialize frame-buffer-adr Create the address property. Install the fb8 package. s default-font s set-font s fb8-install s If applicable, replace the behaviors of the low level display device interface defer words with more appropriate behavior. (See the next section for details.)

140

Writing FCode Programs for PCI

s

If necessary, correct the centering of the image on the screen by changing the value of window-left and/or window-top.

When is-install (-- xt) is executed, it creates the following methods:

s

open (-- ok?) When later called, executes the routine whose execution token is xt guarded by catch. If the execution of xt results in a throw, false is returned. Otherwise, the Open Firmware terminal emulator is initialized and true is returned.

s

write (addr len -- #written) When later called, passes its argument string to the Open Firmware terminal emulator for interpretation.

s

draw-logo (line# addr width height --) When later called, executes the routine whose execution token was installed in the defer word draw-logo. Initially, fb8-install loads draw-logo with the behavior of fb8-draw-logo. (See the next section for more details.)

s

restore (--) When later called, executes the routine whose execution token was installed in the defer word reset-screen. Initially, fb8-install loads reset-screen with the behavior of fb8-reset-screen. (See the next section for more details.)

Low Level Display Device Interface defer Words

The low level display device interface is composed of the following defer words:

s s s s s s s s s s s

draw-character reset-screen toggle-cursor erase-screen blink-screen invert-screen insert-characters delete-characters insert-lines delete-lines draw-logo

When fb8-install is executed, each of these words is loaded with a default behavior supplied by the fb8 default versions of these words (i.e. draw-character is loaded with the behavior of fb8-draw-character). If your hardware is capable of performing a given operation more efﬁciently than one of the default methods, you may create an alternative method in FCode to take advantage of your hardware’s capabilities, and may then replace the default behavior with your alternative method. For example, your hardware might have the capability of quickly erasing the screen. If you wrote a word named (say) my-erase-screen, you could replace the default behavior with the phrase:

['] my-erase-screen to erase-screen

Display Devices

141

The complete deﬁnitions of the defer words can be found in Chapter 12 “Open Firmware Dictionary”.

is-remove Actions

The word whose execution token is installed with is-remove must:

s s s s

Reset the hardware, if applicable. Unmap any mapped resources. Disable PCI memory and/or PCI I/O space accesses as appropriate. Delete the address property.

When is-remove (-- xt) is executed, it creates the following method:

s

close (--) When later called, executes the routine whose execution token is xt.

is-selftest Actions

The word whose execution token is installed with is-selftest must:

s s s

s

Must assume that the device may or may not be open. Establish any device state necessary to perform its tests. Perform a selftest of the display device returning 0 on test success and a non-zero error code on test failure. The complexity of this test may depend upon the value returned by diagnostic-mode?; if so, more extensive testing should be done when diagnostic-mode? returns true. Release any resources that were allocated to perform the tests.

When is-selftest (-- xt) is executed, it creates the following method:

s

selftest (-- failure?) When later called, executes the routine whose execution token is xt.

display Device Driver Issues

16-Color Text Extension Recommended Practice

IEEE Standard 1275-1994 deﬁnes the facilities for displaying text in terms of a two color model. Most computers today have color capability. The 16-Color Text Extension Recommended Practice describes extensions to the basic Terminal Emulator support package that enable the use of additional colors on the Open Firmware console display device. A display driver that uses the fb8 support routines only has to meet two additional requirements to support this extension:

s

Deﬁne the property iso6429-1983-colors.

142

Writing FCode Programs for PCI

s

Set up the device’s color translation mechanism such that the correspondence between pixel values in the frame buffer memory and displayed colors is as given in Table 30.

Table 30 16 Color Text Extension Color Assignments Red 0 0 0 0 2/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 1 1 1 1 Green 0 0 2/3 2/3 0 0 1/3 2/3 1/3 1/3 1 1 1/3 1/3 1 1 Blue 0 2/3 0 2/3 0 2/3 0 2/3 1/3 1 1/3 1 1/3 1 1/3 1 Color Black Blue Green Cyan Red Magenta Brown White Grey Bright Blue Bright Green Bright Cyan Bright Red Bright Magenta Yellow Bright White

Color Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The mechanism for creating this correspondence is the device driver’s responsibility. For those devices having a color lookup table, loading the ﬁrst sixteen entries as shown above should achieve this result. Note – The above table deﬁnes the sixteen colors in terms of the approximate intensities of red, green and blue, where 0 means “no intensity” and 1 means “maximum intensity”. The description of the colors does not imply that the hardware must use an RGB color space.

Note – Some Sun system ROM implementations use color number 255 (i.e. 0xFF) as the background color. To make your driver compatible with those systems, also load color number 255 with the values shown above for color number 15. If your device cannot support 8-bit frame buffers (e.g. has a 24-bit-only frame buffer), the device driver must provide additional capabilities that would otherwise have been provided by the fb8 support package. See the 16-Color Text Extension Recommended Practice document for the details.

Display Devices

143

8-Bit Graphics Extension

IEEE Standard 1275-1994 deﬁnes a text oriented interface. Most computers today have graphics capabilities, and users generally prefer graphical user interfaces over command line interfaces like that deﬁned by IEEE Standard 1275-1994. The 8-Bit Graphics Extension Recommended Practice document describes extensions to the standard that enable the manipulation of graphical, 256-color objects on display devices. The graphics model used by this extension has the following characteristics:

s s s

s

s s

s

Pixels are represented by 8-bit values that represent one of 256 colors. The mapping of a color number to a display color is speciﬁed with three 8-bit values each of which represent a color component in an RGB color space. A color component value of 0 represents the absence of that color while a value of 255 represents full saturation of the color (i.e. [0, 0, 0] is black and [255, 255, 255] is white). When a color is speciﬁed with a memory region (as with set-colors and get-colors), the ﬁrst byte of the region represents the red component, the next byte represents the green component and the next byte represents the blue component. If multiple colors are speciﬁed with a memory region, the byte describing the red component of the (N+1)th color immediately follows the byte describing the blue component of the Nth color. The top-left corner of the display is [0, 0]. Rectangular regions of the display buffer are described by a set of coordinates specifying the position of the top-left corner of the rectangle [x, y] and the width and height of the rectangle [w, h]. Data in memory representing rectangular regions consist of w times h contiguous bytes where the ﬁrst w bytes represent the pixels of the ﬁrst row of the rectangle (from left to right), the next w bytes represent the pixels of the second row, etc. Each such byte contains the color number of the corresponding pixel.

This extension deﬁnes the following methods that must be added to the display device driver. draw-rectangle (addr x y w h --) Display the rectangular image beginning at pixel location x,y of size w,h using the image deﬁned by the memory region starting at addr. ﬁll-rectangle (index x y w h --) Fill the rectangular region beginning at pixel location x,y of size w,h using the color speciﬁed by index. read-rectangle (addr x y w h --) Copy the rectangular image beginning at pixel location x,y of size w,h to the memory region starting at addr. Note – For displays that are not in 8-bit per pixel mode, read-rectangle is not deﬁned. It is therefore recommended that displays provide an 8-bit mode and use this mode during Open Firmware execution. color! (r g b index --) Set the color associated with index to the value speciﬁed by r,g,b.

144

Writing FCode Programs for PCI

color@ (index -- r g b) Read the color associated with index and return its r,g,b components. set-colors (addr index #colors --) Set a range of #colors consecutive colors starting at index. addr is the address of the memory area in which the color components are speciﬁed. get-colors (addr index #colors --) Read a range of #colors consecutive colors starting at index. addr is the address of the memory area into which the color components are copied. dimensions (-- width height) Return the dimensions in pixels of the viewable area of the screen in the current mode.

Use of Legacy VGA Addressing

There are a couple of issues associated with the use of VGA ISA legacy addresses in I/O space. VGA I/O space registers are non-relocatable and are distributed in small regions across I/O space. Strictly speaking, each of these small regions should be independently mapped. However, given that these addresses in non-relocatable I/O space are not going to be changed, it is safe—and therefore acceptable—to map in one large region that covers all of the registers used by the driver. Having said that, it is important to accurately report in the reg property the actual registers decoded by the card with as many entries as are required. The following code example uses four separate reg property entries to report the registers decoded by a generic VGA card. Since all VGA cards use these same non-relocatable legacy addresses, if two devices have these addresses mapped simultaneously then both devices will respond to accesses to the addresses. Consequently, it is good practice to “wrap” accesses to the legacy addresses in a map-in/map-out pair such that the legacy addresses are only “consumed” by the driver for a short period of time. Failure to do this may result in problems if two copies of your device are ever installed in the same system.

Device Driver Example

Generic VGA Display Device Driver

This example FCode program is a complete bootable generic VGA console display device driver.

Code Example 10-1 Complete Generic VGA Display Device Driver \ Complete Generic VGA Display Device Driver fcode-version2 hex : copyright (--) ." Copyright (c) 1994-1996 FirmWorks. ;

All Rights Reserved." cr

Display Devices

145

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued) headers -1 instance value io-base : config-w@ : config-w! (config-addr -- data) (data config-addr --) " config-w@" $call-parent " config-w!" $call-parent ; ;

: map-io-regs (--) \ h# 8100.0000 means non-relocatable I/O space 0 0 h# 8100.0000 h# 1.0000 " map-in" $call-parent to io-base \ Enable I/O space response my-space 4 + dup config-w@ 1 or swap config-w! ; : unmap-io-regs \ Disable I/O my-space 4 + 1 invert and (--) space response dup config-w@ swap config-w! " map-out"

(addr value)

(addr value)

io-base h# 1.0000 -1 to io-base ; : pc@ : pc! : pw!

$call-parent

(offset -- byte) (byte offset --) (word offset --)

io-base + io-base + io-base +

rb@ rb! rw!

; ; ;

\ Access functions for various register banks \ Reset attribute address flip-flop : reset-attr-addr (--) 3da (input-status1) : setup-vse! : dac@ (b --) 46e8 pc! ; reset-attr-addr 03c0 pc! 03c0 pc! 03c0 pc! ; pc! 03c1 pc@ ; ;

pc@ drop

;

(-- b)

3c8 pc@

: video-mode! (b --) : attr! (b index --) : attr@ (index -- b) reset-attr-addr 03c0 ; : grf! (b index --) : feature-ctl! : misc@ : misc! : : : : : : (b --)

reset-attr-addr ;

03ce pc! 03da pc! ; ;

03cf pc! ;

(-- b) (b --)

3cc pc@ 3c2 pc!

crt-setup (index -- data-addr) 03d4 pc! 03d5 ; crt! (b index --) crt-setup pc! ; crt@ (index -- b) crt-setup pc@ ; crt-data! (b --) 03d5 pc! ; crt-set (bits index --) crt@ or crt-data! ; crt-clear (bits index --) crt@ swap invert and crt-data!

;

146

Writing FCode Programs for PCI

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued) : seq-setup (index -- data-addr) 03c4 pc! : seq! (b index --) seq-setup pc! ; : seq@ (index -- b) seq-setup pc@ ; : unlock (--) 80 11 crt-clear 80 3 crt-set ; : wakeup (--) 1e setup-vse! 1 102 pc! e setup-vse! 23 3c2 pc! unlock ; 03c5 ;

\ Unlock all registers \ Unlock CRT registers \ Unlock vertical retrace registers

\ \ \ \

Video system enable, in setup mode Enable VGA video subsystem Out of setup mode Enable memory, color base, page 0, clock @ 25.175 MHz

: async-reset (--) 20 1 seq! \ screen off 0 0 seq! 3 0 seq! \ Pulse reset 1 seq@ 20 invert and 1 seq! \ Screen on ; : low-power (--) ff 4 crt! ;

\ Disable hsync for low monitor power

\ Standard VGA CRT Controller registers, indices 0-h#18 : crt-table (-- addr len) \ 72 Hz " "(5f 4f 50 82 54 80 bf 1f 00 41 00 00 00 00 00 31 9c 0e 8f 28 40 96 b9 a3 ff)" ; : crt-regs (--) crt-table 0 ?do i 4 <> if \ Don't program hsync (at offset 4) until later dup i + c@ i crt! then loop drop ; : attr-table (-- addr len) \ Attribute controller indices 0-14 " "(00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 41 00 0f 00 00)" ; : attr-regs (--) reset-attr-addr attr-table 0 do dup i + c@ i attr! loop drop ; : grf-table (-- addr len) \ Graphics controller indices 0-8 " "(00 00 00 00 00 40 05 0f ff)" ; : grf-regs (--) grf-table 0 do dup i + c@ i grf! loop drop ;

Display Devices

147

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued) : seq-table (-- addr len) " "(01 0f 00 0e)" ; : seq-regs (--) seq-table 0 ?do dup i + c@ i 1+ seq! loop drop ; external \ Set color lookup table to comply with 16-Color Text Extension Recommended Practice : default-colors (-- addr index #indices) \ The following array must be entered as one long line of text. " "(00 00 00 aa 00 00 00 aa 00 aa 55 00 00 00 aa aa 00 aa 00 aa aa aa aa aa 55 55 55 ff 55 55 55 ff 55 ff ff 55 55 55 ff ff 55 ff 55 ff ff ff ff ff)" 0 swap 3 / ; headers \ Palette access : init-dac (--) ff 03c6 pc! ; : index! (index --) 03c8 pc! : plt! (b --) 03c9 pc! ; : plt@ (-- b) 03c9 pc@ ; external \ Methods defined by : set-colors (addr swap index! 3 * bounds ?do ; : get-colors (addr swap index! 3 * bounds ?do ; : color@ (index -: color! (index -headers : setup-middle low-power 0 video-mode! async-reset 6 4 seq! seq-regs attr-regs grf-regs crt-regs 0 feature-ctl! ; \ Vertical sync ctl (--) ;

the 8-Bit Graphics Extension Recommended Practice index #indices --) i c@ plt! loop

index #indices --) plt@ i c! loop plt@ plt@ plt@ swap rot plt! ; plt!

r g b) r g b)

index! index!

plt!

;

\ Disable video palette

\ Enable access to all 256K of VGA memory

148

Writing FCode Programs for PCI

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued) : hsync-on (--) crt-table drop 4 + c@ 4 crt! ; \ Set hsync position

: setup-end (--) init-dac hsync-on default-colors set-colors ff dup dup dup color! \ Load Bright White in color 255 for compatibility with Sun 20 video-mode! ; : setup-begin (--) wakeup ; \ Video on

: init (--) \ Apparently the clocks take awhile to stabilize, so it is \ sometimes necessary to do the setup twice setup-begin setup-middle setup-end ; " " " " 0 display" device-name FirmWorks,generic-vga" model display" device-type ISO8859-1" encode-string " character-set" property 0 encode-bytes " iso6429-1983-colors" property

d# 320 constant /scanline d# 200 constant #scanlines /scanline #scanlines * constant /fb \Define reg property \ PCI Configuration Space Registers my-address my-space encode-phys 0 encode-int encode+ \ \ \ \ \

0 encode-int encode+

Memory Space Base Address Register 10 Despite what the configuration base address register implies, the S3’s memory region is mappable on 2 Mbytes boundaries. This is a violation of the PCI spec, which requires that the base address register must accurately describe the mapping granularity.

my-address my-space h# 200.0010 or encode-phys encode+ 0 encode-int encode+ h# 20.0000 encode-int encode+ \ PCI Expansion ROM my-address my-space h# 200.0030 or encode-phys encode+ 0 encode-int encode+ h# 10.0000 encode-int encode+ \ VGA Sleep Register h# 102 0 my-space h# a100.0000 or encode-phys encode+ 0 encode-int encode+ h# 1 encode-int encode+ \ VGA Monochrome Emulation Mode Registers h# 3b0 0 my-space h# a100.0000 or encode-phys encode+ 0 encode-int encode+ h# c encode-int encode+

Display Devices

149

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued) \ VGA Control and Color Emulation Mode Registers h# 3c0 0 my-space h# a100.0000 or encode-phys encode+ 0 encode-int encode+ h# 20 encode-int encode+ \ VGA Subsystem Enable Register h# 46e8 0 my-space h# a100.0000 or encode-phys encode+ 0 encode-int encode+ h# 1 encode-int encode+ \ Frame Buffer h# a.0000 0 my-space h# a100.0000 or encode-phys encode+ 0 encode-int encode+ h# 2.0000 encode-int encode+ " reg" property \ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The \ bug causes phys.lo and phys.mid to be treated as absolute addresses rather than \ offsets even when working with relocatable addresses. \ \ \ \ \ To overcome this bug, the Open Firmware Working Group in conjunction with Apple has adopted a workaround that is keyed to the presence or absence of the add-range method in the PCI node. If the add-range method is present in an Apple ROM, the map-in method is broken. If the add-range property is absent, the map-in method behaves correctly.

\ The following methods allow the FCode driver to accomodate both broken and working \ map-in methods. : map-in-broken? (-- flag) \ Look for the method that is present when the bug is present " add-range" my-parent ihandle>phandle (adr len phandle) find-method dup if nip then (flag) \ Discard xt if present ; \ Return phys.lo and phys.mid of the address assigned to the PCI base address \ register indicated by phys.hi . : get-base-address (phys.hi -- phys.lo phys.mid phys.hi) " assigned-addresses" get-my-property if (phys.hi) ." No address property found!" cr 0 0 rot exit \ Error exit then (phys.hi adr len) rot >r (adr len) (r: phys.hi) \ Found assigned-addresses, get address begin dup while (adr len') \ Loop over entries decode-phys (adr len' phys.lo phys.mid phys.hi) h# ff and r@ h# ff and = if (adr len' phys.lo phys.mid) \ This one? 2swap 2drop (phys.lo phys.mid) \ This is the one r> exit (phys.lo phys.mid phys.hi) else (adr len' phys.lo phys.mid) \ Not this one 2drop (adr len') then (adr len') decode-int drop decode-int drop \ Discard boring fields repeat 2drop () ." Base address not assigned!" cr 0 0 r> ; (0 0 phys.hi)

150

Writing FCode Programs for PCI

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued) : map-frame-buffer (--) \ Map frame buffer map-in-broken? if my-space h# 8200.0010 or get-base-address else my-address my-space h# 200.0010 or then /fb " map-in" $call-parent a.0000 + to frame-buffer-adr \ Enable memory space access my-space 4 + dup config-w@ 2 or swap config-w!

(phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi) (phys.lo phys.mid phys.hi)

\ Generic VGA compatible address

(addr value)

frame-buffer-adr encode-int " address" property ; : unmap-frame-buffer (--) frame-buffer-adr a.0000 - /fb " map-out" $call-parent -1 to frame-buffer-adr \ Disable memory space access my-space 4 + dup config-w@ (addr value) 2 invert and swap config-w! " address" delete-property ; : display-install (--) map-io-regs init map-frame-buffer default-font set-font /scanline #scanlines over char-width / over char-height / fb8-install ; : display-remove /scanline #scanlines 8 /scanline (--) " " " " unmap-frame-buffer width" height" depth" linebytes" property property property property unmap-io-regs ;

encode-int encode-int encode-int encode-int

['] display-install ['] display-remove external

is-install is-remove

\ Methods defined by the 8-Bit Graphics Extension Recommended : fill-rectangle (index x y w h --) 2swap -rot /scanline * + frame-buffer-adr + (index swap 0 ?do (index 3dup swap rot fill (index /scanline + (index loop 3drop ;

Practice w w w w h fbadr) fbadr) fbadr) fbadr')

Display Devices

151

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued) : draw-rectangle (addr x y w h --) 2swap -rot /scanline * + frame-buffer-adr + swap 0 ?do 3dup swap move >r tuck + swap r> /scanline + loop 3drop ; : read-rectangle (addr x y w h --) 2swap -rot /scanline * + frame-buffer-adr + swap 0 ?do 3dup -rot move >r tuck + swap r> /scanline + loop 3drop ; : dimensions fcode-end (-- width height) (((((addr w h fbadr) addr w fbadr) addr w fbadr) addr' w fbadr) addr' w fbadr')

(((((

addr w h fbadr) addr w fbadr) addr w fbadr) addr' w fbadr) addr' w fbadr')

/scanline #scanlines

;

152

Writing FCode Programs for PCI

11

Chapter 11

Memory-Mapped Buses

A memory-mapped bus logically extends the processor’s memory address space to include the devices on that bus. This enables the physical addresses of the children of the bus device to be mapped into the CPU’s virtual address space and to be directly accessed like memory using processor load and store cycles. Memory-mapped buses include such buses as PCI, SBus and VMEbus. Not all bus devices fall into this category. For example, SCSI is not a memory-mapped bus; SCSI targets are not accessed with load or store instructions.

Required Methods

A memory-mapped bus package code must implement the open, close, reset, and selftest methods, as well as the following: decode-unit (addr len -- phys.lo … phys.hi) Convert addr len, a text string representation, to phys.lo … phys.hi, a numerical representation of a physical address within the address space deﬁned by this package. The format of phys.lo … phys.hi varies from bus to bus. dma-alloc (… size -- virt) Allocate a virtual address range of length size bytes that is suitable for direct memory access by a bus master device. The memory is allocated according to the most stringent alignment requirements for the bus. virt is an 32-bit address that the Open Firmwarebased system can use to access the memory. Note that dma-map-in must also be called to generate a suitable DMA address. A child of a memory-mapped device calls dma-alloc using

" dma-alloc" $call-parent

153

For example:

-1 value my-vaddr \ Conventionally set to -1 indicating an invalid \ virtual address : my-dma-alloc (size --) " dma-alloc" $call-parent to my-vaddr ;

dma-free (virt size --) Free size bytes of memory previously allocated by dma-alloc at the virtual address virt. A child of a memory-mapped device calls dma-free by using

" dma-free" $call-parent

For example:

2000 value my-size : my-dma-free (--) my-vaddr my-size " dma-free" -1 to my-vaddr ;

$call-parent

dma-map-in (… virt size cacheable? -- devaddr) Convert the virtual address range virt size, previously allocated by dma-alloc, into an address devaddr suitable for DMA on the bus. dma-map-in can also be used to map application-supplied data buffers for DMA use if the bus allows. If cacheable? is true, the calling child desires to use any available fast caches for the DMA buffer. If access to the buffer is required before the buffer is mapped out, the child must call dma-sync or dma-map-out to ensure cache coherency with memory. A child of a memory-mapped device calls dma-map-in using

" dma-map-in" $call-parent

For example:

: my-vaddr-dma-map (--) my-vaddr my-size false " dma-map-in" to my-vaddr-dma ;

$call-parent

(devaddr)

dma-map-out (virt devaddr size --) Remove the DMA mapping previously created with dma-map-in. Flush all caches associated with the mapping.

154

Writing FCode Programs for PCI

A child of a memory-mapped device calls dma-map-in by using

" dma-map-out" $call-parent

For example:

$call-parent : my-vaddr-dma-free (--) my-vaddr my-vaddr-dma my-size " dma-map-out" -1 to my-vaddr-dma ;

$call-parent

dma-sync (virt devaddr size --) Synchronize (ﬂush) any memory caches associated with the DMA mapping previously established by dma-map-in. You must interleave calls to this method (or dma-map-out) between DMA and CPU accesses to the memory region, or you may not obtain the most recent data written into the cache. For example:

: my-dma-sync (virt devadr size --) " dma-sync" $call-parent ;

probe-self (arg-str arg-len reg-str reg-len fcode-str fcode-len --) Probe for a child of this node. fcode-str fcode-len is a unit-address text string that identiﬁes the location of the FCode program for the child. reg-str reg-len is a probeaddress text string that identiﬁes the address of the child itself. arg-str arg-len is an instance-arguments text string for any device arguments for the child (which can be retrieved within the child’s FCode program with the my-args FCode). probe-self checks whether there is indeed FCode at the indicated location, perhaps by mapping the device and using cpeek to ensure that the device is present and that the ﬁrst byte is a valid FCode start byte. If the FCode exists, probe-self creates a new child device node and interprets the FCode. If the interpretation of the FCode fails in some way, the new device node may be empty, containing no properties or methods. For example, to probe FCode for PCI Device 0:

" /pci" open-dev 0 0 " 0" 2dup probe-self device-end

map-in (phys.lo … phys.hi size -- virt) Create a mapping associating the range of physical addresses beginning at phys.lo … phys.hi extending for size bytes within the package’s physical address space with a processor virtual address virt. The number of cells in the list phys.lo … phys.hi is determined by the value of the "#address-cells" property of the node containing map-in.

Memory-Mapped Buses

155

For example, a child of a memory-mapped device calls map-in with " map-in" $call-parent. (The following example assumes that the value of the parent’s "#address-cells" property is 3):

: map-reg (--) my-address xx-offset 0 d+ my-space xx-size " map-in" $call-parent to xx-vaddr ;

(phys.lo phys.mid phys.hi) (virt) ()

map-out (virt size --) Destroy the mapping set by map-in at virtual address virt of length size bytes. For example, a child of a memory-mapped device calls map-out with " map-out" $call-parent:

: unmap-reg (--) xx-vaddr xx-size " map-out" $call-parent -1 to xx-vaddr ;

(virt size) ()

PCI Bus Addressing

The PCI Bus has three distinct address spaces: Conﬁguration, Memory and I/O. Conﬁguration space addressing is geographical addressing with numbered buses, devices, functions and registers. Memory space allows for up to 64 bit addressing. I/O space allows for up to 32 bit addressing. A PCI address is represented numerically with three, 32-bit cells, phys.hi, phys.mid and phys.lo. The text representation may take any of 5 different forms. Please refer to PCI Bus Binding to IEEE Standard 1275-1994 for a detailed description.

PCI Required Properties

Table 31 Property Name name device_type #address-cells #size-cells reg ranges clock-frequency bus-range slot-names bus-master-capable " AAPL,finagle" " pci" 3 2 Required PCI Properties Sample Value

156

Writing FCode Programs for PCI

SBus Addressing

The SBus uses geographical addressing with numbered slots. An SBus physical address is represented numerically as two numbers, phys.hi and phys.lo. phys.hi contains the SBus slot number and phys.lo contains the offset from the base of that slot. The text string representation is slot#, offset where both slot# and offset are the ASCII representations of hexadecimal numbers. slot# encodes phys.hi and offset encodes phys.lo. Please refer to IEEE Draft Std P1275.2/D14a Standard for Boot (Initialization Conﬁguration) Firmware Supplement for IEEE 1496 (SBus) Bus for a detailed description.

SBus Required Properties

Table 32 Property Name name device_type ranges reg burst-sizes clock-frequency slot-address-bits " SUNW,finagle" " sbus" Required SBus Properties Sample Value

VMEBus Addressing

VMEBus has a number of distinct address spaces represented by a subset of the 64 possible values encoded by the six “address modiﬁer” bits. The maximum size of one of these address spaces is 32 bits. An additional bit is used to select between 16-bit and 32-bit data. A VMEBus physical address is represented numerically as two numbers, phys.hi and phys.lo. phys.hi is made up of the six address modiﬁer bits AM0-5 in bits 0-5 and the data width bit (0 = 16-bit data, 1 = 32-bit data) in bit 6. phys.lo is the offset within the selected address space. The text string representation is AML,VME-address where both AML and VME-address are ASCII representations of hexadecimal numbers. AML encodes phys.hi and VME-address encodes phys.lo. Please refer to IEEE Draft Std P1275.3/D8 Standard for Boot (Initialization Conﬁguration) Firmware Supplement for IEEE 1014-1987 (VME) Bus for a detailed description.

Memory-Mapped Buses

157

VMEBus Required Properties

Table 33 Property Name name device_type ranges reg " SUNW,vizzy" " vmebus" Required VMEbus Properties Sample Value

158

Writing FCode Programs for PCI

12

Chapter 12

Open Firmware Dictionary

This dictionary describes all of the words deﬁned by IEEE Standard 1275-1994. Included within this dictionary are all of the pre-deﬁned FCode words that you can use as part of FCode source code programs. Appendix A, “FCode Reference”, contains a command summary, with words grouped by function. The dictionary also includes assembler directives, debugger commands, tokenizer directives and macros, conﬁguration variables, properties, standard methods, nvedit commands, Client Interface commands and User Interface commands. The words are given alphabetically in this chapter, sorted by the ﬁrst alphabetic character in the word’s name. For example, the words mod and */mod are adjacent to each other. Words having no alphabetic characters in their names are placed at the beginning of the chapter, in ASCII order. The boot ROM and tokenizer are case-insensitive (all Forth words are converted to lowercase internally). The only exceptions are literal text, such as text inside " strings and text arguments to the ascii command, which are left in the original form. In general, you may use either uppercase or lowercase. By convention, Open Firmware drivers are written in lowercase. All arithmetic uses 32-bit signed values, unless otherwise speciﬁed. Deﬁning words create a header by calling external-token, named-token, or new-token. See the deﬁnitions of these words for more details. All FCode byte values listed in this chapter are given in hexadecimal. The stack diagram notation used in this chapter is described by Table 2, “Stack Item Notation,” on page 9. The dictionary deﬁnitions have the following form:

name

“pronunciation”

stack: (stack diagram) code: FCode# generates: tokenizer macro (if applicable) Prose description.

159

!

stack: code:

“store”

(x a-addr --) 72 Stores x at a-addr. For more portable code, use l! if you explicitly want a 32-bit access. a-addr must be aligned as given by variable. See also: c!, w!, l!, rb!, rw!, rl!

"

“quote”

stack: ([text<">< >] -- text-str text-len) code: none generates: b(") len-byte xx-byte … xx-byte Gathers the immediately following text string or hex data until reaching the terminator "<whitespace>. At execution time, the address and length of the string is left on the stack. For example:

" AAPL,new-model" encode-string " model" property

You can embed control characters and 8-bit binary numbers within strings. This is similar in principle to the \n convention in C, but syntactically tuned for Forth. This feature applies to the string arguments of the words " and ." The escape character is ‘"’. The list of escape sequences is:

Table 34 Syntax "" "n "r "t "f "l "b "! "^x "(hh hh) quote (") newline carriage return tab formfeed linefeed backspace bell control x, where x is any printable character Sequence of bytes, one byte for each pair of hex digits hh . Non-hex characters will be ignored Escape Sequences in Text Strings Function

" followed by any other printable character not mentioned above is equivalent to that character. "(means to start parsing pairs of hexadecimal digits as one or more 8-bit characters in the range 0x00 through 0xFF, delimited by a trailing) and ignoring non-hexadecimal digits between pairs of hexadecimal digits. Both uppercase and lowercase hexadecimal digits are recognized. Since non-hex characters (such as space or comma) are ignored between "(and), these characters make useful delimiters. (The “makearray” tool can be used in conjunction with this syntax to easily incorporate large binary data ﬁelds into any FCode Program.) Any characters thus recognized are appended to any previous text in the string being

160

Writing FCode Programs for PCI

assembled. After the) is recognized, text assembly continues until a trailing "<whitespace>. For example:

" This is "(01 32,8e)abc"nA test xyzzy "!"! abcdefg""hijk"^bl" ^^^^^^^^ ^ ^^ ^ ^ 3 bytes newline 2 bells " control b

Note – The use of "n for line breaks is discouraged. The preferred method is to use cr, rather than embedding the line break character inside a string. Use of cr results in more accurate display formatting, because Forth updates its internal line counter when cr is executed. When " is used outside a colon deﬁnition, only two interpreted strings of up to 80 characters each can be assembled concurrently. This limitation does not apply in colon deﬁnitions. See also: b(")

#

stack: code: (ud1 -- ud2) C7 Converts a digit ud1 in pictured numeric output conversion. Typically used between <# and #>.

#>

stack: code: (ud -- str len) C9 Ends pictured numeric output conversion. str is the address of the resulting output array. len is the number of characters in the output array. str and len together are suitable for type. See (.) and (u.) for typical usages.

'

“tick”

stack: ("old-name< >" -- xt) code: none generates: b(') old-FCode# Generates the execution token (xt) of the word immediately following ' in the input stream. ' should only be used outside of deﬁnitions. See b('), ['] for more details. For example:

defer opt-word (--) ' noop is opt-word

(

stack: code: ([text<)> --) none Causes the compiler/interpreter to ignore subsequent text after the "(" up to a delimiting ")" . Note that a space is required after the (. Although either (or \ may be

Chapter 12 - Open Firmware Dictionary

161

used equally well for documentation, by common convention we use (…) for stack comments and \ … for all other text comments and documentation. For example:

: 4drop 2drop 2drop ; (a b c d --) (a b) ()

See also: (s

(.)

stack: (n -- str len) code: none generates: dup abs <# u#s swap sign u#> Converts a number into a text string according to the value in base.This is the numeric conversion primitive, used to implement display words such as "." If n is negative, the ﬁrst character in the array will be a minus (-) sign. For example:

" CPU boot: show-version (--) .rom version is " base @ d# 16 base ! (old-base) firmware-version (old-base version) lwsplit (.) type ascii . emit .h cr base ! ()

*

stack: code:

“star”

(nu1 nu2 -- prod) 20 prod is the arithmetic product of nu1 times nu2. If the result cannot be represented in one stack entry, the least signiﬁcant bits are kept.

*/

stack: code:

“star slash”

(n1 n2 n3 -- quot) none Calculates n1*n2/n3. The inputs, outputs and intermediate products are all 32-bit.

+

stack: code:

“plus”

(nu1 nu2 -- sum) 1E sum is the arithmetic sum of nu1 plus nu2.

+!

stack: code:

“plus store”

(nu a-addr --) 6C nu is added to the value stored at a-addr. This sum replaces the original value at a-addr. a-addr must be aligned as given by variable.

162

Writing FCode Programs for PCI

,

stack: code:

“comma”

(x --) D3 Reserves one cell of storage in data-space and stores x in the cell.The data space pointer must be aligned prior to the execution of ,. For example, to create an array containing integers 40004000 23 45 6734:

create my-array 40004000 , 23 , 45 , 6734 ,

stack: code:

“minus”

(nu1 nu2 -- diff) 1F diff is the result of subtracting nu1 minus nu2.

.

stack: code:

“print”

(nu --) 9D Displays the absolute value of nu in a free ﬁeld format with a leading minus sign if nu is negative, and a trailing space. If the base is hexadecimal, . displays the number in unsigned format, since signed hex display is hardly ever wanted. Use s. to display signed hex numbers. See also: s., .d, .h

."

“dot quote”

stack: ([text<">] --) code: none generates: b(") len text type This word compiles a text string, delimited by "<whitespace> e.g. ." hello world" . At execution time, the string is displayed. This word is equivalent to using " text" type . ." is normally used only within a deﬁnition. The text string will be displayed later when that deﬁnition is called. You may wish to follow it with cr to ﬂush out the text buffer immediately. Use .(for any printing to be done immediately. See also: ", .(, tokenizer[

.(

stack: code: ([text<)>] --) none Gathers a text string, delimited by) , to be immediately displayed. For example:

.(hello world)

This word is equivalent to:

" text"

type

Chapter 12 - Open Firmware Dictionary

163

Use .(to print out text immediately. (You should follow it with a cr to ﬂush out the text buffer immediately). .(may be called either inside or outside of deﬁnitions; the text is immediately displayed in either case. Note that during FCode interpretation the string will typically be printed out of serial port A, since any framebuffer present may not yet be activated at the time that PCI slots are being probed. Use ." for any printing to be done when new words are later executed. See also: .", tokenizer[

/

stack: code: (n1 n2 -- quot) 21 Calculates n1 divided by n2. An error condition results if the divisor (n2) is zero. See /mod.

“/”

The root node of the device tree.

:

stack: (E: … -- ???) (C: "new-name< >" -- colon-sys) code: none generates: new-token|named-token|external-token b(:) Begins a new deﬁnition, terminated by ;Used in the form: : my-newname … ; Later usage of my-newname is equivalent to usage of the contents of the deﬁnition. See named-token, new-token, and external-token for more information on header formats.

;

stack: (C: colon-sys --) (--) (R: -- nest-sys) code: none generates: b(;) Ends the compilation of a colon deﬁnition. Upon later execution, returns control to the calling deﬁnition speciﬁed by nest-sys. See also: :

<

stack: code: (n1 n2 -- less_than?) 3A less_than? is true if n1 is less than n2. n1 and n2 are signed integers.

164

Writing FCode Programs for PCI

<#

stack: code: (--) 96 Initializes pictured numeric output conversion. You can use the words: <# # #s hold sign #>

to specify the conversion of a 32-bit number into an ASCII character string stored in right-to-left order. See (.) and (u.) for example usages.

<<

stack: (x1 u -- x2) code: none generates: lshift x2 is the result of logically left shifting x1 by u places. Zeroes are shifted into the leastsigniﬁcant bits. For example:

: bljoin (byte.low byte.lowmid byte.highmid byte.high -- l) 8 << + 8 << + 8 << + ;

<=

stack: code: (n1 n2 -- less_than_or_equal?) 43 less_than_or_equal? is true if n1 is less than or equal to n2. n1 and n2 are signed integers.

<>

stack: code: (x1 x2 -- not_equal?) 3D not_equal? is true if x1 is not equal to x2. x1 and x2 are signed integers.

=

stack: code: (x1 x2 -- equal?) 3C equal? is true if x1 is equal to x2. x1 and x2 are signed integers.

>

stack: code: (n1 n2 -- greater_than?) 3B greater_than? is true if n1 is greater than n2. n1 and n2 are signed integers.

Chapter 12 - Open Firmware Dictionary

165

>=

stack: code: (n1 n2 -- greater_than_or_equal?) 42 greater_than_or_equal? is true if n1 is greater than or equal to n2. n1 and n2 are signed integers.

>>

stack: (x1 u -- x2) code: none generates: rshift x2 is the result of logically right shifting x1 by u places. Zeroes are shifted into the most-signiﬁcant bits. Use >>a for signed shifting. For example:

: wbsplit (w -- b.low b.high) dup h# ff and swap 8 >> h# ff and ;

?

“fetch print”

stack: (a-addr --) code: none generates: @ . Fetches and prints the 32-bit value at the given address. A standard Forth word, primarily used interactively.

@

stack: code:

“fetch”

(a-addr -- x) 6D x is the value stored at a-addr. For more portable code, use l@ if you explicitly want a 32-bit access. a-addr must be aligned as given by variable. See also: c@, w@, l@, rb@, rw@, rl@

[

stack: code: (--) none Enter interpretation state.

[']

“bracket tick bracket”

stack: ([old-name< >] -- xt) code: none generates: b(') old-FCode# ' or ['] is used to generate the execution token (xt) of the word immediately following the ' or [']. ' should only be used outside deﬁnitions; ['] may be used either inside or outside

166

Writing FCode Programs for PCI

deﬁnitions. Examples shown usually use ['], since it will always generate the intended result:

: my-probe … ['] my-install is-install … ;

or

['] my-install is-install

In normal Forth, ' may be used within deﬁnitions for the creation of language extensions, but such usage is not applicable to FCode Programs.

\

stack: code: ([rest-of-line<eol>] --) none Causes the compiler/interpreter to ignore the rest of the input line after the \ . \ can occur anywhere on an input line. Note that a space must be present after \ . For example:

0 value his-ihandle \ Place to save someone's ihandle

See also: (, (s

]

stack: code: (--) none Enter compilation state.

0

stack: code: (-- 0) A5 Leaves the value 0 on the stack. The only numbers that are not encoded using b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, they are assigned individual FCodes to save space.

0<

stack: code: (n -- less_than_0?) 36 less_than_0? is true if n is less than zero (negative).

0<=

stack: code: (n -- less_than_or_equal_to_0?) 37 less_than_or_equal_to_0? is true if n is less than or equal to zero.

Chapter 12 - Open Firmware Dictionary

167

0<>

stack: code: (n -- not_equal_to_0?) 35 not_equal_to_0? is true if n is not zero.

0=

stack: code: (nu/ﬂag -- equal_to_0?) 34 equal_to_0? is true if nu/ﬂag is zero. This word will invert any ﬂag.

0>

stack: code: (n -- greater_than_0?) 38 greater_than_0? is true if n is greater than zero.

0>=

stack: code: (n -- greater_than_or_equal_to_0?) 39 greater_than_or_equal_to_0? is true if n is greater than or equal to zero.

1

stack: code: (-- 1) A6 Leaves the value 1 on the stack. The only numbers that are not encoded using b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, these values are assigned individual FCodes to save space.

1+

stack: (nu1 -- nu2) code: none generates: 1 + nu2 is the result of adding 1 to nu1.

1stack: (nu1 -- nu2) code: none generates: 1 nu2 is the result of subtracting 1 from nu1.

-1

stack: code: (-- -1) A4 Leaves the value -1 on the stack. The only numbers that are not encoded using b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, these values are assigned individual FCodes to reduce the resulting FCode image size.

168

Writing FCode Programs for PCI

2

stack: code: (-- 2) A7 Leaves the value 2 on the stack. The only numbers that are not encoded using b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, these values are assigned individual FCodes to reduce the resulting FCode image size.

2!

stack: code:

“two store”

(x1 x2 a-addr --) 77 x1 and x2 are stored in consecutive 32-bit locations starting at a-addr. x2 is stored at the lower address. This is equivalent to: swap over ! cell+ ! .

2*

stack: code: (x1 -- x2) 59 x2 is the result of shifting x1 left one bit. A zero is shifted into the vacated bit position. This is equivalent to multiplying by 2.

2+

stack: (nu1 -- nu2) code: none generates: 2 + nu2 is the result of adding 2 to nu1.

2stack: (nu1 -- nu2) code: none generates: 2 nu2 is the result of subtracting 2 from nu1.

2/

stack: code:

“two slash”

(x1 -- x2) 57 x2 is the result of arithmetically shifting x1 right one bit. The sign is included in the shift and remains unchanged. This is equivalent to dividing by 2.

2@

stack: code:

“two fetch”

(a-addr -- x1 x2) 76 x1 and x2 are two numbers stored in consecutive 32-bit locations starting at a-addr. x2 is the number that was stored at the lower address. This is equivalent to: dup cell+ @ swap @ .

Chapter 12 - Open Firmware Dictionary

169

3

stack: code: (-- 3) A8 Leaves the value 3 on the stack. The only numbers that are not encoded using b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, these values are assigned individual FCodes to reduce the resulting FCode image size.

>>a

stack: code: (x1 u -- x2) 29 x2 is the result of arithmetically right shifting x1 by u places. The sign bit of x1 is shifted into the most-signiﬁcant bits (i.e. sign extend the high bit). For example:

ok ffff.0000 6 >>a .h fffffc00 ok ffff.0000 6 >> .h 3fffc00

abort

stack: code: (… --) (R: … --) 216 Aborts program execution, clearing the data and return stacks. Control returns to the ok prompt. Called after encountering fatal errors. For example:

: probe-loop (addr --) begin dup l@ drop key? if abort then again \ generate a tight probe loop until any key is pressed. ;

See also: exit

abort"

stack: code:

“abort quote”

(C: [text<">] --) (… abort? -- … | <nothing>) (R: … -- … | <nothing>) none If abort? is non-zero, display text and call abort. Leading spaces in text are not ignored and end-of-line is not treated as a delimiting space. Although abort" is not available as an FCode, the same affect can be achieved with a phrase like

if ." error-text" -2 throw then

170

Writing FCode Programs for PCI

abs

stack: code: (n -- u) 2D u is the absolute value of n. If n is the maximum negative number, u is the same value since the maximum negative number in two’s complement notation has no positive equivalent.

accept

stack: (addr len1 -- len2) code: none generates: span @ -rot expect span @ swap span ! Get an edited input line, storing it at addr. len1 is maximum allowed length. len2 is actual length received. For example:

h# 10 buffer: my-name-buff : hello (--) ." Enter Your First name " my-name-buff h# 10 accept ." FirmWorks Welcomes " my-name-buff swap type cr ;

"address"

The standard property name which speciﬁes the virtual addresses of one or more memory-mapped regions of the associated device. This property is typically used to report the virtual addresses of regions that the ﬁrmware has already mapped such that client programs can re-use those mappings. The "address" property should be created after a virtual address has been mapped and should delete the "address" property when that mapping is destroyed. See also: free-virtual

"address-bits"

The standard property name for use with "network" devices which indicates the number of bits needed to address this device on the physical layer of the network. The absence of this property implies the default value of 48.

"#address-cells"

The standard property name used with packages that deﬁne a physical address space i.e. those packages with a "decode-unit" method. This property speciﬁes the number of cells that are used to encode a physical address within that package’s address space. The absence of this property in a package with a "decode-unit" method implies a default value for this property of 2. See also: map-in, map-low, decode-unit, my-address, my-space, my-unit, encode-phys, and decode-phys.

Chapter 12 - Open Firmware Dictionary

171

.adr

stack: code: (addr --) none Displays in symbolic form the symbol associated with the address nearest to (but not greater than) addr. The symbolic form of an address is usually a symbol name plus a non-negative numeric offset. See also: value>sym

again

stack: (C: dest-sys --) (--) code: none generates: bbranch -offset Used in the form begin…again to generate an inﬁnite loop. Use a keyboard abort, or abort or exit, to terminate such a loop. Use this word with caution! For example:

: probe-loop (addr --) \ generate a tight probe loop until any key is pressed. begin dup l@ drop key? if abort then again ;

See also: repeat, until, while

alarm

stack: code: (xt n --) 213 Arranges to execute the package method xt at periodic intervals of n milliseconds (to the best accuracy possible). If n is 0, stop the periodic execution of xt within the current instance context (leaving unaffected any periodic execution of xt that was established within a different instance). xt is the execution token, as returned by [']. xt must be the execution token of a method which neither expects stack arguments nor leaves stack results i.e. whose stack diagram is (--). alarm executes in the context in which it was installed. Each time the method is called, the current instance will be set to the same as the current instance at the time that alarm was executed and the current instance will then be restored to its previous value afterwards. alarm must be removed prior to closing the instance which installed it. A common use of alarm would be to implement a console input device’s polling function. For example:

: my-checker (--) test-dev-status if user-abort then : install-abort (--) ['] my-checker d# 10 alarm ; ;

172

Writing FCode Programs for PCI

alias

stack: code: ("new-name< >old-name< >" --) none alias creates a new name, with the exact behavior of some other existing name. The new name can then be used interchangeably with the old name and have the same effect. The tokenizer does not generate any FCode for an alias command, but instead simply updates its own lookup table of existing words. Any occurrence of new-name causes the assigned FCode value of old-name to be generated. One implication is that new-name will not appear in the Open Firmware dictionary after the FCode Program is compiled. If this behavior is undesirable, use a colon deﬁnition instead. If the original FCode source text is downloaded and interpreted directly, without being tokenized or detokenized, then any new alias words will show up and be usable directly. For example:

alias pkg-prop get-package-property

"/aliases"

The standard node containing this system’s device alias list. The value of the name property of this node is “aliases”. The remaining properties of this node constitute the device alias list. For each such property, the property name is the name of an alias and the property value is the alias’s expansion encoded with encode-string.

align

stack: code: (--) none Allocates dictionary bytes as necessary to leave the top of the dictionary variable aligned.

aligned

stack: code: (n1 -- n1 | a-addr) AE Increases n1 as necessary to yield a variable aligned address. If n1 is already aligned, returns n1. Otherwise, returns the next higher variable aligned address, a-addr.

alloc-mem

stack: code: (len -- a-addr) 8B Allocates a buffer of len of physical memory that has been aligned to the most stringent requirements of the processor. If successful, returns the associated virtual address. If not successful, throw will be called with an appropriate error message as with abort". Memory allocated by alloc-mem is not suitable for DMA.

Chapter 12 - Open Firmware Dictionary

173

To detect an out-of-memory condition:

h# 100 ['] alloc-mem catch ?dup if throw else (virt) constant my-buff then

See also: abort", dma-alloc, free-mem, throw.

allot

stack: (len --) code: none generates: 0 max 0 ?do 0 c, loop Allocates len bytes in the dictionary. If the operation fails, a throw will be called with an appropriate error message as with abort". Error conditions can be detected and handled properly with the phrase ['] allot catch.

"alternate-reg"

This property describes alternative access paths for the addressable regions described by the "reg" property. Typically, an alternative access path exists when a particular part of a device can be accessed either in memory space or in I/O space, with a separate base address register for each of the two access paths. The primary access paths are described by the "reg" property and the secondary access paths, if any, are described by the "alternate-reg" property. If no alternative paths exist, the "alternate-reg" property should not be deﬁned. If the device has alternative access paths, each entry (i.e. each phys-addr size pair) of its value represents the secondary access path for the addressable region whose primary access path is in the corresponding entry of the "reg" property value. If the number of "alternate-reg" entries exceeds the number of "reg" property entries, the additional entries denote addressable regions that are not represented by "reg" property entries, and are thus not intended to be used in normal operation; such regions might, for example, be used for diagnostic functions. If the number of "alternate-reg" entries is less than the number of "reg" entries, the regions described by the extra "reg" entries do not have alternative access paths. An "alternate-reg" entry whose phys.hi component is zero indicates that the corresponding region does not have an alternative access path; such an entry can be used as a “place holder” to preserve the positions of later entries relative to the corresponding "reg" entries. The ﬁrst "alternate-reg" entry, corresponding to the "reg" entry describing the function’s Conﬁguration Space registers, has a phys.hi component of zero. The property value is an arbitrary number of (phys-addr, size) pairs where:

s s

phys-addr is (phys.lo phys.mid phys.hi), encoded with encode-phys. size is a pair of integers, each encoded with encode-int. The ﬁrst integer denotes the most-signiﬁcant 32 bits of the 64-bit region size and the second integer denotes the least-signiﬁcant 32 bits thereof.

See also: "reg"

174

Writing FCode Programs for PCI

and

stack: code: (x1 x2 -- x3) 23 x3 is the bit-by-bit logical and of x1 with x2.

apply

stack: code: (… "method-name< >device-speciﬁer< >" -- ???) none Executes the named method in the speciﬁed package by performing the function of execute-device-method. If the operation fails, a throw will be called with an appropriate error message as with abort". Error conditions can be detected and handled properly with the phrase ['] apply catch.

ascii

stack: ([text< >] -- char) code: none generates: b(lit) 00 00 00 value Skips leading space delimiters and puts the ASCII value of the ﬁrst letter in text on the stack. For example:

ascii C (equals hex 43) ascii c (equals hex 63)

ascii may be used either inside or outside of deﬁnitions. ascii is equivalent to [char], but [char] is ANS standard Forth. See also: char, [char]

assign-addresses

stack: code: (--) none This User Interface word is intended to be used for debugging FCode within the context of begin-package…end-package. Executing this word causes addresses to be assined to this node creating an "assigned-addresses" property reﬂecting those addresses. This word simulates the action of the FCode probing process for PCI devices, and should be executed after evaluating the FCode for the node and before the execution of end-package.

auto-boot?

stack: code: (-- auto?) none If the conﬁguration variable auto-boot? is set to true after power-on or reset-all, the command string speciﬁed by boot-command will be executed. In the usual case, the value of boot-command is boot. Usually, boot transfers control to a client program. If auto-boot? is set to false, the User Interface command interpreter is entered.

Chapter 12 - Open Firmware Dictionary

175

"available"

This property deﬁnes resources that are managed by this package that are currently available for use by a client program. The claim and release methods affect the value of this property. The property value is an arbitrary number of (phys-addr, length) pairs where:

s s

phys-addr is a phys.lo phys.mid phys.hi list of integers encoded with encode-int. length (whose format depends on the package) is one or more integers, each encoded with encode-int.

See also: claim, "existing", "reg", release

b(")

stack: code: (-- str len) 12 An internal word, generated by ", ." and .(which leaves a text string on the stack. Never use the word b(") in source code.

b(')

stack: code: (-- xt) 11 An internal word, generated by ' and ['] which leaves the execution token of the immediately following word on the stack. The FCode for b(') should always be followed by the FCode of the desired word. Never use the word b(') in source code.

b(:)

stack: code: (--) B7 An internal word generated by the deﬁning word : . Never use the word b(:) in source code.

b(;)

stack: code: (--) C2 An internal word generated by ; to end a colon deﬁnition. Never use the word b(;) in source code.

banner

stack: code: (--) none Displays the system power-on banner in a system-dependent screen location (usually at the top of the screen or at the current cursor position). If the current output device has a "device_type" property whose value is "display", display a logo by executing the current output device’s draw-logo method with the following arguments:

176

Writing FCode Programs for PCI

s s s

The line# argument is either 0 or the line number corresponding to the current cursor position, at the system’s discretion. If oem_logo? is true, the addr argument is the address returned by oem-logo. Otherwise, it is the address of the system-dependent default logo. The width and height arguments are both 64.

In any case:

s s

If oem-banner? is true, display the text given by the value of oem-banner. Otherwise, display implementation-dependent information about the system, for example the machine type, serial number, ﬁrmware revision, network address, and hardware conﬁguration.

If banner is executed from within the NVRAM script, suppress automatic execution of the following Open Firmware start-up sequence:

s s s

probe-all install-console banner

For a usage example, see “Patching FCode of a Plug-in Card” on page 22. See also: suppress-banner

base

stack: code: (-- a-addr) A0 base is the variable that contains the current numeric conversion radix to be used when the FCode Program is executing, such as 10 for decimal, 16 for hex, 8 for octal, and so on. Like any variable, base leaves its address on the stack. For example, to print the current value of base, use:

base @ .d

The tokenizer words decimal, hex, or octal are also available for changing the value in base as desired. However, these four words behave differently depending whether they occur within a deﬁnition or outside of a deﬁnition. If any of decimal, hex, or octal occur within a deﬁnition, then they will be compiled, later causing a change to the value in base when that deﬁnition is executed. This can be a useful affect when, for example, a device’s open method must interpret a number in an argument string. In such a case, however, the value in base should be saved prior to changing the base, and the old value of base should be restored prior to leaving the deﬁnition in which the number base was changed. Failure to do this can be very confusing to the user who will have caused the number base of the machine to change without explicitly attempting to do so. If any of decimal, hex, or octal occur outside of a deﬁnition, however, then they are interpreted as commands to the tokenizer program itself, thus affecting the interpretation of all subsequent numbers in the text. Note that changes to base affect the numeric base of the User Interface, which can create much confusion for any user (the default value for base is hexadecimal). If you must change the base, it is recommended that you save and then restore the original

Chapter 12 - Open Firmware Dictionary

177

base, as in:

: .o (n --) base @ swap octal . base ! ; \ Print n in octal (oldbase n) (oldbase)

In general, only numeric output will be affected by the value in base. Fixed numbers in FCode source are interpreted by the tokenizer program. Most numeric input is controlled by decimal, hex, octal, d#, h#, and o#, but these words only affect the tokenizer input base; they but do not affect the value in base. For example:

(Assume the initial value in base is 16, i.e. User Interface is in hex) (No assumptions should be made about the initial tokenizer base) version1 hex (Tokenizer in base 16; later execution, using base, in base 16) 20 . (Compile decimal 32, later print "20" when FCode executes) decimal (Tokenizer is in base 10, later execution is in base 16) 20 . (Compile decimal 20, later print "14" since FCode executes in hex) : TEST (--) octal (Still compiling in decimal, later change base when TEST executes) 20 . (Compiles decimal 20, prints "24" since base was just changed) h# 20 .d (Compiles decimal 32, prints "32"; no permanent base changes) 20 . (Compiles decimal 20, prints "24") ; 20 . (Compile decimal 20, later print "14" TEST (Prints "24 32 24"; has a side-effect of changing the base) 20 . (Compile decimal 20, later print 24 since TEST changed base) hex (Tokenizer is in base 16; later execution, using base, still in base 8) 20 . (Compile decimal 32, later print "40")

If this all seems confusing, simply follow these guidelines: Good: Initially declare hex just after fcode-version2, and make liberal use of d#, o#, h#, .h and.d. Bad: Changing base within a deﬁnition (either directly or by calling decimal, hex, or octal) without restoring the previous base before reaching the end of the deﬁnition.

bbranch

stack: code: (--) 13 An internal word generated by again, repeat, and else which causes an unconditional branch. Never use the word bbranch in source code.

b?branch

stack: code: (ﬂag --) 14 An internal word generated by until, while, and if which causes a conditional

178

Writing FCode Programs for PCI

branch. Never use the word b?branch in source code.

b(buffer:)

stack: code: (n --) BD An internal word generated by the deﬁning word buffer: which allocates n bytes of storage space. Never use the word b(buffer:) in source code.

b(case)

stack: code: (sel-- sel) C4 An internal word generated by case. Never use the word b(case) in source code.

b(constant)

stack: code: (n --) BA An internal word generated by the deﬁning word constant. Never use the word b(constant) in source code.

b(create)

stack: code: (--) BB An internal word generated by the deﬁning word create. Never use the word b(create) in source code.

b(defer)

stack: code: (--) BC An internal word generated by the deﬁning word defer. Never use the word b(defer) in source code.

b(do)

stack: code: (end start --) 17 An internal word generated by do. Never use the word b(do) in source code.

b(?do)

stack: code: (end start --) 18 An internal word generated by ?do. Never use the word b(?do) in source code.

Chapter 12 - Open Firmware Dictionary

179

begin

stack: (C: -- dest-sys) (--) code: none generates: b(<mark) Marks the beginning of a conditional loop, such as begin…until, begin…while… repeat, or begin…again. See these other words for more details.

begin-package

stack: code: (arg-str arg-len reg-str reg-len dev-str dev-len --) none Prepares to create a new node in the device tree by performing the following operations:

s

s s s s

The parent device (and all higher parents) is opened with open-dev using the parameters dev-str and dev-len. If open-dev is unsuccessful, execution is terminated with an error message. my-self is set to the new parent ihandle. The active package is set to the parent device. The child node is opened with new-device. The child arguments contained in the parameters arg-str, arg-len, reg-str and reg-len are set with set-args.

dev-str and dev-len contain the device-path string of the parent of the child about to be created. The form of the device-path string is either a full device pathname or a preexisting device alias. reg-str and reg-len contain the unit-address string, the text representation of the physical address of the child within the address space of the parent. For PCI, an example would be "3,0". (The child can retrieve the numerical form of the unitaddress with my-address and my-space.) arg-str and arg-len contain the instance-arguments string. (The child can retrieve this value with my-args.) For example:

0 0 " 3,0" " /pci" begin-package

Note – Since Open Firmware is only required to provide two buffers for the interpreter’s use in assembling strings, trying to pass an argument string, a unit address string and a device-path string directly to begin-package through the interpreter is likely to fail. A simple work-around is to deﬁne a word containing, say, the argument string and so use the compiler to assemble the string and hold it in the dictionary. This word would then be called to push the argument string onto the stack. For example:

: arg$ " my begin package args" ; arg$ " 0,0,0" " /pci" begin-package

180

Writing FCode Programs for PCI

begin-select

stack: code: ("device-speciﬁer< >" --) none A User Interface extension provided by some implementations (e.g. FirmWorks/Sun). Creates an instance chain for the device speciﬁed by device-speciﬁer except that the open method of the leaf node is not called. begin-select is useful for debugging the open method of a driver by allowing the open method to be called under the control of the debugger. For example:

ok begin-select foo ok debug open open

See also: “Using begin-select” on page 38.

begin-select-dev

stack: code: (dev-str dev-len --) none A User Interface extension provided by some implementations (e.g. FirmWorks/Sun). Creates an instance chain for the device speciﬁed by dev-str dev-len except that the open method of the leaf node is not called. begin-select-dev is useful for debugging the open method of a driver by allowing the open method to be called under the control of the debugger. For example:

ok " foo" begin-select-dev ok debug open open

See also: “Using begin-select-dev” on page 38.

behavior

stack: code: (defer-xt -- contents-xt) DE This command is used to retrieve the execution contents of a defer word. A typical use would be to fetch and save the current execution of a defer word, change the behavior temporarily and later restore the original behavior. For example:

defer my-func 0 value old-func ['] framus is my-func … ['] my-func behavior is old-func ['] foo is my-func … my-func … old-func is my-func

Chapter 12 - Open Firmware Dictionary

181

bell

stack: code: (-- 0x07) AB Leave the ASCII code for the bell character on the stack.

b(endcase)

stack: code: (sel --) C5 An internal word generated by endcase. Never use the word b(endcase) in source code.

b(endof)

stack: code: (--) C6 An internal word generated by endof. Never use the word b(endof) in source code.

between

stack: code: (n min max -- min<=n<=max?) 44 min<=n<=max? is true if n is between min and max, inclusive of both endpoints. See within for a different form of comparison.

b(ﬁeld)

stack: code: (addr -- addr+offset) BE An internal word generated by the deﬁning word field. Never use the word b(field) in source code.

bl

stack: code:

“bee el”

(-- 0x20) A9 Leaves the ASCII code for the space character on the stack.

blank

stack: (addr len --) code: none generates: bl fill Sets len bytes of memory beginning at addr to the ASCII character value for space (hex 20). No action is taken if len is zero.

b(leave)

stack: code: (--) 1B An internal word generated by leave. Never use the word b(leave) in source code.

182

Writing FCode Programs for PCI

blink-screen

stack: code: (--) 15B A defer word, called by the terminal emulator, when it has processed a character sequence that calls for ringing the console bell, but the console input device package has no ring-bell method. blink-screen is initially empty, but must be loaded with a system-dependent routine in order for the terminal emulator to function correctly. The routine must cause some momentary discernible effect that leaves the screen in the same state as before. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which load fb1-blink-screen or fb8-blink-screen, respectively). These default routines invert the screen (twice) by xor-ing every visible pixel. This is quite slow. A replacement routine simply disables the video for 20 milliseconds or so, i.e.

: my-blink-screen (--) video-off 20 ms video-on … \ load default behaviors with fbx-install, then: ['] my-blink-screen to blink-screen ;

Of course, this example assumes that your display hardware is able to quickly enable and disable the video without otherwise affecting the state.

b(lit)

stack: code: (-- n) 10 An internal word used to save numbers. Never use the word b(lit) in source code. The only numbers that are not encoded using b(lit) are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, these values are assigned individual FCodes to save space.

bljoin

stack: code: (byte.lo byte2 byte3 byte.hi -- quad) 7F Merges the least signiﬁcant byte from each of the four input stack items into a single 32-bit word. All other bits of the input stack items must be zero to guarantee correct results.

"block"

This is the standard property value of the "device_type" property for random access, ﬁxed-length block storage devices (i.e. hard and ﬂoppy disks, CDROMs). Although devices of type "block" present a byte-oriented interface to the rest of the system, the associated hardware devices are usually block-oriented [i.e. the device reads and writes data in “blocks” (groups of, for example, 512 or 2048 bytes)]. The standard deblocker support package assists in the presentation of a byte-oriented interface above an underlying block-oriented interface, implementing a layer of buffering that “hides” the underlying block length.

Chapter 12 - Open Firmware Dictionary

183

"block" devices are often subdivided into several logical “partitions” as deﬁned by a “disk label” - a special block, usually the ﬁrst one, containing information about the device. The driver is responsible for appropriately interpreting a disk label. The driver may use the standard disk-label support package if it does not implement a specialized label. The disk-label support package interprets a system-dependent label format. Since the disk booting protocol usually depends upon the label format, the standard disk-label support package also implements a load method for the corresponding boot protocol. Devices of type "block" must implement the following methods:

s s s s s

open close read seek load

If the device is writable, the write method should also be implemented. block devices often use the deblocker support package to implement the read, write, and seek methods, and the disk-label support package to implement the load method.

block-size

stack: code: (-- block-len) none block-size returns the “granularity” in bytes for accesses to this device. All transfers to the device should be multiples of this size. If block-len is 1, the device supports arbitrary transfer sizes up to the value speciﬁed by max-transfer.

b(loop)

stack: code: (--) 15 An internal word generated by loop. Never use the word b(loop) in source code.

b(+loop)

stack: code: (n --) 16 An internal word generated by +loop. Never use the word b(+loop) in source code.

b(<mark)

stack: code: (--) B1 An internal word generated by begin. Never use the word b(<mark) in source code.

184

Writing FCode Programs for PCI

body>

stack: code:

“body from”

(a-addr -- xt) 85 Converts the data ﬁeld address of a word to its execution token.

>body

stack: code:

“to body”

(xt -- a-addr) 86 Converts the execution token of a word to its data ﬁeld address.

b(of)

stack: code: (testval --) 1C An internal word generated by of. Never use the word b(of) in source code.

boot

stack: code: ("{param-text}<eol>" --) none Loads and executes the program speciﬁed by param-text by:

s s s

Ensuring a suitable state for booting, Performing the function of load to load a client program from the device (if any) speciﬁed by param-text, and If load succeeds, perform the function of go to execute the client program.

For example:

ok ok ok ok boot boot device-specifier boot arguments boot device-arguments

boot-command

stack: (-- addr len) The value of this conﬁguration variable is a string describing the boot command to be used if auto-boot? is true. The suggested default value is “boot”.

boot-device

stack: (-- dev-str dev-len) The value of this conﬁguration variable is a string describing the device name and any required ﬁlename to be used by boot if diagnostic-mode? is false. The string is a device speciﬁer or a list of device speciﬁers as described in the deﬁnition of load. The suggested default value is “disk”.

Chapter 12 - Open Firmware Dictionary

185

boot-ﬁle

stack: (-- arg-str arg-len) The value of this conﬁguration variable is a string describing the default arguments to be used by boot if diagnostic-mode? is false. The suggested default value is the empty string.

"bootargs"

This property appears in the /chosen node if a boot or a load command has been issued since Open Firmware was last reset. The property value is the arguments ﬁeld of the most recent boot command.

"bootpath"

This property appears in the /chosen node if a boot or a load command has been issued since Open Firmware was last reset. The property value is the complete device path to which the device speciﬁer of that last command was resolved.

bounds

stack: code: (start cnt -- start+cnt start) AC Converts a starting value and count into the form required for a do or ?do loop. For example, to perform a loop 20 times, counting up from 4000 to 401f inclusive, use:

4000 20 bounds do…loop

This is equivalent to:

4020 4000 do…loop

+bp

stack: code: (addr --) none Adds the given address to the breakpoint list.

-bp

stack: code: (addr --) none Removes the breakpoint at the given address.

--bp

stack: code: (--) none Removes the most recently set breakpoint.

186

Writing FCode Programs for PCI

.bp

stack: code: (--) none Displays a list of all of the addresses at which breakpoints are set.

bpoff

stack: code: (--) none Removes all breakpoints.

.breakpoint

stack: code: (--) none .breakpoint is a defer word that is executed whenever a breakpoint occurs. The default behavior is .instruction. See also: defer

b(>resolve)

stack: code: (--) B2 An internal word generated by repeat and then. Never use the word b(>resolve) in source code.

bs

stack: code: (-- 0x08) AA Leaves the ASCII code for the backspace character on the stack.

b(to)

stack: code: (--) C3 An internal word generated by to. Never use the word b(to) in source code.

buffer:

stack: (len "new-name< >" --)(E: -- a-addr) code: none generates: new-token|named-token|external-token b(buffer:) Allocates len bytes of storage space and creates a name, new-name. When new-name is executed, it leaves the address of the ﬁrst byte of the buffer on the stack. For example:

200 buffer: name name (addr)

Chapter 12 - Open Firmware Dictionary

187

b(value)

stack: code: (n --) B8 An internal word generated by the deﬁning word value. Never use the word b(value) in source code.

b(variable)

stack: code: (n --) B9 An internal word generated by the deﬁning word variable. Never use the word b(variable) in source code.

bwjoin

stack: code: (byte.lo byte.hi -- w) B0 Merges the least signiﬁcant byte of each of the two input stack arguments into a doublet. Correct results are only guaranteed if all other bits of the input stack arguments are zero.

bxjoin

stack: code: (b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o) 241 Join 8 bytes to form an octlet. The high-order bits of each of the bytes are ignored. This function is only available on 64-bit implementations.

"byte"

This is the standard property value of the "device_type" property for sequential access, record-oriented storage devices (e.g. tape). Although devices of type "byte" present a byte-oriented interface to the rest of the system, the associated hardware devices are usually record-oriented (i.e. the device reads and writes data in "records" containing more than one byte). The records may be either ﬁxed length (all records must be the same length) or variable length (the record length may vary from record to record). Tapes may be subdivided into several tape ﬁles delimited by ﬁle marks. The standard deblocker support package assists in the presentation of a byteoriented interface above an underlying record-oriented interface, implementing a layer of buffering that “hides” the underlying record structure. Devices of type "byte" must implement the following methods:

s s s s

open close read seek The seek method locates the byte numbered pos.lo with the tape ﬁle pos.hi. If pos.lo and pos.hi are both zero, the tape is rewound. seek returns false if successful and

188

Writing FCode Programs for PCI

true if unsuccessful.

s

load The load method reads a client program from the tape ﬁle speciﬁed by the value of the instance-argument text string (as returned by my-args). That value is the string representation of a decimal integer. If the instance-argument string is empty, tape ﬁle 0 is used. The ﬁle read is placed into memory at addr, returning len, the number of bytes actually read.

If the device is writable, the write method should also be implemented. byte devices often use the deblocker support package to implement the read, write, and seek methods.

byte-load

stack: code: (addr xt --) 23E Interprets the FCode Program located at addr. If xt is 1, use rb@ to read the FCode Program, otherwise use xt as the execution token of the deﬁnition to be used to read the FCode Program. Continue reading and interpreting the program until end0 is encountered. Be aware that byte-load does not itself create a new device node as a “container” for any properties and methods deﬁned by the FCode Program that byte-load evaluates. If the FCode Program is intended to create such a node, appropriate preparation must be done before and after executing byte-load. For example, new-device and setargs can be executed before and finish-device can be executed after byte-load is executed. If byte-load is to be executed from the User Interface, additional set up is usually necessary before executing new-device; see begin-package for more details.

c!

stack: code:

“see store”

(byte addr --) 75 Stores the least signiﬁcant 8 bits of byte in the byte at addr. See also: rb!

c,

stack: code:

“see comma”

(byte --) D0 Compiles a byte into the dictionary. c, can be used, in conjunction with create, to create an array-type structure, as:

create yellow 77 c, 23 c, ff c, ff c, 47 c, 22 c, …

Later execution of yellow leaves the address of the ﬁrst byte of the array (i.e. the address of the byte “77”) on the stack.

Chapter 12 - Open Firmware Dictionary

189

c;

stack: code:

“see semicolon”

(C: code-sys --) (--) (R: -- nest-sys) none Ends the creation of a machine code word by assembling code that will, upon execution, return control to the calling routine speciﬁed by nest-sys.

/c

stack: code:

“per see”

(-- n) 5A Leaves the number of address units to a byte (i.e. 1) on the stack. See also: /w, /l, /n

/c*

“per see star”

stack: (nu1 -- nu2) code: none generates: chars Synonym for chars.

c@

stack: code:

“see fetch”

(addr --byte) 71 Fetches the byte at address addr and leaves it on top of the stack with the high order bytes ﬁlled with zeroes. See also: rb@

ca+

stack: code:

“see ay plus”

(addr1 index -- addr2) 5E Increments addr1 by index times the value of /c. ca+ should be used in preference to + when calculating addresses because it more clearly expresses the intent of the operation and is more portable.

ca1+

“see ay one plus”

stack: (addr1 -- addr2) code: none generates: char+ Synonym for char+

callback

stack: code: ("service-name< >" "arguments<eol>" --) none Executes the speciﬁed client program callback routine.

190

Writing FCode Programs for PCI

$callback

stack: code: (argn … arg1 nargs addr len -- retn … ret2 Nreturns-1) none Executes the speciﬁed client program callback routine.

$call-method

stack: code: (… method-str method-len ihandle -- ???) 20E Executes the device interface method method-str method-len within the open package instance ihandle. The ellipses (…) indicate that the contents of the stack before and after the method is called depend upon the particular method being called. For example:

: dma-alloc (#bytes -- virt) " dma-alloc" my-parent $call-method ;

See also: open-package.

call-package

stack: code: (… xt ihandle -- ???) 208 Executes the device interface method xt within the open package instance ihandle. The ellipses (…) indicate that the contents of the stack before and after the method is called depend upon the particular method being called. For example:

0 value label-ihandle \ place to save the ihandle of other package 0 value offset-method \ place to save the xt of found method : init (--) my-args " disk-label" $open-package (ihandle) to label-ihandle " offset" label-ihandle ihandle>phandle (name-addr name-len phandle) find-method if (xt) to offset-method else () ." Can't find offset method " then ; init : add-offset (d.byte# -- d.bytes#) offset-method label-ihandle call-package ;

See also: find-method, open-package

$call-parent

stack: code: (… method-str method-len -- ???) 209 Calls the method named by method-str method-len within the parent instance. If the

Chapter 12 - Open Firmware Dictionary

191

called package has no such method, an error is signaled with throw. Equivalent to:

my-parent $call-method

The ellipses (…) and question marks (???) indicate that the contents of the stack before and after the method is called depend upon the particular method being called. For example, since the stack diagram for dma-alloc is (size -- virt), size must be pushed on the stack followed by method-str and method-len prior to calling $call-parent which subsequently returns virt:

: my-dma-alloc (-- virt)h# 2000 " dma-alloc"$call-parent ;

.calls

stack: code:

“dot calls”

(xt --) none Displays a list of all of the commands which directly use the execution token xt. For example, if framus calls foo and bar calls framus:

['] foo .calls

will display framus and not bar.

carret

stack: (-- 0x0D) code: none generates: b(lit) 00 00 00 0x0D Leaves the ASCII code for “carriage return” (i.e. Control-M) on the stack.

case

stack: (selector -- selector) code: none generates: b(case) Starts a case statement that selects its action based on the value of selector. For example:

: foo (selector --) case 0 of ." It was 0" endof 5 of ." It was 5" endof -2 of ." It was -2" endof endcase ;

of tests the top of the stack against selector at run time.

s

If they are the same, both the top stack item and selector are dropped and the code between of and the next endof is executed. Program control then continues after the endcase.

192

Writing FCode Programs for PCI

s

If they are not the same, the top stack item is dropped and execution continues at the point just following the matching endof with selector on the top of the stack.

endcase expects an item (typically selector) on top of the stack and drops it. An optional “default clause” may be implemented by placing code between the last endof and the endcase. When such a default clause is executed, selector is on the stack. The default clause may use selector, but the default clause must leave an item on the stack for endcase to drop. The item left for endcase to drop need not be selector. For example:

: bar (selector -- value) case 3 of 21 endof 4 of 33 endof 1+ 0 \ Default clause. Use selector and push 0 for endcase to drop endcase ;

case statements can be used both inside and outside of colon deﬁnitions.

catch

stack: code: (… xt -- ??? error-code | ??? false) 217 Creates a new error handling context and executes xt in that context. If a throw (see below) is called during the execution of xt, 1. The error handling context is removed 2. The stack depth is restored to the depth that existed prior to the execution of xt (not counting the xt stack item) 3. The error code that was passed to throw is pushed onto the stack 4. catch returns If throw is not called during the execution of xt, the error handling context is removed and catch returns a false. The stack effect is otherwise the same as if xt were executed using execute. For example:

: add-n-check-limit (n1 n2 n3 -- n) + + dup h# 30 > if true throw then ; : add-me (n1 n2 n3 -- a b c | n1+n2+n3) ['] add-n-check-limit catch if ." Sum exceeds limit " .s else ." Sum is within limit. Sum = " .s then cr ;

Chapter 12 - Open Firmware Dictionary

193

Note that, given this deﬁnition:

1 2 3 add-me

shows:

Sum is within limit. Sum = 6

while:

10 20 30 add-me

may show something like:

Sum exceeds limit 50 9 12

Note – Upon a non-zero throw, only the stack depth is guaranteed to be the same as before catch, not the data stack contents.

cell+

stack: code: (addr1 -- addr2) 65 Increments addr1 by the value of /n. cell+ should be used in preference to wa1+ or la1+ when the intent is to address items that are the same size as items on the stack.

cells

stack: code: (nu1 -- nu2) 69 nu2 is the result of multiplying nu1 by /n, the length in bytes of a normal stack item. This is useful for converting an index into a byte offset.

char

stack: code: ("text< >" -- char) none Leaves the ASCII code for the next non-whitespace character in the input buffer on the stack. Only for use outside of deﬁnitions. See also: ascii, [char]

char+

stack: code: (addr1 -- addr2) 62 Increments addr1 by the value of /c. char+ should be used in preference to + when calculating addresses because it more clearly expresses the intent of the operation and is more portable.

194

Writing FCode Programs for PCI

[char]

stack: code: ([text< >] -- char) none Leaves the ASCII code for the next non-whitespace character in the input buffer on the stack. For example:

[char] C (equals hex 43) [char] c (equals hex 63)

See also: ascii, char

"character-set"

stack: This standard property applies to packages implementing "device_type" of "serial" or "display". The value of this property deﬁnes the character set for this device. A typical value is “ISO8859-1”. See IEEE Standard 1275-1994 for more details.

char-height

stack: code: (-- height) 16C A value, containing the standard height (in pixels) for all characters to be drawn. This number, when multiplied by #lines, determines the total height (in pixels) of the active text area. This word must be set to the appropriate value if you wish to use any fb1- or fb8utility routines or >font. This can be done with to, but is normally done by calling set-font.

chars

stack: code: (nu1 -- nu2) 66 nu2 is the result of multiplying nu1 by /c, the length in bytes of a byte. This is useful for converting an index into a byte offset.

char-width

stack: code: (-- width) 16D A value, containing the standard width (in pixels) for all characters to be drawn. This number, when multiplied by #columns, determines the total width (in pixels) of the active text area. This word must be set to an appropriate value if you want to use any fb1- or fb8utility routines. This can be done with to, but is normally done by calling set-font.

child

stack: code: (phandle.parent -- phandle.child) 23B Returns the phandle of the package that is the ﬁrst child of the package phandle.parent.

Chapter 12 - Open Firmware Dictionary

195

child returns zero if the package phandle.parent has no children. You will generally use child, together with peer, to enumerate (possibly recursively) the children of a particular device. One common use could be for bus adapter device drivers to use the phrase my-self ihandle>phandle to develop the phandle.parent argument. For example:

: my-children (--) \ shows phandles of all children my-self ihandle>phandle child (first-child) begin ?dup while dup .h peer repeat ;

"/chosen"

The standard node containing properties describing parameters chosen or speciﬁed at run-time for this system. The value of the name property of this node is “chosen”. The remaining properties of this node are:

s s s s s s

stdin stdout bootpath bootargs memory mmu

claim

stack: code: ([addr …] len … align -- baseaddr …) none Allocates len … (whose format depends upon the package) bytes of addressable resource. If align is zero, the allocated range begins at the speciﬁed address addr. Otherwise, addr … (whose format depends upon the package) is not speciﬁed and an aligned address is automatically chosen. The alignment boundary is the smallest power of 2 that is greater than or equal to the value of align. baseaddr … (whose format is the same as addr) is the allocated virtual address, and is equal to addr if align was zero. Allocates addressable resources with ﬁne-grained control. In general, claim is used only to implement system-speciﬁc programs. General purpose memory allocation can be accomplished in a portable fashion by alloc-mem. See also: alloc-mem, "available", free-mem, release

clear

stack: code: (… --) none Empties the stack. While clear is often useful when interactively debugging, it is almost always inappropriate to use clear in a program.

196

Writing FCode Programs for PCI

close

stack: code: (--) none Closes this previously open’d device (e.g. turns off the device, disables PCI memory and/or I/O space accesses, clears the PCI bus master enable bit, unmaps the device and de-allocates any resources that were allocated by open). When closing an instance chain, a particular instance’s close method is executed before its parent instances are closed such that the parents’ methods can still be used by close.

close-dev

stack: code: (ihandle --) none Closes the device identiﬁed by ihandle as well as all of its parents.

close-package

stack: code: (ihandle --) 206 Closes the package instance identiﬁed by ihandle by calling that package’s close method and then destroying the instance. For example:

: tftp-load-avail? (-- exist?) 0 0 " obp-tftp" $open-package (ihandle) dup ihandle>phandle " load" rot find-method if drop true else false then close-package ;

See also: open-package, $open-package

code

stack: code: (E: … -- ???) (C: "new-name< >" -- code-sys) none Begins the creation of a machine-code command called new-name. Interpret the commands which follow as assembler mnemonics until c; or end-code is encountered. If the assembler is not installed, code is still present. However, machine code must be hand-assembled and entered into the dictionary by value with c,, w,, l, or , .

column# “column number”

stack: code: (-- column#) 153 A value, set and controlled by the terminal emulator, that contains the current horizontal position of the text cursor. A value of 0 represents the leftmost cursor position of the text window, not the leftmost pixel of the framebuffer. column# can (and should) be looked at as needed if your FCode Program is

Chapter 12 - Open Firmware Dictionary

197

implementing its own set of framebuffer primitives. For example:

: set-column (column# --) 0 max #columns 1- min to column# ;

See also: window-left

#columns “number columns”

stack: code: (-- columns) 151 This is a value that returns the number of columns of text in the text window i.e. the number of characters in a line, to be displayed using the boot ROM’s terminal emulator. #columns must be set to a proper value in order for the terminal emulator to function correctly. The open method of any package that uses the terminal emulator package must set #columns to the desired width of the text region. This can be done with to, or it can be handled automatically as one of the functions performed by fb1-install or fb8-install. See also: is-install, fb1-install, fb8-install, to

comp

stack: code: (addr1 addr2 len -- n) 7A Compares two strings of length len starting at addresses addr1 and addr2 and continuing for len bytes. n is 0 if the arrays are the same. n is 1 if the ﬁrst differing character in the array at addr1 is numerically greater than the corresponding character in the array at addr2. n is -1 if the ﬁrst differing character in the array at addr1 is numerically less than the corresponding character in the array at addr2. For example:

ok " this" drop " that" comp .h 1 ok " thisismy" drop " this" comp .h 0 ok " thin" drop " this" comp .h ffffffff

"compatible"

This standard property speciﬁes a list of devices with which this device is compatible. This property is used by client programs to determine the appropriate driver for the associated device in those cases where the client program does not have a driver matching the value of the "name" property. The property format is identical to the format for the "name" property.

198

Writing FCode Programs for PCI

For example:

" " " " AAPL,dev-name" encode-string INTL,my-dev" encode-string encode+ RST,dev21-type4" encode-string encode+ compatible" property

Please note that you must ensure compatibility with another device’s driver prior to using the "compatible" property; Open Firmware makes no attempt to cross-check the correctness of the claim of compatibility.

compile

stack: code: (--) none Compiles the following command at run time. Included for compatibility. Postpone is preferred for new code.

compile,

stack: code: (xt --) DD Compiles the behavior of the word given by xt.

[compile]

stack: code: ([old-name< >] --) none Compiles the immediately-following command. Included for compatibility. postpone is preferred for new code.

conﬁg-b@

stack: code: (conﬁg-addr -- data) none Performs an 8-bit Conﬁguration Read from the conﬁguration space of a PCI device. conﬁg-addr refers to the phys.hi cell of a PCI address (as returned by my-space). This is a method of a PCI bus node. Consequently, the method is typically accessed by PCI child devices with $call-parent. See also: config-b!, config-l@, config-l!, config-w@, config-w!

conﬁg-b!

stack: code: (data conﬁg-addr --) none Performs an 8-bit Conﬁguration Write from the conﬁguration space of a PCI device. conﬁg-addr refers to the phys.hi cell of a PCI address (as returned by my-space). This is a method of a PCI bus node. Consequently, the method is typically accessed by PCI child devices with $call-parent.

Chapter 12 - Open Firmware Dictionary

199

See also: config-b@, config-l@, config-l!, config-w@, config-w!

conﬁg-l@

stack: code: (conﬁg-addr -- data) none Performs a 32-bit Conﬁguration Read from the conﬁguration space of a PCI device. conﬁg-addr refers to the phys.hi cell of a PCI address (as returned by my-space). conﬁg-addr must be 32-bit aligned. This is a method of a PCI bus node. Consequently, the method is typically accessed by PCI child devices with $call-parent. Of course, the method can also be accessed from the bus node itself. For example, to read the Device ID and Vendor ID for all possible slots on the PCI bus and print them in a formatted listing:

ok ok ok ok hex select /pci 20 0 do i 2 u.r i 800 * config-l@ 9 u.r cr loop unselect-dev

See also: config-b@, config-b!, config-l!, config-w@, config-w!

conﬁg-l!

stack: code: (data conﬁg-addr --) none Performs a 32-bit Conﬁguration Write from the conﬁguration space of a PCI device. conﬁg-addr refers to the phys.hi cell of a PCI address (as returned by my-space). conﬁg-addr must be 32-bit aligned. This is a method of a PCI bus node. Consequently, the method is typically accessed by PCI child devices with $call-parent. See also: config-b@, config-b!, config-l@, config-w@, config-w!

conﬁg-w@

stack: code: (conﬁg-addr -- data) none Performs a 16-bit Conﬁguration Read from the conﬁguration space of a PCI device. conﬁg-addr refers to the phys.hi cell of a PCI address (as returned by my-space). conﬁg-addr must be 16-bit aligned. This is a method of a PCI bus node. Consequently, the method is typically accessed by PCI child devices with $call-parent. For example, to read the Device ID:

my-space 2+ " config-w@" $call-parent (device-id)

See also: config-b@, config-b!, config-l@, config-l!, config-w!

200

Writing FCode Programs for PCI

conﬁg-w!

stack: code: (data conﬁg-addr --) none Performs a 16-bit Conﬁguration Write from the conﬁguration space of a PCI device. conﬁg-addr refers to the phys.hi cell of a PCI address (as returned by my-space). conﬁg-addr must be 16-bit aligned. This is a method of a PCI bus node. Consequently, the method is typically accessed by PCI child devices with $call-parent. For example, to enable I/O Space accesses:

my-space 4 + dup " config-w@" $call-parent (config-addr value) 1 or swap " config-w!" $call-parent

See also: config-b@, config-b!, config-l@, config-l!, config-w@

constant

stack: (x "new-name< >" --) (E: -- value) code: none generates: new-token|named-token|external-token b(constant) Creates a named constant. The name is initially created with:

456 constant purple

where 456 is the desired value for purple. Later occurrences of purple will leave the correct value on the stack. constant values should never be changed by the program. If you wish to change the value of a constant in a program, you should use value instead of constant.

2constant

stack: code: (x1 x2 "new-name< >" --) (E: -- x1 x2) none Creates a named two-number constant.

control

stack: ([text< >] -- char) code: none generates: b(lit) 00 00 00 xx-byte Causes the compiler/interpreter to interpret the next letter as a control-code. For example:

control c (equals 03)

count

stack: code: (pstr -- str len) 84 Converts a packed string into a byte-array format. pstr is the address of a packed

Chapter 12 - Open Firmware Dictionary

201

string, where the byte at address pstr is the length of the string and the string itself starts at address pstr+1. Packed strings are generally not used in FCode. Virtually all string operations are in the "str len" format. For example:

h# 100 alloc-mem constant my-buff " This is a string" my-buff pack (pstr) count type

cpeek

stack: code: (addr -- false | byte true) 220 Tries to read the 8-bit byte at address addr. Returns the data and true if the access was successful. A false return indicates that a read access error occurred. See also: rb@

cpoke

stack: code: (byte addr -- okay?) 223 Attempts to write the 8-bit byte at address addr. Returns true if the access was successful. A false return indicates that a write access error occurred. Note – cpoke may be unreliable on bus adapters that buffer write accesses. See also: rb!

cr

stack: code: (--) 92 A defer word used to terminate the line on the display and go to the next line. The default implementation transmits a carriage return and line feed to the display, clears #out and adds 1 to #line. Use cr whenever you want to start a new line of output, or to force the display of any previously buffered output text. This forcing is valuable for outputting error messages, to ensure that the error message is sent before any system crash. For example:

: show-info (--) ." This is the first line of output " cr ." This is the second line of output " cr ;

202

Writing FCode Programs for PCI

(cr

stack: code: (--) 91 Outputs only the carriage return character (carret, 0x0D). The most common use of (cr is for reporting the progress of a test that has many steps. By using (cr instead of cr, the progress report appears on a single line instead of scrolling.

create

stack: ("new-name< >" --) (E: -- addr) code: none generates: new-token|named-token|external-token b(create) Creates the name new-name. When new-name is subsequently executed, it returns the address of memory immediately following new-name in the dictionary. You can use create to build an array-type structure, as:

create green 77 c, 23 c, ff c, ff c, 47 c, 22 c, …

Later execution of green leaves the address of the ﬁrst byte of the array (here, the address of the byte “77”) on the stack. The returned address will be two-byte aligned. create may not be used within deﬁnitions in an FCode Program. The common Forth construct create…does> is not supported. See also: $create

$create “dollar create”

stack: code: (name-str name-len --) (E: -- addr) none Like create but takes a name string from the stack.

ctrace

stack: code:

“see trace”

(--) none Displays the subroutine call stack that was in effect when the program state was saved (i.e. when the program was suspended). The format of the display is implementation dependent.

d#

“dee number”

stack: ([number< >] -- n) code: none generates: b(lit) xx-byte xx-byte xx-byte xx-byte Causes the compiler/interpreter to interpret the next number in decimal (base 10), regardless of any previous settings of hex, decimal or octal. Only the immediately following number is affected, the default numeric base setting is unchanged. For

Chapter 12 - Open Firmware Dictionary

203

example:

hex d# 100 100

(equals decimal 100) (equals decimal 256)

See also: h#, o#

d+

stack: code:

“dee plus”

(d1 d2 -- d.sum) D8 Adds two 64-bit numbers, leaving the 64-bit sum on the stack. For example:

ok 1234.0000 0056.7800 9abc 3400.009a d+ .s 1234.9abc 3456.789a

See also: um*, um/mod

dstack: code:

“dee minus”

(d1 d2 -- d.diff) D9 Subtracts two 64-bit numbers, leaving the 64-bit result on the stack. For example:

ok 0 6 1 0 d- .s ffff.ffff 5 ok 4444.8888 aaaa.bbbb 2222.1111 5555.2222 d- .s 2222.7777 5555.9999

See also: um*, um/mod

.d

“dot dee”

stack: (n --) code: none generates: base @ swap d# 10 base ! . base ! Displays n in decimal with a trailing space. The value of base is not permanently affected. See also: .h

"deblocker"

This is the standard package to assist in the implementation of byte-oriented read and write methods for block-oriented or record-oriented storage devices such as disks and tapes. The package provides a layer of buffering to implement a high-level byteoriented interface above a low-level block-oriented interface. The deblocker package implements the following methods:

204

Writing FCode Programs for PCI

s

open

(-- okay?)

Prepare this device for subsequent use.

s

close

(--)

Close this previously-open’d device.

s

read

(addr len -- actual)

Read from device into the speciﬁed memory buffer, returning the number of bytes actually read.

s

write

(addr len -- actual)

Write to the device from the speciﬁed memory buffer, returning the number or bytes actually written.

s

seek

(offset file# -- status)

Set the position at which the next read or write will take place, returning -1 if the operation fails and either 0 or 1 if the operation succeeds. Any package that uses the deblocker package must deﬁne the following interface methods:

s

block-size

(-- block-len)

Return the “granularity” of the device in bytes.

s

dma-alloc

(… size -- virt)

Allocate size bytes of contiguous memory with the DMA address space of the device bus, returning the virtual address virt.

s

max-transfer

(-- max-len)

Return the size of the largest possible transfer in bytes rounded down to an integer multiple of block-size.

s

read-blocks

(addr block# #blocks -- #read)

Read #blocks, starting from block#, from the device into the memory beginning at addr, returning the number of blocks actually read.

s

write-blocks

(addr block# #blocks -- #written)

Write #blocks, starting from block#, from memory beginning at addr to the device, returning the number of blocks actually written.

debug

stack: code: ("old-name< >" --) none Marks the command old-name for debugging. Subsequent attempts to execute old-name cause entry into the Forth source-level debugger. An Open Firmware system that implements the source-level debugger must allow at least one command to be marked at any given moment and may allow several commands to be marked for debugging simultaneously. During the execution of a debugged command, the name of the command that is about to be executed and the contents of the stack are displayed before the execution of each command called by the debugged command. Debugging occurs in either “step mode” or “trace mode” as controlled by the stepping

Chapter 12 - Open Firmware Dictionary

205

commands, stepping and tracing. In “step mode” each “step” represents the execution of a single Forth word. The user controls the progress of execution with the following keystrokes:

Table 35 Keystroke <space-bar> d u “Step” Mode Commands for the Source-Level Debugger Description Execute the word just displayed and proceed to the next word. “Down a level”. Mark for debugging the word whose name was just displayed, then execute it. “Up a level”. Un-mark the word being debugged, mark its caller for debugging, and ﬁnish executing the word that was previously being debugged. “Continue”. Switch from stepping to tracing, thus tracing the remainder of the execution of the word being debugged. Start a subordinate Forth interpreter with which Forth commands can be executed normally. When that interpreter is terminated (with resume), control returns to the debugger at the place where the f command was executed. Exit from a subordinate interpreter, and go back to the stepper (See the preceding f command.) “Quit”. Abort the execution of the word being debugged and all its callers and return to the command interpreter. Table 36 Keystroke g h ? s $ () * < FirmWorks/Sun “Step” Mode Extensions Description “Go.” Turn off the debugger and continue execution. “Help”. Display symbolic debugger documentation. “Short Help”. Display brief symbolic debugger documentation. “see”. Decompile the word being debugged. Non-destructively display the address,len on top of the stack as a text string. Moves the beginning of the debug region to the current position in the word being debugged. Moves the end of the debug region to the current position in the word being debugged. Expands the debug region to include the entire word. Moves the beginning of the debug region to just after the current position in the word being debugged, and moves the end of the debug region to the end of that word. This is useful for skipping past the end of a loop — step to the word that ends the loop then type < .

c f

resume q

In “trace mode”, execution continues automatically with each of the words that are called by the marked word. As the words are executed, calling information is displayed. Debug mode can be turned off with the debug-off command. The system does not necessarily operate at full speed when one or more commands are marked for debugging.

206

Writing FCode Programs for PCI

Debugging basic Forth commands (which could have been used in the implementation of debug) is not recommended. The system may ignore requests to debug words that are “unsafe” to debug. See also: (debug, debugging, debug(,)debug, debug-me, debug-off, stepping, tracing, resume

(debug

stack: code: (xt --) none Marks the command indicated by xt for debugging.

debug(

stack: code: (--) none A debugger extension provided by some implementations (e.g. FirmWorks/Sun). debug(can be compiled into a word. When debug(is executed, it invokes the debugger with the debugger’s scope beginning just after the call to debug(and ending at the end of the word.

)debug

stack: code: (--) none A debugger extension provided by some implementations (e.g. FirmWorks/Sun).)debug can be compiled into a word. When)debug is executed, it moves the end of the debugger’s scope to just after the call to)debug.

debug-me

stack: code: (--) none A debugger extension provided by some implementations (e.g. FirmWorks/Sun). debug-me can be compiled into a word. When debug-me is executed, it invokes the debugger on the word containing it, and makes the debugger’s scope the entire word containing debug-me even though debugging is not triggered until debug-me is ﬁrst executed.

debug-off

stack: code: (--) none Turns off the Forth source-level debugger.

debugging

stack: code: ("old-name< >" --) none A debugger extension provided by some implementations (e.g. FirmWorks/Sun).

Chapter 12 - Open Firmware Dictionary

207

A shorthand way to mark a word for debugging and execute it. debugging foo is equivalent to debug foo foo.

decimal

stack: code: (--) none If used outside of a deﬁnition, commands the tokenizer program to interpret subsequent numbers in decimal (base 10). If used within a deﬁnition, appends the phrase 10 base !to the FCode Program that is being created thus affecting later numeric output when the FCode Program is executed. See also: base

decode-bytes

stack: (prop-addr1 prop-len1 data-len -- prop-addr2 prop-len2 data-addr data-len) code: none generates: >r over r@ + swap r@ - rot r> Decodes data-len bytes from a property value array and returns the remainder of the array and the decoded byte array.

decode-int

stack: code: (prop-addr1 prop-len1 -- prop-addr2 prop-len2 n) 21B Decodes a number from the beginning of a property value array and returns the remainder of the property value array and the number n. For example:

: show-clock-frequency (--) " clock-frequency" get-inherited-property 0= if ." Clock frequency: " decode-int .h cr 2drop then ;

decode-phys

stack: code: (prop-addr1 prop-len1 -- prop-addr2 prop-len2 phys.lo … phys.hi) 128 Decodes a unit address from a property value array and returns the remainder of the array and the decoded list of address components. The number of cells in the list phys.lo … phys.hi is determined by the value of the "#address-cells" property of the parent node.

decode-string

stack: code: (prop-addr1 prop-len1 -- prop-addr2 prop-len2 str len) 21C Decodes a string from the beginning of a property value array and returns the remainder of the property value array and the string str len.

208

Writing FCode Programs for PCI

For example:

: show-model (--) " model" get-my-property ;

0=

if

decode-string type 2drop

then

decode-unit

stack: code: (addr len -- phys.lo … phys.hi) none A static method that converts a text representation of a unit-address into a numerical representation of a physical address within the address space deﬁned by this device node. The number of cells in the list phys.lo … phys.hi is determined by the value of the "#address-cells" property of the parent node.

default-font

stack: code: (-- addr width height advance minchar #glyphs) 16A Returns all the necessary information about the character font that is built into the boot ROM. This font deﬁnes the appearance of every character to be displayed. To load this font, simply pass these parameters to set-font, with:

default-font set-font

The actual parameters returned by default-font are: addr - The address of the beginning of the built-in font table width - The width of each character in pixels height - The height of each character in pixels advance- The separation (in bytes) between each scan line entry minchar- The ASCII value for the ﬁrst character actually stored in the font table. #glyphs - The total number of characters stored in the font table.

defer

stack: ("new-name< >" --) (E: -- ???) code: none generates: new-token|named-token|external-token b(defer) Creates a command new-name that is a defer word i.e. a word whose behavior can be altered with to. new-name is initially created with execution behavior that indicates that it is an uninitialized defer word. For example:

ok defer blob ok blob <--deferred word not initialized

Later, this behavior can then be altered to be that of another existing word by placing that second word’s execution token on the stack and loading it into new-name with to.

Chapter 12 - Open Firmware Dictionary

209

For example:

['] foobar to blob

defer words are useful for generating recursive routines. For example:

defer hold2 \ Will execute action2 : action1 … hold2 (really action2) … ; : action2 … action1 … ; ' action2 to hold2

defer words can also be used for creating words with different behaviors depending on your needs. For example:

defer .special (n --) \ Print a value, using special techniques : print-em-all (--) … .special … .special … .special ; (((: .d prints in decimal .h prints in hexadecimal) .sp prints in a custom format) print-all-styles ['] .d to .special print-em-all ['] .h to .special print-em-all ['] .sp to .special print-em-all

;

In FCode source, defer cannot appear inside a colon deﬁnition. See also: behavior, to

delete-characters

stack: code: (n --) 15E Deletes n characters to the right of the cursor. delete-characters is one of the defer words of the display device interface. The terminal emulator package executes delete-characters when it has processed a character sequence that requires the deletion of characters to the right of the cursor. The cursor position is unchanged, the cursor character and the ﬁrst n-1 characters to the right of the cursor are deleted. All remaining characters to the right of the cursor, including the highlighted character, are moved left by n places. The end of the line is ﬁlled with blanks. This word is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be

210

Writing FCode Programs for PCI

loaded automatically with fb1-install or fb8-install (which loads fb1-delete-characters or fb8-delete-characters, respectively). See also: fb8-install, to

delete-lines

stack: code: (n --) 160 Deletes n lines at and below the cursor line. delete-lines is one of the defer words of the display device interface. The terminal emulator package executes delete-lines when it has processed a character sequence that requires the deletion of lines of text below the line containing the cursor. All lines below the deleted lines are scrolled upwards by n lines, and n blank lines are placed at the bottom of the active text area. Use this word for scrolling, by temporarily moving the cursor to the top of the screen and then calling delete-lines. This word is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which load fb1-deletelines or fb8-delete-lines, respectively). See also: fb8-install, to

delete-property

stack: code: (name-str name-len --) 21E Deletes the property named by name-str name-len in the active package, if such a property exists. For example:

: unmap-me (--) my-reg my-size " map-out" $call-parent " address" delete-property ;

depth

stack: code: (-- u) 51 u is the number of entries contained in the data stack, not counting itself. Note that when an FCode Program is called, there could be other items on the stack from the calling program. depth is especially useful for before/after stack depth checking, to determine if the stack was corrupted by a particular operation.

"depth"

This standard property is associated with display devices. The property value is an integer (encoded with encode-int) that speciﬁes the number of bits used to describe

Chapter 12 - Open Firmware Dictionary

211

each pixel of the display. See also: property

dev

stack: code: ("device-speciﬁer<eol>" --) none Makes the speciﬁed device node the active package by parsing device-speciﬁer delimited by the end of line. Perform the equivalent of find-device with device-speciﬁer as its argument. For example:

ok dev device-speciﬁer <eol>

See also: device-end

devalias

stack: code: ("{alias-name}< >{device-path}<eol>" --) none Creates a device alias, or displays the current alias(es). If alias-name and device-path are speciﬁed, devalias creates a device alias named alias-name representing device-path. If an alias with the same name already exists, the new value supersedes the old. If only alias-name is speciﬁed, devalias displays the device path corresponding to alias-name (if this alias exists). If nothing is speciﬁed after devalias, devalias displays all currently existing device aliases.

device-end

stack: code: (--) none Unselects the active package leaving none selected.

device-name

stack: code: (str len --) 201 Creates a "name" property with the given string value. For example:

" AAPL,zebra" device-name

This is equivalent to:

" AAPL,zebra" encode-string " name" property

See also: "name", property

212

Writing FCode Programs for PCI

device-type

stack: code: (str len --) 11A This is a shorthand word for creating a "device_type" property. This property is essential for any plug-in PCI device that will be used during booting, as it tells the boot ROM which type of boot device it is. An example usage is:

" display" device-type

This is exactly equivalent to the following:

" display" encode-string " device_type" property

Note the spelling difference between the FCode command device-type (hyphen) and the "device_type" property (underscore). See also: "device_type", property

"device_type"

This property declares the type of this plug-in device. The type need not be declared, unless this device is intended to be usable for booting. If this property is declared, using one of the following key values, the FCode program must follow the required conventions for the speciﬁed device type. Used as:

" display" encode-string " device_type" property

Deﬁned values for this property are "block", "byte", "display", "memory", "network", "pci" and "serial". See also: device-type, property, Chapter 5 “Properties

diag-device

stack: code: (-- dev-str dev-len) none The value of this conﬁguration variable is a string describing the default device-name and any required ﬁlename to be used by boot if diagnostic-mode? is true. dev-string is a device-speciﬁer or a list of device-speciﬁers, as described in load. The suggested default value is “net”.

diag-ﬁle

stack: code: (-- arg-str arg-len) none The value of this conﬁguration variable is a string describing the default arguments to be used by boot if diagnostic-mode? is true. The suggested default value is “diag”.

Chapter 12 - Open Firmware Dictionary

213

diagnostic-mode?

stack: code: (-- diag?) 120 diagnostic-mode? controls several aspects of machine function. During booting, diagnostic-mode? controls the choice of boot device and boot ﬁle, if not speciﬁed in the boot command. If diagnostic-mode? is true, the default boot device is speciﬁed by diag-device and the default boot ﬁle is speciﬁed by diag-file. If diagnostic-mode? is false, the default boot device is speciﬁed by boot-device and the default boot ﬁle is speciﬁed by boot-file. During machine power-on, diagnostic-mode? controls the extent of system selftest and controls the amount of informative messages displayed. If diagnostic-mode? is true, more extensive tests are performed and more messages are displayed. The details of selftest, however, are implementation-dependent. FCode Programs can use diagnostic-mode? to control the extent of the selftests performed. While the speciﬁcs of use are controlled by the FCode Program itself, the recommended use is described in the preceding paragraph. In other words, if diagnostic-mode? is true, more extensive tests are performed and more messages are displayed. For example:

diagnostic-mode? if do-extended-tests else do-normal-tests then

FCode should not generate character output during probing unless diagnostic-mode? is true, or unless an error is encountered. Error output during probing typically goes to the system serial port. diagnostic-mode? will return true if any of the following conditions are met:

s s s

diag-switch? is true. A machine diagnostic switch (system-dependent) is ON. Other system-dependent indicators request extensive diagnostics.

See also: diag-switch?

diag-switch?

stack: code: (-- diag?) none This conﬁguration variable is a boolean describing whether more extensive diagnostics should be run. If diag-switch? is true, diagnostic-mode? returns true. The suggested default value of diag-switch? is “false”. Note that diag-switch? true implies diagnostic-mode? true, but diag-switch? false does not imply diagnostic-mode? false. Other system-dependent mechanisms can cause diagnostic-mode? to be true. See also: diagnostic-mode?

214

Writing FCode Programs for PCI

digit

stack: code: (char base -- digit true | char false) A3 If the character char is a digit in the speciﬁed base, returns the numeric value of that digit under true, else returns the character under false. Appropriate characters are hex 30-39 (for digits 0-9) and hex 61-66 (for digits a-f), depending on base. For example:

: probe-slot (slot# --) … ; : probe-slots (addr cnt --) bounds ?do i c@ d# 16 digit if probe-slot loop ;

else

drop

then

dis

stack: code: (addr --) none Begins disassembling at the given address. The format of the disassembly, and the conditions for stopping disassembly, are system-dependent. See also: +dis

+dis

stack: code: (--) none Continues disassembling where dis or +dis last stopped. See also: dis

"disk-label"

This is the standard package that interprets the disk label including any “partitioning” information. This package is used by block device drivers. The disk-label package uses the read and seek methods of the package that open’d it. disk-label implements the following methods:

s

open

(-- okay?)

Prepare this device for subsequent use.

s

close

(--)

Close this previously-open’d device.

s

load

(addr -- size)

Load a client program from device to memory.

s

offset

(d-rel -- d.abs)

Convert a partition-relative disk position to an absolute position.

Chapter 12 - Open Firmware Dictionary

215

"display"

This is the standard property value of the "device_type" property for user output devices with randomly-addressable pixels (i.e.graphic output display device devices). "display" devices can be used for console output. Devices of type "display" must implement the following methods:

s s s

open close write Display the sequence of len characters beginning at addr, interpreting command sequences as deﬁned by Annex B of IEEE Standard 1275-1994.

s

draw-logo

If an unexpected system reset can cause the display to become invisible (e.g. the video is turned off) and the display can be restored to visibility without performing memory mapping or memory allocation operations, the restore method should also be implemented. display devices may also implement additional device-speciﬁc methods. display packages typically use the terminal emulator support package to process ANSI X3.64 escape sequences for the write method. “Dumb” frame-buffer devices typically use either the "fb1" or the "fb8" support package to implement the “Character Map” defer words interface. More complicated display devices, such as those with hardware acceleration, typically implement that interface directly.

display-status

stack: code: (n --) 121 Displays the results of some test. The method of display is system-dependent. This FCode is obsolete and should not be used.

dl

stack: code:

“dee el”

(--) none Downloads and execute Forth text, end with Control-D. Receives text from the current input source and stores it in a buffer, until an EOT (0x04, or control-D) character is received. Does not store the EOT character. After reception, evaluates the contents of the buffer as with the eval command. The buffer size is system-dependent and is at least 4096 characters. dl is typically used with a serial line as the current input source. After issuing the dl command, the user typically issues commands to another computer to cause the desired Forth text (such as a text ﬁle) to be sent over the serial line, followed by the EOT (0x04, or control-D) character. fload commands that are embedded in the downloaded text will not be processed correctly. See “Downloading Multiple Files with dl and ﬂoad” on page 28 for more information. See also: fload

216

Writing FCode Programs for PCI

dma-alloc

stack: code: (… size -- virt) none Allocates size bytes of memory, contiguous within the direct-memory-access address space of the device bus, suitable for direct memory access by a “bus master” device. The memory is allocated according to the most stringent alignment requirements for the bus. Returns the virtual address virt. That virtual address is suitable for CPU access to the allocated region, but, in general, dma-map-in must be used to convert it to an address suitable for direct memory access by the bus-master device. The ellipsis in the stack diagram indicates that some memory-mapped buses may require additional mapping space parameters. See the Open Firmware binding for the bus in question. (In the case of the PCI bus, no additional parameters required.) If the requested operation cannot be performed, a throw is called with an appropriate error message, as with abort". Consequently, out-of-memory conditions can be detected and handled properly in the code with the phrase ['] dma-alloc catch. Drivers will normally use the dma-alloc method of their parent:

" dma-alloc" $call-parent " dma-map-in" $call-parent

For example:

: my-dma-alloc (--) my-size " dma-alloc" to my-vaddr ;

$call-parent

(vaddr)

See also: dma-map-in, dma-free, Appendix C, “PCI Bus Binding to Open Firmware”

dma-free

stack: code: (virt size --) none Frees size bytes of memory at virtual address virt that were previously allocated with dma-alloc.

dma-map-in

stack: code: (… virt size cacheable? -- devaddr) none Converts the virtual address range virt size that was previously allocated by the dma-alloc method into an address suitable for DMA on the device bus. Returns this address devaddr. dma-map-in can also be used to map application-supplied data buffers for DMA use on the bus, if possible. The ﬂag cacheable? should be nonzero if you would like to make use of caches for the DMA buffer if they are available. Immediately after dma-map-in has been executed, the contents of the address range as seen by the processor (the processor’s “view”) is the same as the contents as seen by

Chapter 12 - Open Firmware Dictionary

217

the device that performs the DMA (the device’s “view”). After the DMA device has performed DMA or the processor has performed a write to the range in question, the contents of the address range as seen by the processor (the processor’s “view”) is not necessarily the same as the contents as seen by the device that performs the DMA (the device’s “view”). The two views can be made consistent by executing dma-map-out or dma-sync. The ellipsis in the stack diagram indicates that some memory-mapped buses may require additional mapping space parameters. See the Open Firmware binding for the bus in question. (In the case of the PCI bus, no additional parameters required.) If the requested operation cannot be performed, a throw is called with an appropriate error message, as with abort". Consequently, out-of-memory conditions can be detected and handled properly with the phrase ['] dma-map-in catch. See also: dma-map-out, Appendix C, “PCI Bus Binding to Open Firmware”

dma-map-out

stack: code: (virt devaddr size --) none Frees the DMA mapping speciﬁed by virt devaddr size that was previously created with dma-map-in. In addition, ﬂushes all caches associated with that mapping (with dma-sync).

dma-sync

stack: code: (virt devaddr size --) none Flushes any memory caches associated with the DMA mapping virt devaddr size. The parameters virt devaddr and size need not be identical to the values previously used with dma-map-in to obtain the memory cache. dma-map-in and dma-map-out must map and unmap memory in identically-sized pieces. However, dma-sync can work on smaller pieces within a given mapping. The system will automatically round up the dma-sync parameters to the appropriate synchronization boundary (typically a cache line boundary) which is not necessarily the same as the mapping boundary (typically a page boundary).

do

stack: (C: -- dodest-sys) (limit start --) (R: -- sys) code: none generates: b(do) +offset Begins a counted loop in the form do…loop or do…+loop. The loop index begins at start, and terminates based on limit. See loop and +loop for details on how the loop is terminated. The loop is always executed at least once. For example:

8 3 do 9 3 do i . i . loop \ would print 3 4 5 6 7 2 +loop \ would print 3 5 7

do may be used either inside or outside of colon deﬁnitions.

218

Writing FCode Programs for PCI

?do

stack:

“question do”

(C: -- dodest-sys) (limit start --) (R: -- sys) code: none generates: b(?do) +offset Begin a counted loop in the form ?do…loop or ?do…+loop. The loop index begins at start, and terminates based on limit. See loop and +loop for details on how the loop is terminated. Unlike do, if start is equal to limit the loop is executed zero times. For example:

8 2 1 1 1 ?do i . loop 1 ?do i . loop 1 ?do i . loop 1 do i . loop \ \ \ \ would would would would print print print print 1 2 3 4 5 6 7 1 nothing 1 2 3 4 5 6 7 8 9 …

?do can be used in place of do in nearly all circumstances. ?do may be used either inside or outside of colon deﬁnitions.

does>

stack: code: (E: … -- ???) none Sets the run-time behavior of a create…does> construct.

draw-character

stack: code: (char --) 157 A defer word that is called by the boot ROM’s terminal emulator in order to display a single character on the screen at the current cursor location. This word is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which loads fb1-draw-character or fb8-draw-character, respectively).

draw-logo

stack: code: (line# addr width height --) 161 A defer word that is called by the system to display the power-on logo (the graphic displayed on the left side during power-up, or by banner). This word is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which load fb1-draw-logo or fb8-draw-logo, respectively). It is possible to pack a custom logo into the FCode ROM and then re-initialize draw-logo to output the custom logo instead. draw-logo is called by the system using the following parameters:

Chapter 12 - Open Firmware Dictionary

219

line# - The text line number at which to draw the logo. For general use, see Appendix B, “FCode Memory Allocation”. addr - The address of the logo template to be drawn. In practice, this will always be either the address of the oem-logo ﬁeld in NVRAM, the address of a custom logo in the FCode ROM, or the address of the built-in system logo. In either case, the logo is a bit array of 64x64 (decimal) pixels (512 bytes). The most signiﬁcant bit (MSB) of the ﬁrst byte represents the upper-left pixel; (MSB-1) represents the next pixel to the right, and so on. A bit value of 1 means that pixel will be painted. width - The width of the passed-in logo (in pixels). height- The height of the passed-in logo (in pixels).

draw-logo

stack: code: (line# addr width height --) none A package method that draws a logo on an output device. The arguments and semantics of this method are identical to those of the draw-logo FCode Function. is-install automatically creates an implementation of this method that executes the draw-logo defer word. See also: "display", banner, draw-logo (FCode Function)

drop

stack: code: (x --) 46 Removes one item from the stack.

2drop

stack: code: (x1 x2 --) 52 Removes two items from the stack.

3drop

stack: (x1 x2 x3 --) code: none generates: drop 2drop Removes three items from the stack.

dump

stack: code: (addr len --) none Displays len bytes of memory starting at addr.

220

Writing FCode Programs for PCI

dup

stack: code:

“dupe”

(x -- x x) 47 Duplicates the top stack item.

2dup

stack: code:

“two dupe”

(x1 x2 -- x1 x2 x1 x2) 53 Duplicates the top two stack items.

3dup

“three dupe”

stack: (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) code: none generates: 2 pick 2 pick 2 pick Duplicates the top three stack items.

?dup

stack: code:

“question dupe”

(x -- 0 | x x) 50 Duplicates the top stack item unless it is zero.

else

stack: (C: orig-sys1 -- orig-sys2) (--) code: none generates: bbranch +offset b(>resolve) Begin the else clause of an if…else…then statement. See if for more details.

emit

stack: code: (char --) 8f A defer word that outputs the indicated ASCII character. For example, h# 41 emit outputs an “A”, h# 62 emit outputs a “b”, h# 34 emit outputs a “4”.

emit-byte

stack: (FCode# --) code: none generates: n An FCode-only command used to manually output a desired byte of FCode. Use it together with tokenizer[as follows:

tokenizer[44 emit-byte 20 emit-byte]tokenizer

Chapter 12 - Open Firmware Dictionary

221

emit-byte would be useful, for example, if you wished to generate a new FCode command that the tokenizer did not understand. This command should be used with caution or else an invalid FCode Program will result. See also: tokenizer[,]tokenizer

encode+

stack: code: (prop-addr1 prop-len1 prop-addr2 prop-len2 -- prop-addr3 prop-len3) 112 Merge two property value arrays into a single property value array. The two input arrays must have been created sequentially with no intervening dictionary allocation or other property value arrays having been created. This can be called repeatedly, to create complex, multi-valued property value arrays for passing to property. For example, suppose you wished to create a property named myprop with the following information packed sequentially:

"size" 2000 "vals" 3 128 40 22

This could be written in FCode as follows:

: encode-string,num (addr len number --) >r encode-string r> encode-int encode+ ; " size" 2000 encode-string,num " vals" 3 encode-string,num encode+ 128 encode-int encode+ 40 encode-int encode+ 22 encode-int encode+ " myprop" property

encode-bytes

stack: code: (data-addr data-len -- prop-addr prop-len) 115 Encodes a byte array into a property value array. The external representation of a byte array is the sequence of bytes itself, with no appended null byte. For example:

my-idprom h# 20 encode-bytes " idprom" property

encode-int

stack: code: (quad -- prop-addr 4) 111 Convert a 4-byte integer into a 4 byte property value array with the most signiﬁcant byte at the smallest address. Such an array is suitable for passing as a value to property. For example:

1152 encode-int " hres" property

222

Writing FCode Programs for PCI

encode-phys

stack: code: (phys.lo … phys.hi -- prop-addr prop-len) 113 Encodes a unit-address into a property value array by property encoding the list of cells denoting a unit address in the order of phys.hi followed by the encoding of the component that appears on the stack below phys.hi, and so on, ending with the encoding of the phys.lo component. The number of cells in the list phys.lo … phys.hi is determined by the value of the "#address-cells" property of the parent node. For example:

my-address my-space encode-phys " resetloc" property

encode-string

stack: code: (str len -- prop-addr prop-len) 114 Converts an ordinary string, such as created by ", into a property value array suitable for property. For example:

" JBB,WMB,GRH" encode-string " authors" property

encode-unit

stack: code: (phys.lo … phys.hi -- unit-str unit-len) none Converts phys.lo … phys.hi, the numerical representation, to unit-string, the text string representation of a physical address within the address space deﬁned by this device node. The number of cells in the list phys.lo … phys.hi is determined by the value of the "#address-cells" property of this node. encode-unit is a static method.

end0

stack: code: (--) 00 A word that marks the end of an FCode Program. This word must be present at the end of your program or erroneous results may occur. If you want to use end0 inside a colon deﬁnition, for example in a conditional clause, use something like:

: exit-if-version2 fcode-revision h# 30000 < if ['] end0 execute then ;

end0

stack: (--) A User Interface command to cause the command interpreter to ignore the remainder

Chapter 12 - Open Firmware Dictionary

223

of the input buffer and all subsequent lines from the same input source. The optional User Interface semantics of this command duplicate the purpose, but not the detailed behavior, of the FCode semantics. The detailed behavior differs because the User Interface command interpreter processes text, while the FCode Evaluator processes byte-coded FCode Programs.

end1

stack: code: (--) FF An alternate word for end0, to mark the end of an FCode Program. end0 is recommended. end1 is not intended to appear in source code. It is deﬁned as a guard against misprogrammed ROMs. Unprogrammed regions of ROM usually appear as all ones or all zeroes. Having both 0x00 and 0xFF deﬁned as end codes stops the FCode interpreter if it enters an unprogrammed region of a ROM.

endcase

stack: (C: case-sys --) (sel --) code: none generates: b(endcase) Marks the end of a case statement. See case for more details.

end-code

stack: code: (C: code-sys --) none Ends the creation of a machine-code sequence. No additional assembly language code is assembled. code-sys is balanced by the corresponding code or label.

endof

stack: (C: case-sys1 of-sys -- case-sys2) (--) code: none generates: b(endof) +offset Marks the end of an of clause within a case statement. See case for more details.

end-package

stack: code: (--) none Closes the device tree entry set up with begin-package by performing the following:

s s s

Call finish-device to close the child device node. Set the working vocabulary to Forth. Call close-dev.

224

Writing FCode Programs for PCI

environment?

stack: code: (str len -- false | value true) none Return system information based on input keyword. The exact set of recognized keyword strings is implementation-dependent.

erase

stack: (addr len --) code: none generates: 0 fill Sets len bytes of memory beginning at addr to zero. No action is taken if len is zero.

erase-screen

stack: code: (--) 15A A defer word that is called once during the terminal emulator initialization sequence in order to completely clear all pixels on the display. This word is called just before reset-screen, so that the user doesn’t actually see the framebuffer data until it has been properly scrubbed. This word is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which load fb1-erase-screen or fb8-erase-screen, respectively).

eval

stack: (… str len -- ???) code: none generates: evaluate Synonym for evaluate.

evaluate

stack: code: (… str len -- ???) CD Takes a string from the stack (speciﬁed as an address and a length) and interprets the characters in that string as if they were entered from the keyboard. The overall stack effect depends on the commands being executed. For example:

" 4000 20 dump" evaluate

evaluate can be used to interpret the code contained in a Forth text ﬁle that has been loaded into memory . For example:

ok ok ok ok ok 10000 buffer: filebuf " /pci/isa/floppy:,\framus.fth" open-dev (ihandle) >r filebuf 10000 " read" r@ $call-method (#read) r> close-dev filebuf swap evaluate

Chapter 12 - Open Firmware Dictionary

225

You can use evaluate, like $find, to ﬁnd and execute Forth commands that are not FCodes. The same cautions apply to evaluate as for $find in that programs executing Forth commands are likely to encounter portability problems when moved to other systems.

even

stack: code: (n -- n | n+1) none Rounds to the nearest even integer >= n.

execute

stack: code: (… xt -- ???) 1D Executes the word deﬁnition whose execution token is xt. An error condition exists if xt is not an execution token. For example:

: my-word (addr len --) ." Given string is: " type cr ; " great" ['] my-word execute

execute-device-method

stack: code: (… dev-str dev-len method-str method-len -- … false | ??? true) none Executes the named method in the package named dev-string. dev-string is a devicespeciﬁer. Returns false if the method could not be executed (i.e. the device-speciﬁer is invalid, or that device has no method with the given name, or execution of that method resulted in an abort or throw). Otherwise, returns true above whatever results were placed on the stack by the execution of the method. See also: apply

"existing"

This property deﬁnes the regions of virtual address space managed by the memory management unit (MMU) in whose package this property is deﬁned, without regard to whether or not these regions are currently in use. The property value is an arbitrary number of (virtual-address,len) pairs where:

s s

virtual-addr is one or more integers encoded with encode-int. len is one or more integers, each encoded with encode-int.

The encodings of virtual-addr and len are MMU-speciﬁc. See also: "available", map, modify, "reg", translate, unmap

226

Writing FCode Programs for PCI

exit

stack: code: (--) (R: nest-sys --) 33 Compiled within a colon deﬁnition. When encountered, execution leaves the current word and returns control to the calling word speciﬁed by nest-sys. Must be preceded by unloop if used within a do loop . For example:

: probe-loop (addr --) \ Generate a tight probe loop until any key is pressed. begin dup l@ drop key? if drop exit then again ; : find-value (test-value start-addr --) \ Searches up to 100 locations looking for a test value. 100 bounds do (test-value) i c@ over = if (test-value) ." Found at " i . cr drop unloop exit then loop (test-value) . ." not found" cr ;

See also: abort, leave, unloop

exit?

stack: code:

“exit question”

(-- done?) none Handles output pagination while providing user control. Returns true if the user has requested the cessation of output from the current command. exit? is used inside loops that might send many lines of output to the console. It is typically called once for each line of output. The precise behavior is implementation-dependent; a typical behavior follows:

s

If the value contained in the #line variable is greater than a predetermined value (typically returned by a word named lines/page) prompt the user with the message:

More [<space>,<cr>,q] ?

and wait for a character to be typed on the console. If that character is “q” return true. If that character is “<cr>” (carriage return) arrange for the next call to exit? to prompt the user, and return false. If the character is neither “q” or “<cr>” set the contents of #line to zero and return false.

s

If a “q” character has been typed on the console input device since the last time that exit? was called return true. If any other character has been typed, prompt for what to do next, as shown above, and return false. The typical behavior described above has the following features (assuming that output-generating commands call exit? once per line of output): a) Output pauses at the end of each page of output, allowing the user to either stop

s

s

Chapter 12 - Open Firmware Dictionary

227

further output (“q”), get one more line output before pausing again (“<cr>”) or continue with the next page of output (“<space>”). b) The user can stop further output at any time by typing “q”. c) The user can cause a pause before the end of a page by typing a character other than “q”.

expect

stack: code: (addr len --) 8A A defer word that receives a line of characters from the keyboard and stores them into memory, performing line editing as the characters are typed. Displays all characters actually received and stored into memory. The number of received characters is stored in span. The transfer begins at addr proceeding towards higher addresses one byte per character until either a carriage return is received or until len characters have been transferred. No more than len characters will be stored. The carriage return is not stored into memory. No characters are received or transferred if len is zero. For example:

h# 10 buffer: my-name-buff : hello (--) ." Enter Your First name " my-name-buff h# 10 expect ." FirmWorks Welcomes " my-name-buff span @ type cr ;

We encourage the use of accept rather than expect.

external

stack: code: (--) none After issuing external, all subsequent deﬁnitions are created so that names are later compiled into RAM, regardless of the value of the NVRAM variable fcode-debug?. external is used to deﬁne the package methods that may be called from software external to the package, and whose names must therefore be present. external stays in effect until headers or headerless is encountered. For example:

external : open (-- ok?) … ;

external-token

stack: code: (--) (F: /FCode-string FCode#/ --) CA A token-type that is used to indicate that this word should always be compiled with the name header present. Activated by external, all subsequent words are created with external-token until deactivated with either headers or headerless. See

228

Writing FCode Programs for PCI

named-token for more details. This word should never be used in source code.

false

stack: (-- false) code: none generates: 0 Leaves the value for false (i.e. zero) on the stack.

fb1-blink-screen

stack: code: (--) 174 The built-in default routine to blink or ﬂash the screen momentarily on a generic 1-bitper-pixel framebuffer. This routine is loaded into the defer word blink-screen by calling fb1-install. This routine is invalid unless the FCode Program has called fb1-install and has initialized frame-buffer-adr to a valid virtual address. This word is implemented simply by calling fb1-invert-screen twice. In practice, this can be quite slow (around one full second). It is quite common for a framebuffer FCode Program to replace fb1-blink-screen with a custom routine that simply disables the video for 20 milliseconds or so. For example:

: my-blink-screen (--) video-off 20 ms … fb1-install … ['] my-blink-screen to blink-screen video-on ;

fb1-delete-characters

stack: code: (n --) 177 The built-in default routine to delete n characters at and to the right of the cursor, on a generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word delete-characters by calling fb1-install. This routine is invalid unless the FCode Program has called fb1-install and set-font and has initialized frame-buffer-adr to a valid virtual address. The cursor position is unchanged, the cursor character and the next n-1 characters to the right of the cursor are deleted, and the remaining characters to the right are moved left by n places. The end of the line is ﬁlled with blanks.

fb1-delete-lines

stack: code: (n --) 179 The built-in default routine to delete n lines, starting with the line below the cursor line, on a generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word delete-lines by calling fb1-install. This routine is invalid unless the FCode Program has called fb1-install and

Chapter 12 - Open Firmware Dictionary

229

set-font and has initialized frame-buffer-adr to a valid virtual address. The n lines at and below the cursor line are deleted. All lines above the cursor line are unchanged. The cursor position is unchanged. All lines below the deleted lines are scrolled upwards by n lines, and n blank lines are placed at the bottom of the active text area.

fb1-draw-character

stack: code: (char --) 170 The built-in default routine for drawing a character on a generic 1-bit-per-pixel framebuffer, at the current cursor location. This routine is loaded into the defer word draw-character by calling fb1-install. This routine is invalid unless the FCode Program has called fb1-install and set-font and has initialized frame-buffer-adr to a valid virtual address. If inverse? is true, then characters are drawn inverted (white-on-black). Otherwise (the normal case) they are drawn black-on-white.

fb1-draw-logo

stack: code: (line# addr width height --) 17A The built-in default routine to draw the logo on a generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word draw-logo by calling fb1-install. This routine is invalid unless the FCode Program has called fb1-install and set-font and has initialized frame-buffer-adr to a valid virtual address. See draw-logo for more information on the parameters passed.

fb1-erase-screen

stack: code: (--) 173 The built-in default routine to clear (erase) every pixel in a generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word erase-screen by calling fb1-install. This routine is invalid unless the FCode Program has called fb1-install and has initialized frame-buffer-adr to a valid virtual address. All pixels are erased (not just the ones in the active text area). If inverse-screen? is true, then all pixels are set to 1, resulting in a black screen. Otherwise (the normal case) all pixels are set to 0, resulting in a white screen.

fb1-insert-characters

stack: code: (n --) 176 The built-in default routine to insert n blank characters to the right of the cursor, on a generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word insert-characters by calling fb1-install. This routine is invalid unless the FCode Program has called fb1-install and

230

Writing FCode Programs for PCI

set-font and has initialized frame-buffer-adr to a valid virtual address. The cursor position is unchanged, but the cursor character and all characters to the right of the cursor are moved right by n places. An error condition exists if an attempt is made to create a line longer than the maximum line size (the value in #columns).

fb1-insert-lines

stack: code: (n --) 178 The built-in default routine to insert n blank lines below the cursor on a generic 1-bitper-pixel framebuffer. This routine is loaded into the defer word insert-lines by calling fb1-install. This routine is invalid unless the FCode Program has called fb1-install and set-font and has initialized frame-buffer-adr to a valid virtual address. The cursor position on the screen is unchanged. The cursor line is pushed down, but all lines above it are unchanged. Any lines pushed off of the bottom of the active text area are lost.

fb1-install

stack: code: (width height #columns #lines --) 17B This built-in routine installs all of the built-in default routines for driving a generic 1bit-per-pixel framebuffer. It also initializes most necessary values needed for using these default routines. set-font must be called, and frame-buffer-adr initialized, before fb1-install is called, because the char-width and char-height values set by set-font are needed when fb1-install is executed. fb1-install loads the following defer routines with their corresponding fb1-(whatever) equivalents: reset-screen, toggle-cursor, erase-screen, blink-screen, invert-screen, insert-characters, delete-characters, insert-lines, delete-lines, draw-character, draw-logo. The following values are also initialized: screen-width - set to the value of the passed-in parameter width (screen width in pixels) screen-height - set to the value of the passed-in parameter height (screen height in pixels) #columns - set to the smaller of the following two: the passed-in parameter #columns, and the NVRAM parameter screen-#columns #lines - set to the smaller of the following two: the passed-in parameter #lines, and the NVRAM parameter screen-#rows window-top - set to half of the difference between the total screen height (screen-height) and the height of the active text area (#lines times char-height)

Chapter 12 - Open Firmware Dictionary

231

window-left - set to half of the difference between the total screen width (screen-width) and the width of the active text area (#columns times charwidth), then rounded down to the nearest multiple of 32 (for performance reasons) Several internal values used by various fb1- routine are also set.

fb1-invert-screen

stack: code: (--) 175 The built-in default routine to invert every visible pixel on a generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word invert-screen by calling fb1-install. This routine is invalid unless the FCode Program has called fb1-install and has initialized frame-buffer-adr to a valid virtual address. All pixels are inverted (not just the ones in the active text area).

fb1-reset-screen

stack: code: (--) 171 The built-in default routine to enable a generic 1-bit-per-pixel framebuffer to display data. This routine is loaded into the defer word reset-screen by calling fb1-install. (reset-screen is called just after erase-screen during the terminal emulator initialization sequence.) This word is initially a NOP. Typically, an FCode Program will deﬁne a hardwaredependent routine to enable video, and then replace this generic function with:

: my-video-enable (--) fb1-install … ['] my-video-enable … :

to reset-screen

fb1-slide-up

stack: code: (n --) 17C This is a utility routine. It behaves exactly like fb1-delete-lines, except that it doesn’t clear the lines at the bottom of the active text area. Its only purpose is to scroll the enable plane for framebuffers that have 1-bit overlay and enable planes. This routine is invalid unless the FCode Program has called fb1-install and set-font and has initialized frame-buffer-adr to a valid virtual address.

fb1-toggle-cursor

stack: code: (--) 172 The built-in default routine to toggle the cursor location in a generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word toggle-cursor by calling

232

Writing FCode Programs for PCI

fb1-install. The behavior is to invert every pixel in the one-character-size space for the current position of the text cursor. This routine is invalid unless the FCode Program has called fb1-install and set-font and has initialized frame-buffer-adr to a valid virtual address.

fb8-blink-screen

stack: code: (--) 184 The built-in default routine to blink or ﬂash the screen momentarily on a generic 8-bitper-pixel framebuffer. This routine is loaded into the defer word blink-screen by calling fb8-install. This routine is invalid unless the FCode Program has called fb8-install and has initialized frame-buffer-adr to a valid virtual address. This word is implemented simply by calling fb8-invert-screen twice. In practice, this can be very slow (several seconds). It is quite common for a framebuffer FCode Program to replace fb8-blink-screen with a custom routine that simply disables the video for 20 milliseconds or so. For example:

: my-blink-screen … (--) video-off 20 ms video-on ;

fb8-install

… ['] my-blink-screen to blink-screen

fb8-delete-characters

stack: code: (n --) 187 The built-in default routine to delete n characters to the right of the cursor, on a generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word deletecharacters by calling fb8-install. This routine is invalid unless the FCode Program has called fb8-install and set-font and has initialized frame-buffer-adr to a valid virtual address. The cursor position is unchanged. The cursor character and the next n-1 characters to the right of the cursor are deleted, and the remaining characters to the right are moved left by n places. The end of the line is ﬁlled with blanks.

fb8-delete-lines

stack: code: (n --) 189 The built-in default routine to delete n lines, starting with the line below the cursor line, on a generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word delete-lines by calling fb8-install. This routine is invalid unless the FCode Program has called fb8-install and set-font and has initialized frame-buffer-adr to a valid virtual address. The n lines at and below the cursor line are deleted. All lines above the cursor line are unchanged. The cursor position is unchanged. All lines below the deleted lines are

Chapter 12 - Open Firmware Dictionary

233

scrolled upwards by n lines, and n blank lines are placed at the bottom of the active text area.

fb8-draw-character

stack: code: (char --) 180 The built-in default routine for drawing a character on a generic 8-bit-per-pixel framebuffer, at the current cursor location. This routine is loaded into the defer word draw-character by calling fb8-install. This routine is invalid unless the FCode Program has called fb8-install and set-font and has initialized frame-buffer-adr to a valid virtual address. If inverse? is true, then characters are drawn inverted (white-on-black). Otherwise (the normal case) they are drawn black-on-white.

fb8-draw-logo

stack: code: (line# addr width height --) 18A The built-in default routine to draw the logo on a generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word draw-logo by calling fb8-install. This routine is invalid unless the FCode Program has called fb8-install and set-font and has initialized frame-buffer-adr to a valid virtual address. See draw-logo for more information on the parameters passed.

fb8-erase-screen

stack: code: (--) 183 The built-in default routine to clear (erase) every pixel in a generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word erase-screen by calling fb8-install. This routine is invalid unless the FCode Program has called fb8-install and has initialized frame-buffer-adr to a valid virtual address. All pixels are erased (not just the ones in the active text area). If inverse-screen? is true, then all pixels are set to 0xff, resulting in a black screen. Otherwise (the normal case) all pixels are set to 0, resulting in a white screen.

fb8-insert-characters

stack: code: (n --) 186 The built-in default routine to insert n blank characters to the right of the cursor, on a generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word insert-characters by calling fb8-install. This routine is invalid unless the FCode Program has called fb8-install and set-font and has initialized frame-buffer-adr to a valid virtual address. The cursor position is unchanged, but the cursor character and all characters to the right of the cursor are moved right by n places. An error condition exists if an attempt

234

Writing FCode Programs for PCI

is made to create a line longer than the maximum line size (the value in #columns).

fb8-insert-lines

stack: code: (n --) 188 The built-in default routine to insert n blank lines below the cursor on a generic 8-bitper-pixel framebuffer. This routine is loaded into the defer word insert-lines by calling fb8-install. This routine is invalid unless the FCode Program has called fb8-install and set-font and has initialized frame-buffer-adr to a valid virtual address. The cursor position is unchanged. The cursor line is pushed down, but all lines above it are unchanged. Any lines pushed off of the bottom of the active text area are lost.

fb8-install

stack: code: (width height #columns #lines --) 18B This built-in routine installs all of the built-in default routines for driving a generic 8bit-per-pixel framebuffer. It also initializes most necessary values needed for using these default routines. set-font must be called, and frame-buffer-adr initialized, before fb8-install is called, because the char-width and char-height values set by set-font are needed when fb8-install is executed. fb8-install loads the following defer routines with their corresponding fb8-(whatever) equivalents: reset-screen, toggle-cursor, erase-screen, blink-screen, invert-screen, insert-characters, delete-characters, insert-lines, delete-lines, draw-character, draw-logo The following values are also initialized: screen-width - set to the value of the passed-in parameter width (screen width in pixels) screen-height - set to the value of the passed-in parameter height (screen height in pixels) #columns - set to the smaller of the following two: the passed-in parameter #columns, and the NVRAM parameter screen-#columns #lines - set to the smaller of the following two: the passed-in parameter #lines, and the NVRAM parameter screen-#rows window-top - set to half of the difference between the total screen height (screen-height) and the height of the active text area (#lines times char-height) window-left - set to half of the difference between the total screen width (screen-width) and the width of the active text area (#columns times char-width), then rounded down to the nearest multiple of 32 (for performance reasons) Several internal values are also set that are used by various fb8- routines.

Chapter 12 - Open Firmware Dictionary

235

fb8-invert-screen

stack: code: (--) 185 The built-in default routine to XOR (with hex 0xFF) every visible pixel on a generic 8bit-per-pixel framebuffer. This routine is loaded into the defer word invert-screen by calling fb8-install. This routine is invalid unless the FCode Program has called fb8-install and has initialized frame-buffer-adr to a valid virtual address. All pixels are inverted (not just those in the active text area).

fb8-reset-screen

stack: code: (--) 181 The built-in default routine to enable a generic 8-bit-per-pixel framebuffer to display data. This routine is loaded into the defer word reset-screen by calling fb8-install. (reset-screen is called just after erase-screen during the terminal emulator initialization sequence.) This word is initially a NOP. Typically, an FCode Program will deﬁne a hardwaredependent routine to enable video, and then replace this generic function with:

: my-video-enable (--) … :

fb8-install

… ['] my-video-enable to reset-screen

fb8-toggle-cursor

stack: code: (--) 182 The built-in default routine to toggle the cursor location in a generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word toggle-cursor by calling fb8-install. The behavior is to XOR every pixel with 0xFF in the one-character-size space for the current position of the text cursor. This routine is invalid unless the FCode Program has called fb8-install and set-font and has initialized frame-buffer-adr to a valid virtual address.

fcode-debug?

stack: (-- save-names?) This conﬁguration variable is a boolean specifying whether to preserve the names of local FCodes created with named-token in the Forth dictionary. If fcode-debug? is true, the name ﬁelds for FCodes with headers are preserved. If fcode-debug? is false, discard those names ﬁelds. The suggested default value of fcode-debug? is “false”.

236

Writing FCode Programs for PCI

fcode-end

stack: code: (--) none This tokenizer macro is used to mark the end of an FCode program. fcode-end causes the tokenizer to:

s s s

Generate the FCode for end0. Stop tokenizing the current program. Compute the checksum and length for the program and to update the checksum and length ﬁelds in the program’s FCoder header.

fcode-revision

stack: code: (-- n) 87 Returns a 32-bit number identifying the version of the device interface. The high 16 bits is the major version number and the low 16 bits is the minor version number. The revision of the device interface described by IEEE Standard 1275-1994 is “3.0”. In a system compatible with that speciﬁcation, fcode-revision will return 0x0003.0000. For example:

: exit-if-not-1275-1994 (--) fcode-revision h# 30000 < if ;

['] end0 execute

then

fcode-version1

stack: code: (--) none This tokenizer macro is used to start FCode programs intended to be compatible with early OpenBoot systems. That being the case, this macro will seldom be used with PCI devices. fcode-version1 generates the FCode header for an FCode program (based upon tokenizer switches). If the default tokenizer switches are used, fcode-version1 begins the header with the version1 FCode.

fcode-version2

stack: code: (--) none This tokenizer macro causes the tokenizer to:

s s s

Prepare to tokenize subsequent source text. Output the FCode for start1. Output an FCode header.

The length and checksum ﬁelds of the FCode header are ﬁlled in by the fcode-end tokenizer macro.

Chapter 12 - Open Firmware Dictionary

237

ferror

stack: code: (--) FC Displays an “Unimplemented FCode” error message and stops FCode interpretation at the completion of the function whose evaluation resulted in the execution of ferror. All unimplemented FCode numbers resolve to ferror in Open Firmware. The intended use of ferror is to determine whether or not a particular FCode is implemented, without checking the FCode version number. For example:

: implemented? (xt -- flag) ['] ferror <> ; : my-peer (prev -- next) ['] peer implemented? if peer else ." peer is not implemented" cr then ;

ﬁeld

stack: (E: addr -- addr+offset) (offset size “new-name<>” -- offset+size) code: none generates: new-token|named-token|external-token b(field) struct and field are used to create named offset pointers into a structure. For each ﬁeld in the structure, a name is assigned to the location of that ﬁeld (as an offset from the beginning of the structure). The structure being described is:

\ \ \ \ \ \ \ \ size flags bits key fullname initials lastname age Bytes Bytes Byte Byte Bytes Bytes Bytes Bytes 0 - 1 2 - 5 6 7 8 - 17 8 - 9 10 - 17 18 - 19

The ﬁeld deﬁnitions are shown below. (The numbers in parentheses show the stack after each word is created.)

struct 2 field size 4 field flags 1 field bits 1 field key 0 field fullname 2 field initials 8 field lastname 2 field age constant /record ((((((((((0) 2) 6) 7) 8) 8) 10) 18) 20))

\ \ \ \ \ \ \ \ \

equivalent equivalent equivalent equivalent equivalent equivalent equivalent equivalent equivalent

to: to: to: to: to: to: to: to: to:

: size 0 + ; : flags 2 + ; : bits 6 + ; : key 7 + ; : fullname 8 + ; : initials 8 + ; : lastname 10 + ; : age 18 + ; 20 constant /record

238

Writing FCode Programs for PCI

Typical usage of these deﬁned words would be:

/record buffer: myrecord myrecord flags l@ myrecord key c@ myrecord size w@ /record \ Create the "myrecord" buffer \ get flags data \ get key data \ get size data \ get total size of the array

Note that struct is primarily a documentation aid that leaves the initial value of the structure’s size (i.e. 0) on the stack.

ﬁll

stack: code: (addr len byte --) 79 Sets len bytes of memory beginning at addr to the value byte. No action is taken if len = 0.

ﬁnd

stack: code: (pstr -- xt n | pstr 0) none Finds the command described by the counted string pstr. If found, returns -1 (if nonimmediate) or +1 (if immediate) on top of the command’s execution token. If not found, returns 0 on top of pstr.

$ﬁnd

stack: code: (name-str name-len -- xt true | name-str name-len false) CB Takes a string from the stack searches the current search order for it. During normal FCode evaluation, the search order consists of the vocabulary containing the visible methods of the current device node, followed by the Forth vocabulary. If the word is not found, the original string is left on the stack, with a false on top of the stack. If the word is found, the execution token of that word is left on the stack with true on top of the stack. $find is an escape hatch, allowing an FCode Program to perform any function that is available in the Open Firmware User Interface but that is not deﬁned as part of the standard FCode interface. Use $find with caution! Different systems or even different versions of Open Firmware may implement different subsets of the User Interface. If your FCode Program depends on a User Interface word, it might not work on some systems. Example of use:

" root-info" $find (addr len false | xt true) if execute \ if found, then do the function else (addr len) type ." was not found!" cr then

Chapter 12 - Open Firmware Dictionary

239

ﬁnd-device

stack: code: (dev-str dev-len --) none Makes the device node speciﬁed by dev-string the active package. If dev-string is the string "..", the active package is set to the parent of the currently active package. Otherwise, the active package is set using dev-string as the devicespeciﬁer. If the speciﬁed device is not found, abort is executed. find-device is similar to dev, except that its argument is a string on the stack instead of text parsed from the input buffer, allowing find-device to be used within a deﬁnition, with a literal string argument that is compiled into the deﬁnition. For example:

" device-alias" find-device

See also: device-end.

ﬁnd-method

stack: code: (method-str method-len phandle -- false | xt true) 207 Locates the method named by method-str method-len within the package phandle. Returns false if the package has no such method, or xt and true if the operation succeeds. Subsequently, xt can be used with call-package. For example:

: tftp-load-avail? (-- exist?) " obp-tftp" find-package if (phandle) " load" rot find-method if (xt) drop true exit then then false ;

ﬁnd-package

stack: code: (name-str name-len -- false | phandle true) 204 Locates a package whose name is given by the string name-str name-len. If the package can be located, returns its phandle and true. Otherwise returns false. The name is interpreted relative to the /packages device node. For example, if name-str name-len represents the string "disk-label", the package in the device tree at “/packages/disk-label” will be located. If there are multiple packages with the same name (within the /packages node), the phandle for the most recently created one is returned.

240

Writing FCode Programs for PCI

For example:

: tftp-load-avail? (-- exist?) " obp-tftp" find-package if (phandle) " load" rot find-method if (xt) drop true exit then then false ;

ﬁnish-device

stack: code: (--) 127 The two words finish-device and new-device let a single FCode Program declare more than one entry into the device tree. This capability is useful when a single PCI card contains two or more essentially independent devices, to be controlled by two or more separate operating system device drivers. Typical usage:

fcode-version2 \ begin a new device tree entry …driver#1… finish-device \ terminate device tree entry#1 new-device \ begin a new device tree entry …driver#2 finish-device \ terminate device tree entry#2 new-device \ begin a new device tree entry …driver#3… fcode-end \ terminate device tree entry#3

There is an implicit new-device call at the beginning of an FCode Program (at version1 or start1), and an implicit finish-device call at the end of an FCode Program (at end0). Thus, FCode Programs that only deﬁne a single device and driver will never need to call finish-device or new-device.

ﬂoad

stack: code: ([ﬁlename<cr>] --) none This command allows FCode text programs to be broken into function blocks for better clarity, portability and re-use. It behaves similarly to the #include statement in the C language. Arbitrary nesting of ﬁles with fload is allowed i.e. an fload’d ﬁle may include fload commands. When fload is encountered, the Tokenizer continues tokenizing the FCode found in the ﬁle ﬁlename. When the ﬁle ﬁlename has been tokenized, tokenizing resumes on the ﬁle that called ﬁlename with fload. For example:

fload my-disk-package.fth

Chapter 12 - Open Firmware Dictionary

241

Note – fload commands won’t work when downloading text in source-code form using dl. There are several ways to overcome this problem:

s s

s

Manually merge the ﬁles into one larger text ﬁle and download the merged ﬁle with dl. Create a “load ﬁle” and use the load ﬁle in conjunction with dl. (See “Downloading Multiple Files with dl and ﬂoad” on page 28 for a detailed explanation of this technique.) Tokenize the ﬁles ﬁrst and then download and execute the FCode in binary form.

fm/mod

stack: code: (d n -- rem quot) none Divides d by n and returns rem and quot.

>font

stack: code: (char -- addr) 16E This routine converts a character value (ASCII 0-0xFF) into the address of the font table entry for that character. For the normal, built-in font, only ASCII values 0x21-0x7E result in a printable character, other values will be mapped to a font entry for “blank”. This word is only of interest if you are implementing your own character-drawing routines. Note – >font will generate invalid results unless set-font has been called to initialize the font table to be used.

fontbytes

stack: code: (-- bytes) 16F A value, containing the interval between successive entries in the font table. Each entry contains the next scan line bits for the desired character. Each scan line is normally 12 pixels wide, and is stored as one bit per pixel, thus taking 1 1/2 bytes per scan line. The standard value for fontbytes is 2, meaning that the next scan line entry is 2 bytes after the previous one (the last 1/2 byte is wasted space). This word must be set to the appropriate value if you wish to use any fb1- or fb8utility routines or >font. This can be done with to, but is normally done by calling set-font. The standard value for fontbytes is one of the parameters returned by default-font.

242

Writing FCode Programs for PCI

forth

stack: code: (--) none Make Forth the context vocabulary.

frame-buffer-adr

stack: code: (-- addr) 162 This value returns the virtual address of the beginning of the current framebuffer memory. It must be set to an appropriate virtual address (using to) in order to use any of the fb1- or fb8- utility routines. It is suggested that this same value variable be used in any of your custom routines that require a framebuffer address, although of course you are free to create and use your own variable if you wish. Generally, you should only map in the framebuffer memory just before you are ready to use it, and unmap it if it is no longer needed. Typically, this means you should do your mapping in your “install” routine, and unmap it in your “remove” routine (see is-install and is-remove). Here’s some sample code:

h# 2.0000 constant h# 40.0000 constant /frame foffset \ # of bytes in frame buffer \ Location of frame buffer

: video-map (--) my-address foffset + /frame map-pci to frame-buffer-adr ; : video-unmap (--) frame-buffer-adr /frame free-virtual -1 to frame-buffer-adr \ Flag accidental accesses to a \ now-illegal address ; : power-on-selftest (--) video-map (test video memory) video-unmap ; power-on-selftest : my-install (--) video-map … ; : my-remove (--) video-unmap … ; … ['] my-install is-install ['] my-remove is-remove

Note – United States Patent No. 4,633,466, "Self Testing Data Processing System with Processor Independent Test Program", issued December 30, 1986 may apply to some or all elements of Open Firmware selftest. Anyone implementing Open Firmware should

Chapter 12 - Open Firmware Dictionary

243

take such steps as may be necessary to avoid infringement of that patent and any other applicable intellectual property rights.Consequently, the above example selftest is only intended to illustrate the concept of mapping a resource immediately before use, and of unmapping a resource immediately after use.

free-mem

stack: code: (a-addr len --) 8C Frees up len memory allocated by alloc-mem. The arguments a-addr and len must be the same as those used in a previous alloc-mem command. For example:

0 value my-string \ Holds address of temporary : .upc-string (addr len --) \ convert to uppercase and print. dup alloc-mem to my-string (addr len) tuck my-string swap move (len) my-string over bounds ?do i c@ upc i c! loop (len) my-string over type (len) my-string swap free-mem ;

free-virtual

stack: code: (virt size --) 105 Destroys an existing mapping and any "address" property. If the package associated with the current instance has an "address" property whose ﬁrst value encodes the same address as virt, delete that property. In any case, execute the parent instance’s map-out method with virt size as its arguments.

.fregisters

stack: code: (--) none Displays ﬂoating-point registers (if present). The exact set of registers displayed, and the format, is system-dependent.

get-inherited-property

stack: code: (name-str name-len -- true | prop-addr prop-len false) 21d Locates, within the package associated with the current instance or any of its parents, the property whose name is name-addr name-len. If the property exists, returns the property value array prop-addr prop-len and false. Otherwise returns true. The order in which packages are searched is the current instance ﬁrst, followed by its immediate parent, followed by its parent’s parent, and so on. This is useful for properties with default values established by a parent node, with the possibility of a

244

Writing FCode Programs for PCI

particular child node “overriding” the default value. For example:

: clock-frequency (-- val.addr len false | true " clock-frequency" get-inherited-property ;)

get-msecs

stack: code: (-- n) 125 Returns the current value in a free-running system counter. The number returned is a running total, expressed in milliseconds. You can use this for measuring time intervals (by comparing the starting value with the ending value). No assumptions should be made regarding the absolute number returned; only relative interval comparisons are valid. No assumptions should be made regarding the precision of the number returned. In some systems, the value is derived from the system clock, which typically ticks once per second. Thus, the value returned by get-msecs on such a system will be seen to increase in jumps of 1000 (decimal), once per second. For a delay timer of millisecond accuracy, see ms.

get-my-property

stack: code: (name-str name-len -- true | prop-addr prop-len false) 21A Locates, within the package associated with the current instance, the property named by name-addr name-len. If the property exists, returns the property value array val-addr val-len and false. Otherwise returns true. For example:

: show-model-name (--) " model" get-my-property if (val.addr len) ." model property is missing " else () ." model name is " type then () cr ;

get-package-property

stack: code: (name-str name-len phandle -- true | prop-addr prop-len false) 21F Locates, within the package phandle, the property named by name-addr name-len. If the property exists, returns the property value array prop-addr prop-len and false. Otherwise

Chapter 12 - Open Firmware Dictionary

245

returns true. For example:

: show-model-name (--) my-self ihandle>phandle (phandle) " model" rot get-package-property 0= if ." model name is " type cr else () ." model property is missing " cr then () ;

(val.addr len)

get-token

stack: code: (fcode# -- xt immediate?) DA Returns the execution token xt of the word associated with FCode number fcode# and a ﬂag immediate? that is true if and only if that word will be executed (rather than compiled) when the FCode Evaluator encounters its FCode number while in compilation state.

go

stack: code: (--) none Executes or resumes execution of a program in memory by restoring the processor state from the saved-program-state memory area and beginning/resuming the execution of the machine-code program. Resume execution at the address saved in the saved-program-state program counter register. This will normally contain the initial value for a newly-loaded program, or the resumption address for a suspended program. However, the saved program counter register can be altered by the user, causing the program to resume (when go is executed) from an arbitrary address. This command has no effect unless state-valid contains true. go can be used in conjunction with other commands in one of several ways:

s

After load (which also initializes saved-program-state), go executes the program just downloaded. After a program is suspended by entering the implementation-dependent “abortsequence” (which saves the processor state in saved-program-state), go resumes execution of the suspended program. When testing a program with breakpoints, and after a breakpoint has been encountered (which saves the processor state in saved-program-state), go resumes execution of the program being tested.

s

s

gos

stack: code: (n --) none Executes go n times.

246

Writing FCode Programs for PCI

h#

“aych number”

stack: ([number< >] -- n) code: none generates: b(lit) xx-byte xx-byte xx-byte xx-byte Causes the compiler/interpreter to interpret the immediately following number as a hexadecimal number (base sixteen), regardless of any previous settings of hex, decimal or octal. Only the immediately following number is affected. The value of base is unchanged. For example:

decimal h# 100 (equals decimal 256) 100 (equals decimal 100)

See also: d#, o#.

.h

“dot aych”

stack: (n --) code: none generates: base @ swap d# 16 base ! . base ! Displays n in hex (using .) The value of base is not permanently affected.

headerless

stack: code: (--) none Causes all subsequent deﬁnitions to be created in FCode without the name ﬁeld (the “head”). (See named-token and new-token.) This is sometimes done to save space in the ﬁnal FCode ROM, or possibly to make it more difﬁcult to reverse-engineer an FCode Program. All such headerless words can be used normally within the FCode Program, but cannot be called interactively from the User Interface for testing and development purposes. Unless ROM space and/or dictionary space is a major consideration, try not using headerless words, because they make debugging more difﬁcult. headerless remains in effect until headers or external is encountered. For example:

headerless h# 3 constant reset-scsi

headers

stack: code: (--) none Causes all subsequent deﬁnitions to be saved with the name ﬁeld (the “head”) intact. This is the initial default behavior.

Chapter 12 - Open Firmware Dictionary

247

Note that even normal FCode words (with heads) cannot be called interactively from the User Interface unless the NVRAM parameter fcode-debug? has been set to true before a system reset. headers remains in effect until headerless or external is encountered. For example:

headers : cnt@ (-- w) transfer-count-lo rb@ transfer-count-hi rb@ bwjoin ;

"height"

This standard property is associated with display devices. The property value is an integer (encoded with encode-int) that speciﬁes the number of displayable pixels in the “y” dimension of the display. See also: property

help

stack: ("{name}<eol>" --) Provides information for the speciﬁed category or command. If name is a speciﬁc command, lists help for that command, if available. Otherwise, displays an implementation-dependent message. For example:

ok help command-name

If name is a category, lists all help messages for commands in that category, or a list of sub-categories. For example:

ok help category-name

If name is omitted, general help and a list of available categories is provided. The number and names of categories/subcategories are implementation dependent.

here

stack: code: (-- addr) AD here returns the address of the next available dictionary location.

hex

stack: (--) code: none generates: b(lit) 16 base ! If used outside of a deﬁnition, commands the tokenizer program to interpret subsequent numbers in hex (base 16). If used within a deﬁnition, changes the value in

248

Writing FCode Programs for PCI

base affecting later numeric output when the FCode Program is executed. See also: base

hold

stack: code: (char --) 95 Inserts char into a pictured numeric output string. Typically used between <# and #>. For example:

: .32 (n --) base @ >r hex <# # # # # ascii . hold # # # # #> type r> base ! space ;

hop

stack: code: (--) none hop is one of the breakpoint commands. After a breakpoint has been encountered, hop executes a single instruction, or an entire subroutine call. hop behaves similarly to step except that, if the instruction to be executed is a subroutine call, hop executes the entire subroutine before stopping instead of just the call instruction. If the execution of that subroutine results in encountering another breakpoint, the result is implementation-dependent.

hops

stack: code: (n --) none Execute hop n times.

i

stack: code: (-- index) (R: loop-sys -- loop-sys) 19 index is a copy of the loop index of the immediately-enclosing do or ?do loop. Indeterminate results will be obtained if i is used elsewhere. For example:

: simple-loop (start len --) bounds ?do i .h cr loop ;

Chapter 12 - Open Firmware Dictionary

249

if

stack: (C: -- orig-sys) (do-next? --) code: none generates: b?branch +offset Execute the immediately-following code if do-next? is true. Used in the form:

do-next? if…else…then

or

do-next? if…then

If do-next? is true, the words following if are executed and the words following else are skipped. The else part is optional. If do-next? is false, words from if through else, or from if through then (when no else is used), are skipped.

ihandle>phandle

stack: code: (ihandle -- phandle) 20B Returns the phandle of the package from which the instance ihandle was created. This is often used with get-package-property to read the properties of the package corresponding to a given ihandle. For example:

: show-parent (--) my-parent ihandle>phandle " name" rot get-package-property 0= if ." my-parent is " type cr then ;

immediate

stack: code: (--) none Declares the previous deﬁnition as “immediate”.

>in

stack: code: (-- a-addr) none A variable containing the offset of the next input buffer character.

init-program

stack: code: (--) none Initializes saved-program-state to the system-dependent initial program state

250

Writing FCode Programs for PCI

required for beginning the execution of a client program.

input

stack: code: (dev-str dev-len --) none Selects the speciﬁed device for console input by searching for a device node matching the pathname or device-speciﬁer given by dev-str dev-len.

s s s s

If such a device is found, search for its read method. If the read method is found, open the device, as with open-dev. If the open succeeds, execute the device’s install-abort method, if any. If any of these steps fails, display an appropriate error message and return without performing the steps following the one that failed.

If there is a console input device, as indicated by a nonzero value in the stdin variable, execute the console input device’s remove-abort method and close the console input device. Set stdin to the ihandle of the newly opened device, making it the new console input device. For example:

ok " device-alias" input

input-device

stack: (-- dev-str dev-len) The value of this conﬁguration variable is a string describing the device-speciﬁer of the device to be established as the default console input device by install-console. The suggested default value is “keyboard”. For example:

ok setenv input-device device-alias <eol>

insert-characters

stack: code: (n --) 15D insert-characters is one of the defer words of the display device interface. The terminal emulator package executes insert-characters when it has processed a character sequence that calls for opening space for characters to the right of the cursor. Without moving the cursor, insert-characters moves the remainder of the line to the right, thus losing the n rightmost characters in the line, and ﬁlls the n vacated character positions with the background color. This word is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which loads fb1-insert-characters or fb8-insert-characters, respectively).

Chapter 12 - Open Firmware Dictionary

251

insert-lines

stack: code: (n --) 15F insert-lines is one of the defer words of the display device interface. The terminal emulator package executes insert-lines when it has processed a character sequence that calls for opening space for lines of text below the cursor. Without moving the cursor, insert-lines moves the cursor line and all following lines down, thus losing the n bottom lines. and ﬁlls the n vacated lines with the background color. This word is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which load fb1-insertlines or fb8-insert-lines, respectively).

install-abort

stack: code: (--) none Instructs the device driver to begin periodic polling for a keyboard abort sequence. If a keyboard abort sequence is subsequently encountered, abort is executed. This command is executed when the device is selected as the console input device.

install-console

stack: code: (--) none Activates the console function and selects the input and output devices as follows: a) Activate the console so that subsequent input (e.g. key) and output (e.g. emit) will use the devices selected by input and output. b) Execute output with the value returned by output-device. c) Execute input with the value returned by input-device. d) If the above code failed and there is a fallback device to be used for console functions, select that device as the console device. install-console may take other system-dependent actions to insure that a console device is available in the event of a failure, and may display messages indicating that such action has been taken.

instance

stack: code: (--) C0 Modiﬁes the next occurrence of value, variable, defer or buffer: to create instance-speciﬁc data instead of static data. Re-allocates the data each time a new instance of this package is created. For example:

-1 instance value my-chip-reg

252

Writing FCode Programs for PCI

.instruction

stack: code: (--) none Displays the address where the last breakpoint occurred and the instruction that would have executed next if the breakpoint had not been there. The instruction-display format is system-speciﬁc.

interpose

stack: code: (addr len phandle --) 12B Schedule the package identiﬁed by phandle’ for interposition, with the string addr len as its arguments. If a package is currently scheduled for interposition when interpose is executed, the result is undeﬁned (i.e. an Open Firmware implementation need not support multiple simultaneous interposition attempts). Note – This function must be executed only during the creation of an instance chain (i.e. during the execution of a package’s open method during pathname resolution in open-dev context, as in clauses (f2), (k1iii) and (m2) of section 4.3.1 of IEEE Standard 1275-1994.

"interrupts"

This property speciﬁes the interrupt level(s) used by this device and possibly other appropriate information (such as interrupt vectors). The level given is the bus-speciﬁc (local) level, not the CPU level. (The operating system driver translates the local level to the system level. This enables the FCode driver to be portable across platforms. See “"interrupts"” on page 73.) The actual format of the data is bus-speciﬁc; see the appropriate 1275 machine-speciﬁc binding document for details. The property value is an arbitrary number of (bus-speciﬁc) interrupt speciﬁers each typically encoded with encode-int. See also: "interrupts" in Chapter 5 “Properties”

"intr"

This property speciﬁes SBus interrupt level(s) and vector(s) used by this device. This property is included in this glossary because of the possibility that, even on systems that nominally do not support SBus, SBus devices might be used via a bus-tobus bridge. For complete details, see IEEE Standard 1275-1994.

inverse?

stack: code: (-- white-on-black?) 154 This value is part of the display device interface. The terminal emulator package sets inverse? to true when the escape sequences that it has processed have indicated that subsequent characters are to be shown with foreground and background colors

Chapter 12 - Open Firmware Dictionary

253

exchanged, and to false, indicating normal foreground and background colors, otherwise. The fb1- and fb8- frame buffer support packages draw characters with foreground and background colors exchanged if inverse? is true, and with normal foreground and background colors if inverse? is false. inverse? affects the character display operations draw-character, insert-characters, and delete-characters, but not the other operations such as insert-lines, delete-lines and erase-screen. inverse-screen? should be monitored as needed if your FCode Program is implementing its own set of framebuffer primitives. See also: inverse-screen?

inverse-screen?

stack: code: (-- black?) 155 This value is part of the display device interface. The terminal emulator package sets inverse-screen? to true when the escape sequences that it has processed have indicated that the foreground and background colors are to be exchanged for operations that affect the background, and to false, indicating normal foreground and background colors, otherwise. The fb1- and fb8- frame buffer support packages perform screen drawing operations other than character drawing operations with foreground and background colors exchanged if inverse-screen? is true, and with normal foreground and background colors is false. inverse-screen? affects background operations such as insert-lines, delete-lines and erase-screen, but not character display operations such as draw-character, insert-characters and delete-characters. When inverse-screen? and inverse? are both true, the colors are exchanged over the entire screen, and subsequent characters are not highlighted with respect to the (inverse) background. For exchanged screen colors and highlighted characters, the setting are inverse-screen? true and inverse? false. inverse-screen? should be monitored as needed if your FCode Program is implementing its own set of framebuffer primitives.

invert

stack: code: (x1 -- x2) 26 x2 is the one’s complement of x1 i.e. all the one bits in x1 are changed to zero, and all the zero bits are changed to one. For example:

: clear-lastbit (--) my-reg rl@ 1 not and my-reg rl! ;

See also 0=.

254

Writing FCode Programs for PCI

invert-screen

stack: code: (--) 15C invert-screen is one of the defer words of the display device interface. The terminal emulator package executes invert-screen when it has processed a character sequence that calls for exchanging the foreground and background colors (e.g. changing from black-on-white to white-on-black). invert-screen changes all pixels on the screen so that pixels of the foreground color are given the background color, and vice versa, leaving the colors that will be used by subsequent text output unaffected. This word is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which load fb1-invertscreen or fb8-invert-screen, respectively).

io

stack: code: (dev-str dev-len --) none Selects the indicated device for console input and output by executing input followed by output with dev-str dev-len as arguments in both cases. For example:

ok " device-alias" io

is-install

stack: code: (xt --) 11C Creates open, write, draw-logo and restore methods for display devices. xt is the execution token of a routine whose stack diagram is (--), and that initializes the display device. For any PCI framebuffer that is to be used by the boot ROM before or during booting, is-install declares the FCode procedure that should be used to install (i.e. initialize) that framebuffer. Note that this is distinct from any once-only power-on initialization that should be performed during the probing process itself. The is-install routine and is-remove routine should comprise a matched pair that may be performed alternately as many times as needed. Typically, the is-install routine performs mapping functions, enables PCI memory and/or I/O space accesses and performs some initialization. Typically, the is-remove performs any cleanup functions and then does a complementary disabling of the appropriate

Chapter 12 - Open Firmware Dictionary

255

address space(s) and unmaps the existing mappings. A partial, typical code example follows:

fcode-version2 … : map-devices (--) map-register map-buffer ; … : install-me (--) map-devices initialize-devices fb8-install ; : remove-me (--) reset-buffers unmap-devices ; … ['] install-me is-install ['] remove-me is-remove ['] test-me is-selftest fcode-end

\ Map register and buffer

\ Do this to start using this device

\ Install default defer word behaviors \ Do this to stop using this device

\ Declare "install" routine \ Declare "remove" routine \ Declare "selftest" routine

See also: “is-install Actions” on page 140

is-remove

stack: code: (xt --) 11D Creates a close method for display devices that should de-allocate a framebuffer that is no longer going to be used. Typical de-allocation would include unmapping memory and clearing buffers. For example:

fcode-version2 … : remove-me (--) \ Do reset-buffers unmap-devices ; … ['] install-me is-install ['] remove-me is-remove ['] test-me is-selftest fcode-end

this to stop using this device

\ Declare "install" routine \ Declare "remove" routinea \ Declare "selftest" routine

The routine loaded with is-remove should form a matched pair with the routine loaded with is-install. See is-install for more details.

256

Writing FCode Programs for PCI

is-selftest

stack: code: (xt --) 11E Creates a selftest method for display devices that will perform a self test of the framebuffer. For example:

fcode-version2 … : test-me (-- fail?) \ … ; … ['] install-me is-install ['] remove-me is-remove ['] test-me is-selftest fcode-end

self test method

\ Declare "install" routine \ Declare "remove" routine \ Declare "selftest" routine

This declaration is typically performed in the same place in the code as is-install and is-remove. The self test routine should return a status parameter on the stack indicating the results of the test. A zero value indicates that the test passed. Any nonzero value indicates that the self test failed, but the actual meaning for any nonzero value is not speciﬁed. (memory-test-suite returns a ﬂag meeting these speciﬁcations.) selftest is not automatically executed. For automatic testing, devices should perform a quick sanity check as part of the install routine. See “selftest (-- error#)” on page 53.

(is-user-word)

stack: code: (E: … -- ???) (name-str name-len xt --) 214 Creates a Forth word (not a package method) whose name is given by name-str name-len and whose behavior is given by the execution token xt which must refer to a static method. This allows an FCode Program to deﬁne new User Interface commands. For example:

" xyz-abort" ' my-abort (is-user-word)

j

stack: code: (-- index) (R: sys -- sys) 1A index is a copy of the loop index of the next outer do or ?do loop. Indeterminate results

Chapter 12 - Open Firmware Dictionary

257

will be obtained if i is used elsewhere. For example:

10 0 do … 33 20 do … j \ Returns a value in the range 0 to 9 … loop … loop

Usually, do loops should not be nested this deeply inside a single deﬁnition. Forth programs are generally more readable if inner loops are deﬁned inside a separate word.

key

stack: code: (-- char) 8E A defer word that reads the next ASCII character from the keyboard. If no character has been typed since key or expect was last executed, key waits until a new character is typed. All valid ASCII characters can be received. Control characters are not processed by the system for any editing purpose. Characters received by key are not displayed. For example:

: continue? (-- continue?) ." Want to Continue? Enter Y/N" key dup emit dup ascii Y = ascii y rot = or ;

See also: key?

key?

stack: code:

“key question”

(-- pressed?) 8D A defer word returning true if a character has been typed on the keyboard since the last time that key or expect was executed. The keyboard character is not consumed. Use key? to make simple, interruptible inﬁnite loops:

begin … key? until

The contents of the loop will repeat indeﬁnitely until any key is pressed. See also: key

keyboard

The suggested default value for the input-device conﬁguration variable.

258

Writing FCode Programs for PCI

l!

stack: code:

“el store”

(quad qaddr --) 73 The 32-bit value quad is stored at location qaddr. qaddr must be 32-bit aligned. See also: rl!

l,

stack: code:

“el comma”

(quad --) D2 Compile a 32-bit number into the dictionary. The dictionary pointer must be 2-byte-aligned. For example:

\ to create an array containing integers 40004000 23 45 6734 create my-array 40004000 l, 23 l, 45 l, 6734 l,

l@

stack: code:

“el fetch”

(qaddr -- quad) 6E Fetch the 32-bit number stored at qaddr. qaddr must be 32-bit aligned. See also: rl@

/l

stack: code:

“per el”

(-- n) 5C n is the number of address units to a 32-bit word, typically 4.

/l*

stack: code: (nu1 -- nu2) 68 nu2 is the result of multiplying nu1 by /l. This is the portable way to convert an index into a byte offset.

<l@

stack: code: (qaddr -- n) 242 Fetch quadlet from qaddr, sign-extended. This function is only available on 64-bit implementations.

la+

stack: code: (addr1 index -- addr2) 60 Increments addr1 by index times the value of /l. This is the portable way to increment

Chapter 12 - Open Firmware Dictionary

259

an address.

la1+

stack: code: (addr1 -- addr2) 64 Increments addr1 by the value of /l. This is the portable way to increment an address.

label

stack: code: (E: -- addr) (C: "new-name< >" -- code-sys) none Begins creation of a machine-code sequence called new-name. Interprets the following commands as assembler mnemonics. Commands created by label leave the address of the code on the stack when executed. As with code, label is present even if the assembler is not installed. In this case, machine-code must be entered into the dictionary explicitly by value i.e. with: c,, w,, l, or ,. The machine-code sequence is terminated by the c; or end-code commands. For example:

ok label new-name ok … assembler mnemonics … ok end-code

Later used as:

new-name (machine-code-addr)

code-sys is balanced by the corresponding c; or end-code.

lbﬂip

stack: code: (quad1 -- quad2) 227 Reverse the bytes within a 32-bit datum.

lbﬂips

stack: code: (qaddr len --) 228 Reverse the bytes within each 32-bit datum in the given region. The region begins at qaddr and spans len bytes. The behavior is undeﬁned if len is not a multiple of /l.

260

Writing FCode Programs for PCI

lbsplit

stack: code: (quad -- byte1.lo byte2 byte3 byte4.hi) 7E Splits a 32-bit datum into four bytes. All but the least signiﬁcant 8 bits of each stack result are zero.

lcc

stack: code: (char1 -- char2) 82 char2 is the lower case version of char1. If char1 is not an upper case letter, it is unchanged. For example:

ok ascii M lcc emit m ok

See also: upc

leave

stack: (--) (R: loop-sys --) code: none generates: b(leave) May only be used within a do or ?do loop. Transfers execution to just past the next loop or +loop. The loop is terminated and loop control parameters are discarded. leave may appear within other control structures that are nested within the do loop structure. More than one leave may appear within a do loop. To leave the word containing the do or ?do loop (not just the loop itself), use the phrase unloop exit instead of leave. For example:

: search-pat (pat addr len -- found?) rot false swap 2swap (false pat addr len) bounds ?do (flag pat) i @ over = if drop true swap leave then loop drop ;

See also: exit, unloop

?leave

stack: (exit? --) (R: sys --) code: none generates: if leave then If exit? is true (nonzero), ?leave transfers control to just beyond the next loop or +loop. The loop is terminated and loop control parameters are discarded. If exit? is zero, no action is taken. May only be used within a do or ?do loop.

Chapter 12 - Open Firmware Dictionary

261

?leave may appear within other control structures that are nested within the do loop structure. More than one ?leave may appear within a do loop. For example:

: show-mem (vaddr --) \ display h# 10 bytes dup h# 9 u.r 5 spaces h# 10 bounds do i c@ 3 u.r ; : .mem (vaddr size --) bounds ?do i show-mem key? ?leave h# 10 +loop ;

loop

left-parse-string

stack: code: (str len char -- R-str R-len L-str L-len) 240 Splits the input string at the ﬁrst occurrence of delimiter char. For example:

" test;in;g" ascii ; left-parse-string

would leave the address and length of two strings on the stack: “in;g” and “test”. The delimiter character may be any ASCII character. Note that if the delimiter is not found within the string, the effect is as if the delimiter was found at the very end. For example:

" testing" ascii q left-parse-string

would leave on the stack “” and “testing”.

line#

stack: code: (-- line#) 152 A value, set and controlled by the terminal emulator, that contains the current cursor line number. A value of 0 represents the topmost line of available text space — not the topmost pixel of the framebuffer. This word should be monitored as needed if your FCode Program is implementing its own set of framebuffer primitives. For example:

: set-line (line --) 0 max #lines 1- min to line# ;

See also: window-top

#line

stack: code: (-- a-addr) 94 A variable containing the number of output lines since the last user interaction

262

Writing FCode Programs for PCI

i.e. since the last ok prompt. #line is incremented whenever cr executes. The value in this variable is used to determine when to pause during long display output, such as dump. Its value is reset each time the ok prompt displays. See also: exit?

"linebytes"

This standard property is associated with display devices. The property value is an integer (encoded with encode-int) that speciﬁes the number of pixels in a single scan line of the display. See also: property

linefeed

stack: (-- 0x0A) code: none generates: b(lit) 00 00 00 0x0A Leaves the ASCII code for the linefeed character (i.e. Control-J) on the stack.

#lines

stack: code: (-- rows) 150 #lines is a value that is part of the display device interface. The terminal emulator package uses it to determine the height (number of rows of characters) of the text region that it manages. The fb1- and fb8- frame buffer support packages also use it for a similar purpose. The value of #lines must be set to the desired height of the text region. This can be done with to, or it can be handled automatically as one of the functions performed by fb1-install or fb8-install. The value set by fbx-install is the smaller of the passed #lines parameter and the screen-#rows NVRAM parameter. For example:

: set-line (line --) 0 max #lines 1- min to line# ;

literal

stack: code: (C: x1 --) (-- x1) none Compiles a number. When later executed, leaves the number on the stack.

load

stack: code: ("{device-speciﬁer< >} {arguments}<eol>" --) none The User Interface provides a load method which can, in turn, select a source device and use that device’s load method to load the speciﬁed program into memory. If the device-speciﬁer and/or arguments are not provided to load on the command line, load uses defaults as described below. The parsing, loading and default argument selection processes are described below.

Chapter 12 - Open Firmware Dictionary

263

Parameter Parsing: load ﬁnds the ﬁrst, space-delimited argument, ﬁrst-arg.

s

If ﬁrst-arg is the empty string, load sets device-speciﬁer to the default device and arguments to the default arguments as speciﬁed below, and proceeds with the loading process as speciﬁed below. If ﬁrst-arg begins with the “/” character, or if it is the name of a deﬁned devalias, load sets device-speciﬁer to ﬁrst-arg. load then skips leading space delimiters and sets arguments to the remainder of the command line. Otherwise, load sets device-speciﬁer to the default device and arguments to the portion of the command line beginning at ﬁrst-arg and continuing to the end of the line (including ﬁrst-arg itself).

s

s

Loading Process: If the client interface is implemented, load saves arguments and the device-path corresponding to device-speciﬁer so they may be retrieved later via the client interface. Using open-dev, load opens the package speciﬁed by device-speciﬁer, thus obtaining an ihandle. If unsuccessful, load executes the equivalent of abort, thus stopping the loading process. Otherwise load uses $call-method to execute the load method of that ihandle, passing the system-dependent default load address to that load method as its argument. load then uses close-dev to close that ihandle. If the device’s load method succeeds, and the beginning of the loaded image is a valid client program header for the system, load allocates memory at the address and of the size speciﬁed in that header, moves the loaded image to the address, and performs the function of init-program to initialize saved-program-state so that a subsequent go command will begin execution of that program. Default Device and Default Arguments: The default arguments are given by the value of boot-file if diagnostic-mode? is false. Otherwise the default arguments are given by the value of diag-file. The default device is given by the value of boot-device if diagnostic-mode? is false. Otherwise the default device is given by the value of diag-device. Either boot-device or diag-device may contain a list of device-speciﬁers separated by spaces. If that list contains only one entry, that entry is the default device. If that list contains more than one entry, the system attempts to open, as with open-dev, each speciﬁed device in turn, beginning with the ﬁrst entry in the list and proceeding to the next-to-last entry. If an open succeeds, the device is closed, as with close-dev, and that device-speciﬁer becomes the default device (it will be subsequently opened again by the loading process). If the last entry is reached without any prior successful opens, the last entry becomes the default device, without having been opened as part of the default device selection process. For example:

ok load device-specifier arguments

See also: boot

264

Writing FCode Programs for PCI

load

stack: code: (addr -- len) none A device’s load method can be used to load a client program from the device into memory beginning at address addr. load returns len, the size in bytes of the program that was loaded. The package containing load must be open before load is executed. If the device can contain several such programs, the instance-arguments (as returned by my-args) can be used in a device-dependent manner to select the particular program.

load-base

stack: (-- addr) This platform-speciﬁc conﬁguration variable is an integer specifying the default load address for client programs when using the load method. The default value is implementation dependent.

"local-mac-address"

This property speciﬁes the 48-bit IEEE 802.3-style MAC address assigned to the device represented by the package, of device type "network", containing this property. The absence of this property indicates that the device does not have a permanentlyassigned MAC address. The property value is an array of six bytes encoded with encode-bytes. For example:

create my-mac-address 8 c, 0 c, 20 c, 0 c, 14 c, 5e c, my-mac-address 6 encode-bytes " local-mac-address" property

In many systems, the MAC address is not associated with the individual network devices, but instead with the system itself. In such cases, the system-wide MAC address applies to all the network interfaces on that system, and individual network device nodes might not have local-mac-address properties. In other cases, especially with plug-in network interface cards that are intended for use on a variety of different systems, the manufacturer of the card assigns a MAC address to the card, which is reported via the "local-mac-address" property. A system is not obligated to use that assigned MAC address if it has a system-wide MAC address. See also: "network", "mac-address", mac-address

loop

stack: (C: dodest-sys --) (--) (R: loop-sys1 -- <nothing> | loop-sys2) code: none generates: b(loop) -offset Terminates a do or ?do loop. Increments the loop index by one. If the index was incremented across the boundary between limit-1 and limit, the loop is terminated and loop control parameters are discarded. When the loop is not terminated, execution continues just after the corresponding do or ?do.

Chapter 12 - Open Firmware Dictionary

265

For example, the following do loop:

8 0 do…loop

terminates when the loop index changes from 7 to 8. Thus, the loop will iterate with loop index values from 0 to 7, inclusive. loop may be used either inside or outside of colon deﬁnitions.

+loop

stack: (C: dodest-sys --) (n --) (R: loop-sys1 -- <nothing> | loop-sys2) code: none generates: b(+loop) -offset Terminates a do or ?do loop. Increments the loop index by n (or decrements the index if n is negative). If the index was incremented (or decremented) across the boundary between limit-1 and limit the loop is terminated and loop control parameters are discarded. When the loop is not terminated, execution continues just after the corresponding do or ?do. The following do loop:

8 0 do…2 +loop

terminates when the loop index crosses the boundary between 7 and 8. Thus, the loop will iterate with loop index values of 0, 2, 4, 6. By contrast, a do loop created as follows:

0 8 do…-2 +loop

terminates when the loop index crosses the boundary between -1 and 0. Thus, the loop will iterate with loop index values of 8, 6, 4, 2, 0. +loop may be used either inside or outside of colon deﬁnitions.

lpeek

stack: code: (qaddr -- false | quad true) 222 Tries to read the 32-bit word at address qaddr. Returns quad and true if the access was successful. A false return indicates that a read access error occurred. qaddr must be 32bit aligned.

lpoke

stack: code: (quad qaddr -- okay?) 225 Tries to write quad at address qaddr. Returns true if the access was successful. A false return indicates a read access error. qaddr must be 32-bit aligned. Note – lpoke may be unreliable on bus adapters that “buffer” write accesses.

266

Writing FCode Programs for PCI

ls

stack: code: (--) none Displays the names of the active package’s children.

lshift

stack: code: (x1 u -- x2) 27 Shifts x1 left by u bit-places. Zero-ﬁlls the low bits.

lwﬂip

stack: code: (quad1 -- quad2) 226 Swaps the doublets within a quadlet.

lwﬂips

stack: code: (qaddr len --) 237 Swaps the order of the 16-bit words within each 32-bit word in the memory buffer qaddr len. qaddr must be four-byte-aligned. len must be a multiple of /l. For example:

ok h# 12345678 8000 l! ok 8000 4 lflips ok 8000 l@ .h 56781234

lwsplit

stack: code: (quad -- w1.lo w2.hi) 7C Splits the 32-bit value quad into two 16-bit words. All but the least signiﬁcant 16 bits of each stack result are zero.

lxjoin

stack: code: (quad.lo quad.hi -- o) 243 Join 2 quadlets to form an octlet.The high-order bits of each of the quadlets are ignored. This function is only available on 64-bit implementations.

m*

stack: code: (n1 n2 -- d.prod) none Performs a signed multiply with a double-number product.

Chapter 12 - Open Firmware Dictionary

267

mac-address

stack: code: (-- mac-str mac-len) 1A4 Usually used only by the "network" device type, this FCode returns the value for the Media Access Control, or MAC address, that this device should use for its own address. The data is encoded as a byte array, generally 6 bytes long. The value returned by mac-address is system-dependent. See also: "mac-address", "local-mac-address", and "network" in Chapter 5 “Properties” and Chapter 8 “Network Devices”.

"mac-address"

This property speciﬁes the 48-bit IEEE 802.3-style MAC address that was last used by the device represented by the package, of device type "network", containing this property. This property is created by the open method of a "network" device. The property value is an array of six bytes encoded with encode-bytes. This property is typically used by client programs that need to determine which network address was used by the network interface from which the client program was loaded.

make-properties

stack: code: (--) none This User Interface word is intended to be used for debugging FCode within the context of begin-package…end-package. Executing this word creates the default PCI bus properties for the current instance from information contained in the PCI Conﬁguration Space header. This word should be executed before evaluating the FCode for the node.

map

stack: code: (phys.lo … phys.hi virt len mode … --) none Creates an address translation associating virtual addresses beginning at virt and continuing for len bytes with consecutive physical addresses beginning at phys.lo … phys.hi. The physical address format is the same as that of the /memory node. mode … is an MMU-dependent parameter (typically, but not necessarily, one cell) denoting additional attributes of the translation, for example access permissions, cacheability, mapping granularity, etc. If all mode cells have the value -1, an MMU dependent default mode is used. If there are already existing address translations within the region delimited by virt and len, the result is undeﬁned. If the operation fails for any reason, map uses throw to signal the error. See also: claim, modify, release, translate

268

Writing FCode Programs for PCI

map-in

stack: code: (phys.lo … phys.hi size -- virt) none Creates a mapping associating the range of physical addresses beginning at phys.lo … phys.hi and extending for size bytes within this device’s physical address space with a processor virtual address. Returns that virtual address virt. The number of cells in the list phys.lo … phys.hi is determined by the value of the "#address-cells" property of the node containing map-in. For example, to map the registers of a PCI device with:

s

A register ﬁeld at 10.0000-10.00ff in memory space that is controlled by the ﬁrst 32bit base address register. A register ﬁeld at 20.0000-20.037f in I/O space that is controlled by the second 32-bit base address register. A non-relocatable ﬁeld at 0-fff in I/O space.

s

s

use the following:

my-address 10.0000 0 d+ my-space 0200.0010 or 100 " map-in" $call-parent to mem-virt my-address 20.0000 0 d+ my-space 0100.0014 or 380 " map-in" $call-parent to io-virt my-address my-space h# 8100.0000 or 1000 " map-in" $call-parent to non-reloc-virt

Note – Although the third register ﬁeld is non-relocatable, it is still necessary to map the address range to obtain a virtual address.

Note – It is not necessary to map the conﬁguration registers since they can be directly addressed by using my-space and the config-xx family of methods. If map-in cannot perform the requested operation, throw is called with an appropriate error message. Therefore, out-of-memory conditions can be detected and handled properly with the phrase: ['] map-in catch See also: config-l@, map-low, map-out, my-space

map-low

stack: code: (phys.lo … size -- virt) 130 Creates a mapping associating the range of physical addresses beginning at phys.lo … my-space and extending for size bytes within this device’s physical address space with a processor virtual address. Return that virtual address virt. Equivalent to:

my-space swap " map-in" $call-parent

The number of cells in the list phys.lo … is one less than the number determined by the

Chapter 12 - Open Firmware Dictionary

269

value of the "#address-cells" property of the parent node. If the requested operation cannot be performed, throw is called with an appropriate error message. Out-of-memory conditions can be detected and handled with the phrase: ['] map-low catch See also: map-out

map-out

stack: code: (virt size --) none Destroys the mapping set up by a previous map-in at virtual address virt, of length size bytes. See also: free-virtual, map-in

mask

stack: code: (-- a-addr) 124 This variable deﬁnes which bits out of every 32-bit word will be tested by memory-test-suite. To test all 32-bits, set mask to all ones with:

ffff.ffff mask !

To test only the low-order byte out of each word, set the lower bits of mask with:

0000.00ff mask !

Any arbitrary combination of bits can be tested or masked.

max

stack: code: (n1 n2 -- n1|n2) 2F Returns the greater of n1 and n2.

"max-frame-size"

This property, when declared in "network" devices, indicates the maximum packet length (in bytes) that the physical layer of the device can transmit at one time. This value can be used by client programs to allocate buffers of the appropriate length. Used as:

4000 encode-int " max-frame-size" property

270

Writing FCode Programs for PCI

max-transfer

stack: code: (-- max-len) none Returns the size in bytes of the largest single transfer that this device can perform, rounded down to a multiple of block-size.

"memory"

This is the standard property value of the "device_type" property for memory devices. Devices of type "memory" must implement the following methods:

s s

claim release

See IEEE Standard 1275-1994 for more details. See also: alloc-mem, "available", claim, "reg", release, "#size-cells"

memory-test-suite

stack: code: (addr len -- fail?) 122 Performs a series of tests on the memory beginning at addr for len bytes. If any of the tests fail, failed? is true and a failure message is displayed on a system-dependent diagnostic output device. The actual tests performed are machine speciﬁc and often vary depending on whether diagnostic-mode? is true or false. Typically, if diagnostic-mode? is true, a message is sent to the console output device giving the name of each test. The value stored in mask controls whether only some or all data lines are tested. For example:

: test-result (--) frame-buffer-adr my-frame-size memory-test-suite encode-int “ test-result” property ;

(failed?)

See also: diag-switch?

min

stack: code: (n1 n2 -- n1|n2) 2E Returns the lesser of n1 and n2.

mod

stack: code: (n1 n2 -- rem) 22 rem is the remainder after dividing n1 by the divisor n2. rem has the same sign as n2 or is zero. An error condition results if the divisor is zero.

Chapter 12 - Open Firmware Dictionary

271

*/mod

stack: code:

“star slash mod”

(n1 n2 n3 -- rem quot) none Calculates n1 * n2 / n3 and returns the remainder and quotient. The inputs, outputs, and intermediate products are all 32-bit. rem has the same sign as n3 or is zero. An error condition results if the divisor is zero.

/mod

stack: code:

“slash mod”

(n1 n2 -- rem quot) 2A rem is the remainder and quot is the quotient of n1 divided by the divisor n2. rem has the same sign as n2 or is zero. An error condition results if the divisor is zero.

model

stack: code: (str len --) 119 This is a shorthand word for creating a "model" property. By convention, "model" identiﬁes the model name/number for a PCI card, for manufacturing and ﬁeld-service purposes. A sample usage would be:

" INTL,501-1415-1" model

This is equivalent to:

" INTL,501-1415-1" encode-string

" model" property

The "model" property is useful to identify the speciﬁc piece of hardware (the PCI card), as opposed to the "name" property (since several different but functionallyequivalent cards would have the same "name" property, thus calling the same operating system device driver). See also: property, "model" in Chapter 5 “Properties”.

"model"

This property speciﬁes the model name and number (including revision level) for this device in a manufacturer-dependent string. The format of the text string is arbitrary, although in conventional usage the string begins with the name of the device’s manufacturer as with the "name" property. Although there is no standard interpretation for the value of the "model" property, a speciﬁc device driver might use it to learn, for instance, the revision level of its particular device. For example:

" AAPL,1416-02" encode-string " model" property

See also: property, model

272

Writing FCode Programs for PCI

modify

stack: code: (virt len mode … --) none Modiﬁes the existing address translations for virtual addresses beginning at virt and continuing for len bytes to have the attributes speciﬁed by mode … (whose format depends upon the package). If the operation fails for any reason, uses throw to signal the error. See also: claim, map, release, translate, unmap

move

stack: code: (src_addr dest_addr len --) 78 len bytes starting at src_addr (through src_addr+len-1 inclusive) are moved to address dest_addr (through dest_addr+len-1 inclusive). If len is zero then nothing is moved. The data are moved such that the len bytes left starting at address dest_addr are the same data as was originally starting at address src_addr. If src_addr > dest_addr then the ﬁrst byte of src_addr is moved ﬁrst, otherwise the last byte (src_addr+len-1) is moved ﬁrst. Thus, moves between overlapping ﬁelds are properly handled. move will perform 16-bit, 32-bit or possibly even 64-bit operations (for better performance) if the alignment of the operands permits. If your hardware requires explicit 8-bit or 16-bit accesses, you will probably wish to use an explicitly-coded do … loop instead.

ms

stack: code: (n --) 126 Delays all execution for at least n milliseconds, by executing an empty delay loop for an appropriate number of iterations. The maximum allowable delay will vary from system to system, but is guaranteed to be valid for all values up to at least 1,000,000 (decimal). No other CPU activity takes place during delays invoked with ms, although generally this is not a problem for FCode drivers since there is nothing else to do in the meantime anyway. If this word is used excessively, noticeable delays could result. For example:

: probe-loop-wait (addr --) \ wait h# 10 ms before doing another probe at the location begin dup l@ drop h# 10 ms key? until drop ;

my-address

stack: code: (-- phys.lo …) 102 Returns the low component(s) of the device’s probe address, suitable for use with the map-in method, and with reg and encode-phys. The returned number, along with my-space, encodes the address of location 0 of this device in a bus-speciﬁc format. The number of cells in the list phys.lo … is one less than the number determined by the

Chapter 12 - Open Firmware Dictionary

273

value of the "#address-cells" property of the parent node. The Open Firmware ROM automatically sets my-address to the correct value before each slot is probed. Usually, this value is used to calculate the location(s) of the device registers, which are then saved as the property value of the "reg" property and later accessed with my-unit. For example for a PCI device:

fcode-version2 " audio" encode-string " name" property my-address my-space encode-phys \ PCI Configuration Space 0 encode-int encode+ 0 encode-int encode+ … " reg" property end0

my-args

stack: code: (-- arg-str arg-len) 202 Returns the instance argument string arg-str arg-len that was passed to the current instance when it was created, if the argument string exists. Otherwise returns with a length of 0. For example:

ok " /obio:TEST-ARGS" open-dev to my-self my-args type TEST-ARGS ok unselect-dev " /obio:MORE-ARGS" select-dev my-args type MORE-ARGS

my-parent

stack: code: (-- ihandle) 20A Returns the ihandle of the instance that opened the current instance. For device driver packages, the relationships of parent/child instances mimic the parent/child relationships in the device tree. For example for an SBus device:

: show-parent (--) my-parent ihandle>phandle " name" rot get-package-property 0= if ." my-parent is " type cr then ;

my-self

stack: code: (-- ihandle) 203 A value word that returns the current instance’s ihandle. If there is no current instance,

274

Writing FCode Programs for PCI

the value returned is zero. For example:

: show-model-name (--) my-self ihandle>phandle (phandle) " model" rot get-package-property 0= if ." model name is " type cr else () ." model property is missing " cr then () ;

(val.addr,len)

my-space

stack: code: (-- phys.hi) 103 Returns the high component of the device’s probe address representing the device space that this card is plugged into. The meaning of the returned value is bus-speciﬁc. For example for an SBus device:

fcode-version2 " audio" encode-string " name" property my-address h# 130.0000 + my-space h# 8 reg … fcode-end

See my-address for more details.

my-unit

stack: code: (-- phys.lo … phys.hi) 20D Returns the unit address phys.lo … phys.hi of the current instance. The unit address is set when the instance is created, as follows:

s

If the node-name used to locate the instance’s package contained an explicit unitaddress, that is the instance’s unit address. This handles the case of a “wildcard” node with no associated "reg" property. Otherwise, if the device node associated with the package from which the instance was created contains a "reg" property, the ﬁrst component of its "reg" property value is the instance’s unit address. Otherwise, the instance’s unit address is 0 0.

s

s

The number of cells in the list phys.lo … phys.hi is determined by the value of the "#address-cells" property of the parent node.

/n

stack: code:

“per en”

(-- n) 5D The number of address units in a cell.

Chapter 12 - Open Firmware Dictionary

275

/n*

“per en star”

stack: (nu1 -- nu2) generates: cells Synonym for cells.

na+

stack: code:

“en ay plus”

(addr1 index -- addr2) 61 Increments addr1 by index times the value of /n. na+ should be used in preference to wa+ or la+ when the intent is to address items that are the same size as items on the stack.

na1+

“en ay one plus”

stack: (addr1 -- addr2) generates: cell+ Synonym for cell+.

"name"

This property speciﬁes the manufacturer’s name and device name of the device. All device nodes must publish this property. The "name" property can be used to match a particular operating system device driver with the device. The property value is an arbitrary string. Any combination of one to 31 printable characters is allowed, except for “@”, “:” or “/”. The string may contain at most one comma. Embedded spaces are not allowed. IEEE Standard 1275-1994 speciﬁes three different formats for the manufacturer’s name portion of the property value where two of those formats are strongly preferred. For United States companies that have publicly listed stock, the most practical form of name is to use the company’s stock symbol (e.g. AAPL for Apple Computer, Inc.). This option is also available to any company anywhere in the world provided that there is no duplication of the company’s stock symbol on either the New York Stock Exchange or the NASDAQ exchange. If a non-U.S. company’s stock is traded as an American Depository Receipt (ADR), the ADR symbol satisﬁes this requirement. A prime advantage of this form of manufacturer’s name is that such stock symbols are very human-readable. An alternative is to obtain an organizationally unique identiﬁer (OUI) from the IEEE Registration Authority Committee. This is a 24-bit number that is guaranteed to be unique world-wide. Companies that have obtained an OUI would use a sequence of hexadecimal digits of the form “0NNNNNN” for the manufacturer’s name portion of the property. This form of name has the disadvantage that the manufacturer is not easily recognizable. Each manufacturer may devise its own format for the device name portion of the property value. An example usage is:

" INTL,bison-printer" encode-string " name" property

276

Writing FCode Programs for PCI

The device-name command may also be used to create this property. See also: device-name, property, "name" in Chapter 5 “Properties”.

named-token

stack: code: (--) (F: /FCode-string FCode#/ --) B6 Creates a new, possibly-named FCode function. named-token should never be used directly in source code.

negate

stack: code: (n1 -- n2) 2C n2 is the negation of n1. This is equivalent to 0 swap - .

"network"

This is the standard property value of the "device_type" property for network devices with IEEE 802 packet formats. Devices of type "network" must implement the following methods:

s s s

open close read The read method receives (non-blocking) a network packet placing at most the ﬁrst len bytes into memory at addr, returning either the number of bytes actually received (not placed into memory) or -2 if no packet is currently available.

Note – In general, -2 indicates no data was available at the time read was done and -1 indicates that an error occurred. Zero is generally used only for devices where data arrives in records, packets or other such container, and indicates that a valid but empty container was received.

s

write The write method transmits the network packet of len bytes from memory at addr, returning the number of bytes actually transmitted. The caller must supply the complete packet including the MAC header with source and destination address.

s

load

A network package may implement additional device-speciﬁc methods. See also: "address-bits", "max-frame-size"

new-device

stack: code: (--) 11F Creates a new node in the device tree as a child of the active package and makes the new node the active package. Also creates a new instance and attaches that instance to the instance currently identiﬁed by my-self (i.e. the new node’s parent node).

Chapter 12 - Open Firmware Dictionary

277

Subsequently, newly-deﬁned Forth words become the methods of the node created by new-device and newly-deﬁned data items (such as types variable, value, buffer: and defer) are allocated and stored with the new instance. new-device is used for creating multiple devices in a single FCode Program. See also: finish-device, begin-package

new-token

stack: code: (--) (F: /FCode#/ --) B5 Creates a new unnamed FCode function. new-token should never be used directly in source code.

next-property

stack: code: (previous-str previous-len phandle -- false | name-str name-len true) 23D Returns the name of the property following previous-string of phandle. Locates with the property list of the package speciﬁed by phandle, the ﬁrst property if previous-len is zero, or the property following the property speciﬁed by previous-string otherwise. If such a property exists, name-string is returned underneath true. Otherwise, false is returned (i.e. if there are no more properties, or if previous-string speciﬁes a property which does not exist in phandle). A sequence of invocations of next-property with the same phandle value, beginning with previous-len equal to zero, and passing the name-string result of the previous invocation as the previous-string argument to the next invocation, continuing until false is returned will provide the complete list of properties of the package phandle. However, the order in which the properties are returned is undeﬁned (e.g. the ﬁrst property deﬁned is not necessarily the ﬁrst property returned). Consequently, if a new property is deﬁned in the phandle package in the middle of the process of extracting all of the properties of the package phandle, the newly deﬁned property may or may not be returned.

nip

stack: code: (x1 x2 -- x2) 4D Removes the second item on the stack.

nodefault-bytes

stack: code: (maxlen "new-name< >" --) (E: -- addr len) none Creates a custom conﬁguration variable of size maxlen. nodefault-bytes creates a conﬁguration variable whose data is of type byte-array. As with other built-in bytearray conﬁguration variables, these user-created conﬁguration variables can be set with setenv (restricted to printable characters) or $setenv and can be displayed with printenv. However, set-default and set-defaults have no effect on usercreated conﬁguration variables. Although the values of user-created conﬁguration variables persist across system

278

Writing FCode Programs for PCI

resets, Open Firmware must be “reminded” of their existence after every system reset in order for them to be accessed. Furthermore, the nodefault-bytes commands creating them must be executed in the same order each time. For these reasons, nodefault-bytes is usually executed from the NVRAM script. If nodefault-bytes fails, throw is called with an appropriate error message. Consequently, out-of-memory conditions may be detected and handled properly with the phrase: ['] nodefault-bytes catch For example:

ok 100 nodefault-bytes new-name ok setenv new-name " foo" new-name = 22 20 60 6f 6f ok printenv new-name new-name = 22 20 60 6f 6f

noop

stack: code: (--) 7B Does nothing. This can be used to provide short delays or as a placeholder for patching in other commands later.

noshowstack

stack: code: (… -- …) none Turns off showstack (i.e. automatic stack display). The system default is noshowstack. See also: showstack

not

stack: (x1 -- x2) generates: invert Synonym for invert. See also: 0=

not-last-image

stack: (--) generates: nothing A FirmWorks extension to the tokenizer. Executing not-last-image prior to executing pci-header causes the PCI header’s “indicator” ﬁeld to be set to 0 indicating the presence of a following image in the PCI Expansion ROM. See also: pci-header, pci-header-end

Chapter 12 - Open Firmware Dictionary

279

$number

stack: code: (addr len -- true | n false) A2 A numeric conversion primitive that converts a string to a number, according to the current base value. An error ﬂag is returned if an inconvertible character is encountered. For example:

ok hex ok " 123f" $number .s 123f 0 ok " 123n" $number .s ffffffff

>number

stack: code: (d1 str1 len1 -- d2 str2 len2) none Converts str1 len1 into a number on a digit-by-digit basis according to the value in base. As each digit is converted, d1 is multiplied by the value of base and the newlyconverted digit is added to d1. See also: $number

nvalias

stack: code: ("alias-name< >device-speciﬁer<eol>" --) none Creates the following command line in the script: devalias alias-name device-speciﬁer If the script already contains a devalias line with the same alias name, that entry is deleted and replaced with the new entry at the same location in the script. Otherwise, the new entry is placed at the beginning of the script. If there is insufﬁcient space in the script for the new devalias command, a message is displayed to that effect and the operation is aborted without modifying the script. If the script was successfully modiﬁed, the new devalias command is executed immediately, creating a new memory-resident alias. If the script is currently being edited (i.e. nvedit has been executed, but has not been completed with either nvstore or nvquit), the operation is aborted with an error message before taking any other action. If the script was successfully modiﬁed, but use-nvramrc? is false, use-nvramrc? is set to true. For example:

ok nvalias alias-name /full/pathname

280

Writing FCode Programs for PCI

$nvalias

stack: code: (name-str name-len dev-str dev-len --) none Performs the same function as nvalias, except that parameters are stack strings. The alias name is speciﬁed by name-string. The device-speciﬁer is speciﬁed by dev-string. For example:

ok " new-alias" " device-specifier" $nvalias

nvedit

stack: code: (--) none nvedit operates on a temporary buffer. If data remains in the temporary buffer from a previous nvedit, editing will resume with those previous contents. If not, nvedit will read the contents of the script into the temporary buffer and begin editing the temporary buffer. Editing continues until Control-C is typed, at which moment editing ceases and normal operation of the command interpreter is resumed. The contents of the temporary buffer are not automatically saved to the script; the nvstore command must be executed afterwards to save the buffer into the script. The following table lists the command keystrokes used to edit the NVRAM script.

Table 37 Keystroke Control-B Escape B Control-F Escape F Control-A Control-E Control-N Control-P Return (Enter) Control-O Control-K Delete Backspace Control-H Escape H Control-W Control-D Moves backward one character. Moves backward one word. Moves forward one character. Moves forward one word. Moves backward to beginning of line. Moves forward to end of line. Moves to the next line of the script editing buffer. Moves to the previous line of the script editing buffer. Inserts a newline at the cursor position and advances to the next line. Inserts a newline at the cursor position and stays on the current line. Erases from cursor to end of line, storing erased characters in a save buffer. If at the end of a line, joins the next line to the current line (i.e. deletes the newline). Erases previous character. Erases previous character. Erases previous character. Erases from beginning of word to just before the cursor, storing erased characters in a save buffer. Erases from beginning of word to just before the cursor, storing erased characters in a save buffer. Erases next character. NVRAM Script Editor Keystroke Commands Description

Chapter 12 - Open Firmware Dictionary

281

Table 37 Keystroke Escape D Control-U Control-Y Control-Q Control-R Control-L Control-C

NVRAM Script Editor Keystroke Commands (Continued) Description Erases from cursor to end of the word, storing erased characters in a save buffer. Erases entire line, storing erased characters in a save buffer. Inserts the contents of the save buffer before the cursor. Quotes next character (allows you to insert control characters). Retypes the line. Displays the entire contents of the editing buffer. Exits the script editor, returning to the Open Firmware command interpreter. The temporary buffer is preserved, but is not written back to the script. (Use nvstore afterwards to write it back.)

nvquit

stack: code: (--) none Prompts for conﬁrmation of the user’s intent to carry out this function. If conﬁrmation is obtained, discards the nvedit temporary buffer. Otherwise, takes no further action.

nvramrc

stack: code: (-- data-addr data-len) none Returns the location and size of the NVRAM script. The size of the script region is system dependent. While it is possible to alter the contents of the script with setenv or $setenv, use of the script editor, nvedit, is preferred. The contents of the script are cleared by set-defaults. Under some circumstances cleared contents can be recovered with nvrecover. The commands in the script are interpreted during system start-up only if use-nvramrc? is true. See also: nodefault-bytes, nvedit, use-nvramrc?

nvrecover

stack: code: (--) none Attempts to recover the contents of the script if they have been lost as a result of the execution of set-default or set-defaults. Enters the script editor as with the nvedit command. In order for nvrecover to succeed, nvedit must not have been executed between the time that the script contents were lost and the time that nvrecover is executed.

nvrun

stack: code: (--) none Executes the contents of the nvedit temporary buffer.

282

Writing FCode Programs for PCI

nvstore

stack: code: (--) none Copies the contents of the nvedit temporary buffer into the script. The nvedit temporary buffer is then cleared. Use after nvedit to save the results of an editing session into the script.

nvunalias

stack: code: ("alias-name< >" --) none Delete non-volatile device alias from the script. If the script contains a devalias command line with the same name as alias-name, deletes that command line from the script. Otherwise, leaves the script unchanged. If the script is currently being edited (i.e. nvedit has been executed, but has not been completed with either nvstore or nvquit), aborts with an error message before taking any other action. For example:

ok nvunalias alias-name

$nvunalias

stack: code: (name-str name-len --) none Deletes the speciﬁed non-volatile device alias from the script. Similar to nvunalias except that the alias name is speciﬁed by name-string. For example:

ok " alias-name" $nvunalias

o#

“oh number”

stack: ([number< >] -- n) generates: b(lit) xx-byte xx-byte xx-byte xx-byte Interprets the next number in octal (base 8), regardless of any previous settings of hex, decimal or octal. Only the immediately following number is affected; the default numeric base setting is unchanged. For example:

hex o# 100 (equals decimal 64) o# 100 (equals decimal 64) 100 (equals decimal 256)

See also: d#, h#

"obp-tftp"

This standard package implements the Internet Trivial File Transfer Protocol (TFTP) for

Chapter 12 - Open Firmware Dictionary

283

use in network booting. The package is typically used by network device drivers. The obp-tftp package uses the read and write methods of the package that opened it and implements the following methods:

s

open

(-- okay?)

Prepare this device for subsequent use.

s

close

(--)

Close this previously-open’d device.

s

load

(addr -- size)

Load a client program from device to memory.

octal

stack: code: (--) none If octal is encountered by the tokenizer in FCode Source outside a deﬁnition, the tokenizer sets its numeric conversion radix to eight. If octal is encountered by the tokenizer in FCode Source inside a deﬁnition, the tokenizer appends the following sequence to the FCode Program that is being created: 8 base ! This affects numeric output when the FCode Program is later executed. See also: base

oem-banner

stack: code: (-- text-str text-len) none The value of this conﬁguration variable is a string containing the custom banner text, the display of which is controlled by the conﬁguration variable oem-banner?. The suggested default value is an empty string.

oem-banner?

stack: code: (-- custom?) none This conﬁguration variable is a boolean specifying whether to display a custom message instead of the normal system-dependent messages. If oem-banner? is true, banner displays the value of oem-banner. If oem-banner? is false, banner displays the normal system-dependent messages. The suggested default value of oem-banner? is false.

oem-logo

stack: code: (-- logo-addr logo-len) none This conﬁguration variable contains a 512 byte array which holds a bit map of a custom logo. The custom logo is displayed if the conﬁguration variable oem-logo? is true. The logo is a 512-byte ﬁeld, representing a 64x64-bit logo bit map. Each bit controls one

284

Writing FCode Programs for PCI

pixel. The most signiﬁcant bit of the ﬁrst byte controls the upper-left corner pixel. The next bit controls the next pixel to the right and so on. oem-logo is unaffected by set-default or set-defaults. oem-logo cannot receive arbitrary data with setenv, but $setenv can be used to set its value. For example:

(logo-addr logo-len) " oem-logo" $setenv

The suggested default value is all zeroes.

oem-logo?

stack: code: (-- custom-logo?) none This conﬁguration variable is a boolean specifying whether to display a custom logo instead of the normal system-dependent logo. If oem-logo? is true, banner displays the value of oem-logo. If oem-logo? is false, banner displays the normal systemdependent logo. The suggested default value of oem-logo? is false.

of

stack: (C: case-sys1 -- case-sys2 of-sys) (sel of-val -- sel | <nothing>) generates: b(of) +offset Begins the next test clause in a case statement. See case for more details.

off

stack: code: (a-addr --) 6B Sets the 32-bit contents at a-addr to false (i.e. zero).

offset

stack: code: (d.rel -- d.abs) none This method of the Disk Label Support Package converts a partition-relative disk position to an absolute position. d.rel is a double-number disk position, expressed as the number of bytes from the beginning of the partition that was speciﬁed in the arguments when the support package was opened. d.abs is the corresponding doublenumber disk position, expressed as the number of bytes from the beginning of the disk. If no partition was speciﬁed when the support package was opened, a systemdependent default partition is used. If the Disk Label Support Package does not support disk partitioning, d.abs is equal to d.rel.

Chapter 12 - Open Firmware Dictionary

285

offset16

stack: code: (--) CC Instructs the tokenizer program, and the boot ROM, to expect all further branch offsets to be 16-bit values. This word is automatically generated by some current tokenizers. Once offset16 is executed, the offset size remains 16 bits for the duration of the FCode Program; it cannot be set back to 8 bits. Multiple calls of offset16 have no additional effect. offset16 is only useful within an FCode Program that begins with version1. All other starting tokens (start0, start1, start2, and start4) automatically set the offset size to 16 bits. See also: fcode-version2

on

stack: code: (a-addr --) 6A Set the 32-bit contents at a-addr to true (i.e. ffffffff).

open

stack: code: (-- okay?) none Prepares this device for subsequent use. Typical behavior is to allocate any special resource requirements it needs, map the device into virtual address space, initialize the device and perform a brief “sanity test” to ensure that the device appears to be working correctly. Returns true if open was successful, false if not. When a device’s open method is called, that device’s parent has already been opened (and so on, up to the root node, which has no parent), so this open method can call its parent’s methods, for instance to create mappings within the parent’s address space.

open-dev

stack: code: (dev-str dev-len -- ihandle | 0) none Opens the device speciﬁed by dev-string. Returns ihandle if successful, or 0 if not. Opens each node of the device tree in turn, starting at the top. The current instance and the active package are not changed. For example:

" device-alias" open-dev

See also: my-self

open-package

stack: code: (arg-str arg-len phandle -- ihandle | 0) 205 Creates an instance of the package identiﬁed by phandle, saves in that instance an

286

Writing FCode Programs for PCI

argument string speciﬁed by arg-str arg-len, and invokes the package’s open method. The parent instance of the new instance is the instance that invoked open-package. Returns the instance handle ihandle of the new instance if it can be opened. It returns 0 if the package could not be opened, either because that package has no open method or because its open method returned false indicating an error. In this case, the current instance is not changed. For example:

: test-tftp-open (-- ok?) " obp-tftp" find-package if (phandle) 0 0 rot open-package if true else false else false then ;

then

See also: close-package

$open-package

stack: code: (arg-str arg-len name-str name-len -- ihandle | 0) 20F Similar to using find-package open-package except that if find-package fails, 0 is returned immediately, without calling open-package. The name is interpreted relative to the /packages device node. For example, if name-str name-len represents the string "disk-label", the package in the device tree at “/packages/disk-label” will be located. If there are multiple packages with the same name (within the /packages node), the most recently created one is opened. For example:

0 0 " obp-tftp" $open-package (ihandle)

See also: close-package

"/openprom"

The standard node describing the system’s Open Firmware. The value of the "name" property of this node is “openprom”. The remaining standard properties of this node are:

s s

model relative-addressing

Other system-dependent properties may also be present.

"/options"

The standard node containing the system’s conﬁguration variables. The value of the "name" property of this node is “options”. The names of the remaining properties of this node are the names of the conﬁguration variables. The values of the remaining properties of this node are the current settings

Chapter 12 - Open Firmware Dictionary

287

of the conﬁguration variables. Client programs may examine and change the values of these properties with the Client Interface’s getprop, nextprop and setprop services, thus examining and changing the values of the corresponding conﬁguration variables. Similarly, users may examine and change them with printenv, setenv, and $setenv.

or

stack: code: (x1 x2 -- x3) 24 x3 is the bit-by-bit inclusive-or of x1 with x2.

#out

stack: code: (-- a-addr) 93 A variable containing the current column number on the output device. This is updated by emit, cr and some other words that modify the cursor position. It is used for display formatting. For example:

: to-column (column --) #out @ 1 max spaces ;

output

stack: code: (dev-str dev-len --) none Selects the speciﬁed device for console output as follows:

s s s s s

Searches for a device node matching the pathname or device-speciﬁer given by dev-str dev-len. If such a device is found, search for its write method. If the write method is found, open the device with open-dev. If the open succeeds, execute the device’s install-abort method, if any. If any of these steps fails, display an appropriate error message and return without performing the steps following the one that failed.

If there is a console output device, as indicated by a non-zero value in the stdout variable, output executes the current console output device’s remove-abort method and closes the console output device. output then sets stdout to the ihandle of the newly opened device, making it the new console output device. For example: " device-alias" output

output-device

stack: code: (-- dev-str dev-len) none The value of this conﬁguration variable is a string specifying the console output device to be established by install-console. dev-string is a device-speciﬁer, containing either a

288

Writing FCode Programs for PCI

full device-path or a pre-deﬁned device alias. The suggested default value is “screen”. For example:

ok setenv output-device device-alias

over

stack: code: (x1 x2 -- x1 x2 x1) 48 The second stack item is copied to the top of the stack.

2over

stack: code: (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) 54 Copies the third and fourth stack items to the stack top.

pack

stack: code: (str len addr -- pstr) 83 Stores the string speciﬁed by str len as a packed string at the location addr returning pstr (which is the same address as addr). The byte at address pstr is the length of the string and the string itself starts at address pstr+1. A packed string can contain at most 255 characters. Packed strings are generally not used in FCode. Virtually all string operations are in the addr len format. For example:

h# 20 buffer: my-packed-string " This is test string " my-packed-string pack

"/packages"

The standard node containing the system’s support packages (both standard and system-speciﬁc). The value of the "name" property of this node is “packages”. The children of this node are general-purpose support packages not attached to any particular hardware device. The “physical address space” deﬁned by this node is the trivial one i.e. all addresses are the same (0,0). Its children are distinguished by name alone. For example, the disk-label support package is located in the device tree at /packages/disk-label.

"page-size"

This /mmu property deﬁnes the virtual address space page size. The property value is an integer specifying the number of bytes in the smallest

Chapter 12 - Open Firmware Dictionary

289

mappable region of virtual address space. For example:

d# 4096 encode-int " page-size" property

parse

stack: code: (delim "text<delim>" -- str len) none Parses text from the input buffer, delimited by delim. For example:

: dir" ("pattern" --) [char] " parse $dir ;

parse-2int

stack: code: (str len -- val.lo val.hi) 11B Converts a “hi,lo” string into a pair of values according to the current value in base. If the string does not contain a comma, val.lo is zero and val.hi is the result of converting the entire string. If either component contains non-numeric characters, according to the value in base, the result is undeﬁned. For example:

ok " 4,ff001200" parse-2int .s ff001200 4 ok " 4" parse-2int .s 0 4

parse-word

stack: code: ("text< >" -- str len) none Parses text from the input buffer, delimited by white space after skipping any leading spaces. str is the address (within the input buffer) and len is the length of the selected string. If the parse area was empty, the resulting string has a zero length.

password

stack: code: (--) none Prompts the user (twice) to enter a new password, terminated by end-of-line. Does not echo the password on the screen as it is typed. The password length is zero to eight characters in length. Ignores any additional characters (more than eight). If the entered password is the same both times, stores the new password string in security-password. Note that security-mode must be set to enable password protection.

290

Writing FCode Programs for PCI

patch

stack: code: ("new-name< >old-name< >word-to-patch< >" --) none In the compiled deﬁnition of word-to-patch, changes the ﬁrst occurrence of old-name to new-name. Works properly even if old-name and/or new-name are numbers. For example:

ok : patch-me test 0 do i . cr ok patch 555 test patch-me ok see patch-me : patch-me h#555 0 do i . cr loop ; loop ;

See also: (patch).

(patch)

stack: code: (new-n1 num1? old-n2 num2? xt --) none Change contents of command indicated by xt. In the compiled deﬁnition of the command indicated by xt, changes the ﬁrst occurrence of old-n2 to new-n1. new-n1 and old-n2 can each be either an execution token or a literal number. The ﬂag num1? is true if new-n1 is a literal number. If false, it indicates that new-n1 is an execution token. The ﬂag num2? is interpreted similarly. For example:

ok : patch-me 555 0 do i . cr loop ; ok ['] new-name false 555 true ['] patch-me (patch) ok see patch-me : patch-me new-name 0 do i . cr loop ;

See also: patch

peer

stack: code: (phandle -- phandle.sibling) 23C peer returns the phandle phandle.sibling of the package that is the next child of the parent package phandle. If there are no more siblings, peer returns 0. If phandle is 0, peer returns phandle of the root node.

Chapter 12 - Open Firmware Dictionary

291

Together with child, peer lets you enumerate (possibly recursively) the children of a particular device. A common application would be for a device driver to use child to determine the phandle of a node’s ﬁrst child, and use peer multiple times to determine the phandles of the node’s other children. For example:

: my-children (--) my-self ihandle>phandle child (first-child) begin ?dup while dup . peer repeat ;

pci-header

stack: (vendor-id device-id class-code --) generates: PCI Expansion ROM header A FirmWorks extension to the tokenizer. Executing pci-header results in the creation of a PCI Expansion ROM header. In addition to ﬁlling in the header’s “vendor ID”, “device ID” and “class code” ﬁelds with the values supplied by its stack arguments, pci-header puts a default value of 0 into the “pointer to vital product data” ﬁeld, puts a default “1” in the “revision level” ﬁeld and sets the “indicator” ﬁeld to a default value of 1 indicating that this is the last image in the ROM. pci-header must be paired with pci-header-end to create a complete PCI Expansion ROM header. The macros set-rev-level, set-vpd-offset, and not-last-image are provided to override the default values used by pci-header. See also: fcode-end, pci-header-end, not-last-image, set-rev-level, set-vpd-offset

pci-header-end

stack: (--) generates: “image length” ﬁeld of PCI Expansion ROM header A FirmWorks extension to the tokenizer. pci-header-end computes the correct value for the “image-length” ﬁeld of the PCI Expansion ROM header by rounding up the result of dividing the length in bytes of the PCI Expansion ROM FCode image by 512. pci-header-end places this result in the “image length” ﬁeld. pci-header must have been previously executed to create the PCI Expansion ROM header. See also: fcode-end, pci-header, not-last-image, set-rev-level, set-vpd-offset

pick

stack: code: (xu … x1 x0 u -- xu … x1 x0 xu) 4E Copies xu, the u+1-th stack value, not including u itself, where the remaining stack items have indices beginning with 0. u must be between 0 and two less than the total number of elements on the stack (including u).

0 pick is equivalent to dup 1 pick is equivalent to over 2 pick is equivalent to (n1 -- n1 n1) (n1 n2 -- n1 n2 n1) (n1 n2 n3 -- n1 n2 n3 n1)

For the sake of readability, the use of pick should be minimized.

292

Writing FCode Programs for PCI

postpone

stack: code: (C: [old-name< >] --) (… -- ???) none Can be used only within deﬁnitions to delay the execution of the following word, regardless of whether or not that word is “immediate”. postpone affects only the behavior of the word that follows it.

: end-if (C: orig-sys --) (E: --) postpone then ; immediate

printenv

stack: code: ("{param-name}<eol>" --) none If param-name is missing, displays the current and default values of all conﬁguration variables. Otherwise, displays the current and default values of the conﬁguration variable given whose name is param-name.

probe-all

stack: code: (--) none Searches for plug-in devices on the system-dependent set of expansion buses, creating device nodes for devices that are located. Undesirable results, such as duplicate device nodes for the same device, might occur if probe-all is executed more than once. It is normally executed automatically during system start-up following the evaluation of the script, but this automatic execution is disabled if banner or suppress-banner is executed from the script.

probe-self

stack: code: (arg-str arg-len reg-str reg-len fcode-str fcode-len --) none Evaluates FCode, as a child of this node. fcode-string is a unit-address text string representing the location of the FCode Program for the child device. reg-string is a probe-address text string representing the location of the child device itself. arg-string is a instance-arguments text string providing the arguments for the child (which can be retrieved within the child’s FCode Program with my-args.) probe-self ﬁrst checks to see if there is an FCode Program at the indicated location (perhaps by mapping the device and using cpeek to ensure that the device is present and that the ﬁrst byte is a valid FCode start byte). If so, probe-self:

s s s

Performs the function of new-device (thus creating a new device node) Interprets the FCode Program Performs the function of finish-device

If a valid FCode Program cannot be located at the indicated address, probe-self does not create a new device node.

Chapter 12 - Open Firmware Dictionary

293

Successful completion of probe-self will be indicated by the presence of a new device node containing a "name" property. If the evaluation of the FCode Program fails in some way, the new device node might be empty (containing no properties or methods.)

.properties

stack: code: (--) none Displays names and values of the properties of the active package.

property

stack: code: (prop-addr prop-len name-str name-len --) 110 Creates a new property with the speciﬁed name and previously prop-encoded value. If there is a current instance, creates the property in the package from which the current instance was created. Otherwise, if there is an active package, creates the property in the active package. If there is neither a current instance nor an active package, the result is undeﬁned. If a property with the speciﬁed name already exists in the active package in which the property would be created, replace its value with the new value. Properties provide a mechanism for an FCode Program to pass information to an operating system device driver. A property consists of a property name string and a property value array. The name string gives the name of the property, and the value array gives the value associated with that name. For example, a framebuffer may wish to declare a property named "hres" (for horizontal resolution) with a value of 1152. The property command requires two arrays on the stack — the value array and the name string. The name string is an ordinary Forth string, such as any string created with " . This string should be written in lower case, since the property name is stored only after converting uppercase letters, if any, to lower case. For example:

" A21-b" encode-string " New_verSION" property

is stored as if entered

" A21-b" encode-string " new_version" property

The value array, however, must be in the property value array format. See Chapter 5 “Properties” for more information on creating property value arrays. All properties created by an FCode Program are stored in a “device tree” by Open Firmware. This tree can then be queried by an operating system device driver, using the Client Interface’s getprop or nextprop services. The FCode Program and the operating system device driver may agree on any arbitrary set of names and values to be passed, with virtually no restrictions. Several property names, though, are reserved and have speciﬁc meanings. For many of them, a shorthand command also exists that makes the property declaration a bit simpler.

294

Writing FCode Programs for PCI

For example:

" AAPL,new-model" encode-string model

See also: "name", device-name, model, reg and Chapter 5 “Properties” for more information.

pwd

stack: code: (--) none Displays the device-path that names the active package.

quit

stack: code: (--) (R: … --) none Aborts program execution.

r>

stack: code:

“are from”

(-- x) (R: x --) 31 Removes x from the return stack and places it on the stack. See >r for restrictions on the use of this word. For example:

: copyout (buf addr len -- len) >r swap r@ move r> ;

r@

stack: code:

“are fetch”

(-- x) (R: x -- x) 32 Places a copy of the top of the return stack on the stack. For example:

: copyout (buf addr len -- len) >r swap r@ move r> ;

See >r for more details.

.r

stack: code:

“dot are”

(n size --) 9E Converts n using the value of base and then displays it right-aligned in a ﬁeld size digits wide. Displays a leading minus sign if n is negative. A trailing space is not displayed. If the number of digits required to display n is greater than size, displays all the digits required with no leading spaces in a ﬁeld as wide as necessary.

Chapter 12 - Open Firmware Dictionary

295

For example:

: formatted-output (--) my-length h# 8 .r ." length" cr my-width h# 8 .r ." width" cr my-depth h# 8 .r ." depth" cr ;

>r

stack: code:

“to are”

(x --) (R: -- x) 30 Removes x from the stack and places it on the top of the return stack. The return stack is a second stack, occasionally useful as a place to temporarily place numeric parameters i.e. to “get them out of the way” for a little while. For example:

: encode-intr (int-level vector --) >r sbus-intr>cpu encode-int r> encode-int ;

encode+

However, since the return stack is also used by the system for transferring control from word to word (and by do loops), improper use of >r or r> is guaranteed to crash your program. Some restrictions that must be observed are:

s

s s

All values placed on the return stack within a colon deﬁnition must be removed before the colon deﬁnition is exited by normal termination, exit or throw, or else the program will crash. No values from the return stack should be removed from within a colon deﬁnition unless they were placed there within that deﬁnition. Entering a do loop automatically places values onto the return stack. Therefore, s Values placed on the return stack before the loop was started will not be accessible from within the loop. s Values placed on the return stack within the loop must be removed before loop, +loop, or leave is encountered. s The loop indices i or j will no longer be valid when additional values have been placed on the return stack within the loop.

"ranges"

Buses such as SBus and VMEbus, whose children can be accessed with CPU load and store operations (as opposed to buses such as SCSI or IPI, whose children are accessed with a command protocol) require a way to deﬁne the bus-speciﬁc relationship between the physical address spaces of the parent and child nodes. The "ranges" property provides this capability. The value of the "ranges" property describes the correspondence between the physical address space deﬁned by a bus node (the “child address space”) and the physical address space of that bus node’s parent (the “parent address space”). For a detailed description, see "ranges" on page 78.

296

Writing FCode Programs for PCI

rb!

stack: code:

“are bee store”

(byte addr --) 231 Stores an 8-bit byte to a device register at addr with identical bit ordering as the input stack item. Data is stored with a single access operation and ﬂushes any intervening write buffers, so that the data reaches its ﬁnal destination before the next FCode method is executed. For example:

: my-stat! (byte -) my-stat rb! ;

rb!

stack:

“are bee store”

(byte addr --) This optional User Interface function behaves identically to the FCode version of rb!.

rb@

stack: code:

“are bee fetch”

(addr -- byte) 230 Fetches byte from the device register at addr. Data is read with a single access operation. The result has identical bit ordering as the original register data. For example:

: my-stat@ (-- byte) my-stat rb@ ;

rb@

stack:

“are bee fetch”

(addr -- byte) This optional User Interface function behaves identically to the FCode version of rb@.

read

stack: code: (addr len -- actual) none Reads at most len bytes from the device into the memory buffer beginning at addr. Returns actual, the number of bytes actually read. If actual is zero or negative, the read operation did not succeed. Devices of the following types place additional requirements on their read method:

s

network The read method receives (non-blocking) a network packet placing at most the ﬁrst len bytes into memory at addr, returning either the number of bytes actually received (not placed into memory) or -2 if no packet is currently available.

Chapter 12 - Open Firmware Dictionary

297

s

serial The read method receives a number of bytes equal to the minimum of len and the number of bytes available for immediate reception from the device, and places those bytes in memory at addr, returning either the number of bytes actually read or -2 if no bytes are currently available from the device.

For some devices, the seek method sets the position for the next read.

read-blocks

stack: code: (addr block# #blocks -- #read) none Reads #blocks records of length block-size bytes from the device (starting at device block block#) into memory (starting at addr). Returns #read, the number of blocks actually read. If the device is not capable of random access (e.g. a sequential access tape device), block# is ignored.

recurse

stack: code: (… -- ???) none Compiles a recursive call to the command being compiled.

recursive

stack: code: (--) none Makes the current deﬁnition visible for a recursive call. Normally, when a colon deﬁnition is being compiled, its name is not visible in the dictionary until the deﬁnition is completed. That way a call to that same name ﬁnds the previous version of a deﬁnition, not the one in progress. recursive makes the current deﬁnition visible so that subsequent uses of its name compile recursive calls to itself.

reg

stack: code: (phys.lo … phys.hi size --) 116 This is a shorthand word for declaring the "reg" property on buses whose #size-cells property is one. Typical usage for an SBus device:

my-address 40.0000 + my-space 20 reg

This declares that the device registers are located at offset 40.0000 through 40.001f

298

Writing FCode Programs for PCI

in this slot. The following code would accomplish the same thing:

my-address 40.0000 + my-space encode-phys 20 encode-int encode+ " reg" property

Note that if you need to declare more than one block of register addresses or if the parent’s #size-cells property is not equal to one, encode-phys, encode-int and encode+ must be used repeatedly to build the prop-encoded array that is passed to the property method to create the "reg" property. For example, reg cannot be used to create the "reg" property for PCI devices since at least three entries are required for PCI devices and since #size-cells is two for PCI. See also: property, "reg" in Chapter 5 “Properties”.

"reg"

This standard property speciﬁes the range of addressable regions on the device. The "reg" property represents the physical address, within its parent node’s address space, of the device associated with the node and also the amount of physical address space consumed by that device. In general, the "reg" property of a node can contain several phys.lo … phys.hi size speciﬁcations representing several disjoint ranges of physical address space. In the speciﬁc case of PCI, phys.lo … phys.hi for the PCI Conﬁguration Space header can be generated with my-address and my-space, and size is always zero. For other addressable regions, phys.hi must be modiﬁed to include the number of the associated base address register, the type of memory space (i.e. memory or I/O) and any other relevant information deﬁned for phys.hi by the PCI Bus Binding to IEEE Standard 12751994. As speciﬁed in the binding, the order of the pairs should be:

s s s s

An entry describing the Conﬁguration Space for the device. An entry for each active base address register (BAR), in Conﬁguration Space order, describing the entire space mapped by that BAR. An entry describing the Expansion ROM BAR, if the device has an Expansion ROM. An entry for each non-relocatable addressable resource.

For example, to declare a PCI device with:

s

A register ﬁeld at 10.0000-10.00ff in memory space that is controlled by the ﬁrst 32bit base address register. A register ﬁeld at 20.0000-20.037f in I/O space that is controlled by the second 32-bit base address register. A 128Kbyte PCI Expansion ROM. A non-relocatable ﬁeld at 0-fff in I/O space.

s

s s

use the following:

my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+ my-address 10.0000 0 d+ my-space 0200.0010 or encode-phys encode+ 0 encode-int encode+ 100 encode-int encode+ \ Config space regs \ Memory space \ BAR at 0x10

Chapter 12 - Open Firmware Dictionary

299

my-address 20.0000 0 d+ my-space 0100.0014 or \ encode-phys encode+ \ 0 encode-int encode+ 380 encode-int encode+ my-address my-space h# 0200.0030 or \ encode-phys encode+ \ 0 encode-int encode+ h# 2.0000 encode-int encode+ my-address my-space h# 8100.0000 or \ encode-phys encode+ \ 0 encode-int encode+ h# 1000 encode-int encode+ " reg" property

I/O space BAR at 0x14 PCI Expansion ROM memory space Non-relocatable memory space

For a detailed description, see "reg" on page 81.

.registers

stack: code: (--) none Displays the register values that were in effect when the program state was saved (i.e. when the program was suspended). The exact set of registers displayed, and the format, is system-dependent.

"relative-addressing"

The presence of this standard property indicates that each device node address is relative (i.e. local to the address space deﬁned by the node’s parent). The absence of the property indicates that device node’s addresses are absolute addresses within the system-wide address space.

release

stack: code: (virt len --) none Free (release) addressable resource. Frees len bytes of the addressable resource managed by the package containing this method, beginning at the address virt, making it available for subsequent use. See also: claim, alloc-mem, "available", free-mem

remove-abort

stack: code: (--) none Instructs the device driver to cease periodic polling for a keyboard abort sequence. Executed when the console input device is changed from this device to another.

repeat

stack: (C: orig-sys dest-sys --) (--) generates: bbranch -offset b(>resolve) Terminates a begin…while…repeat conditional loop. See while for more details.

300

Writing FCode Programs for PCI

reset

stack: code: (--) none Puts this device into a quiescent state. The deﬁnition of “quiescent” is device-speciﬁc. This method is used primarily for permanently-installed devices (which are therefore not probed) that do not automatically assume a quiescent state after a system reset. The reset method is not invoked by any standard Open Firmware functions, but may be explicitly executed for particular “problem” devices in particular Open Firmware implementations.

reset-all

stack: code: (--) none Reset the machine as if a power-on reset had occurred. This command is used to initiate a system power-on reset, thus re-initializing the hardware state and Open Firmware’s data structures as if a power-on reset had occurred.

reset-screen

stack: code: (--) 158 reset-screen is one of the defer words of the display device interface. The terminal emulator package executes reset-screen when it has processed a character sequence that calls for resetting the display device to its initial state. reset-screen puts the display device into a state in which display output is visible (e.g. enable video). This word is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which load fb1-reset-screen or fb8-reset-screen, respectively). These words are NOPs, so it is very common to ﬁrst call fbx-install and then to override the default setting for reset-screen with:

['] my-video-on to reset-screen

restore

stack: code: (--) none Restores a device to a usable state after an unexpected reset. On some systems, unexpected system errors result in a bus reset that turns off some devices, but does not necessarily destroy the machine state necessary for debugging the error. In such systems, the system-dependent ﬁrmware handler for that reset condition may execute the restore methods of the console input and output devices, in order to re-enable those devices for user interaction and subsequent debugging.

Chapter 12 - Open Firmware Dictionary

301

resume

stack: code: (--) none resume is one of the source-level debugger control words. After the “f” keystroke is used with the stepper to enter a “subordinate interpreter”, resume is used to exit back to the stepper.

return

stack: code: (--) none return is one of the breakpoint commands. After a breakpoint has been encountered within a subroutine, return can be used to continue execution until the return from the subroutine.

ring-bell

stack: code: (--) none Causes the device to emit a brief audible sound (beep). See also: blink-screen

rl!

stack: code:

“are el store”

(quad qaddr --) 235 Stores a 32-bit word to a device register at qaddr with identical bit ordering as the input stack item. qaddr must be 32-bit aligned. Data is stored with a single access operation and ﬂushes any intervening write buffers, so that the data reaches its ﬁnal destination before the next FCode method is executed. For example:

: my-reg! (n --) my-reg rl! ;

rl!

stack:

“are el store”

(quad qaddr --) This optional User Interface function behaves identically to the FCode version of rl!.

rl@

stack: code:

“are el fetch”

(qaddr -- quad) 234 Fetches a 32-bit word from the device register at qaddr. qaddr must be 32-bit aligned. Data is read with a single access operation. The result has identical bit ordering as the original register data. For example:

: my-reg@ (-- n) my-reg rl@ ;

302

Writing FCode Programs for PCI

rl@

stack:

“are el fetch”

(qaddr -- quad) This optional User Interface function behaves identically to the FCode version of rl@.

roll

stack: code: (xu … x1 x0 u -- xu-1 … x1 x0 xu) 4F Removes the u+1-th stack value, not including u itself, where the remaining stack items have indices beginning with 0. The u-th stack item is then placed on the top of the stack, moving the remaining items down one position. u must be between 0 and two less than the total number of elements on the stack (including u).

0 1 2 3 roll roll roll roll is is is is a null operation equivalent to swap equivalent to rot equivalent to

(n1 n2 -- n2 n1) (n1 n2 n3 -- n2 n3 n1) (n1 n2 n3 n4 -- n2 n3 n4 n1)

For the sake of readability and performance, minimize your use of roll.

rot

stack: code:

“rote”

(x1 x2 x3 -- x2 x3 x1) 4A Rotates the top three stack entries, bringing the deepest to the top.

-rot

stack: code:

“minus rote”

(x1 x2 x3 -- x3 x1 x2) 4B Rotates the top three stack entries in the direction opposite from rot, putting the top number underneath the other two.

2rot

stack: code:

“two rote”

(x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) 56 Rotates the top three pairs of numbers, bringing the third pair to the top of the stack.

rshift

stack: code: (x1 u -- x2) 28 Shifts x1 right by u bit-places while zero-ﬁlling the high bits.

rw!

stack: code:

“are double you store”

(w waddr --) 233 Stores a 16-bit word to a device register at waddr with identical bit ordering as the input stack item. waddr must be 16-bit aligned. Data is stored with a single access operation and ﬂushes any intervening write buffers, so that the data reaches its ﬁnal

Chapter 12 - Open Firmware Dictionary

303

destination before the next FCode method is executed. For example:

: my-count! (w --) my-count rw! ;

rw!

stack:

“are double you store”

(w waddr --) This optional User Interface function behaves identically to the FCode version of rw!.

rw@

stack: code:

“are double you fetch”

(waddr -- w) 232 Fetches a 16-bit word from the device register at waddr. waddr must be 16-bit aligned. Data is read with a single access operation. The result has identical bit ordering as the original register data. For example:

: my-count@ (-- w) my-count rw@ ;

rw@

stack:

“are double you fetch”

(waddr -- w) This optional User Interface function behaves identically to the FCode version of rw@.

rx!

stack: code:

“are ecks store”

(o oaddr --) 22F Stores a 64-bit word to a device register at oaddr with identical bit ordering as the input stack item. oaddr must be 64-bit aligned. Data is stored with a single access operation and ﬂushes any intervening write buffers, so that the data reaches its ﬁnal destination before the next FCode method is executed. This function is only available on 64-bit implementations.

rx!

stack:

“are ecks store”

(o oaddr --) This optional User Interface function behaves identically to the FCode version of rx!. This function is only potentially available on 64-bit implementations.

304

Writing FCode Programs for PCI

rx@

stack: code:

“are ecks fetch”

(oaddr -- o) 22E Fetches a 64-bit word from the device register at oaddr. oaddr must be 64-bit aligned. Data is read with a single access operation. The result has identical bit ordering as the original register data. This function is only available on 64-bit implementations.

rx@

stack:

“are ecks fetch”

(oaddr -- o) This optional User Interface function behaves identically to the FCode version of rx@. This function is only potentially available on 64-bit implementations.

s"

stack: ([text<">] -- text-str text-len) generates: b(") len-byte xx-byte xx-byte … xx-byte Gather the immediately-following string delimited by " . Return the location of the string text-str text-len. Since an implementation is only required to provide two temporary buffers, a program cannot depend on the system’s ability to simultaneously maintain more than two distinct interpreted strings. Compiled strings do not have this limitation, since they are not stored in the temporary buffers.

s.

stack: (n --) generates: (.) type space Displays the absolute value of n in a free-ﬁeld format according to the current value of base. Displays a trailing space and, if n is negative, a leading minus sign. Even if the base is hexadecimal, n will be printed in signed format See also: .

#s

stack: code: (ud -- 0 0) C8 Converts the remaining digits in pictured numeric output.

.s

stack: code: (… -- …) 9F Displays the contents of the data stack (using .) according to base. The top of the stack appears on the right. The contents of the stack are unchanged.

Chapter 12 - Open Firmware Dictionary

305

For example:

ok 1 2 3 .s 1 2 3 ok . . . 3 2 1

sbus-intr>cpu

stack: code: (sbus-intr# -- cpu-intr#) 131 Convert the SBus interrupt level (1-7) to the CPU interrupt level. The mapping performed will be system-dependent. This word is included because of the possibility that, even on systems that nominally do not support SBus, SBus devices might be used via a bus-to-bus bridge.

screen

A device alias. If the value of screen is not previously speciﬁed, the system will create screen using as its value the path of the ﬁrst device of type display that was found during the probing process. If the output-device conﬁguration variable is set to screen, this process results in auto-conﬁguration of the console output device. screen is the suggested default value for the output-device conﬁguration variable.

screen-#columns

stack: code: (-- n) none This conﬁguration variable is an integer specifying the maximum number of columns on the console output device. Standard display packages use this value to determine the width in characters of their text region. If the device is incapable of displaying that many columns, the device restrictions prevail. The suggested default value of screen-#columns is 80.

screen-height

stack: code: (-- height) 163 A value, containing the total height of the display (in pixels). It can also be interpreted as the number of “lines” of memory. screen-height is an internal value used by the fb1- and fb8- frame buffer support packages. In particular, this value is used in fbx-invert, fbx-erase-screen, fbxblink-screen and in calculating window-top. fb1-install and fb8-install set it to the value of their height argument. This function is included for historical compatibility. There is little reason for an FCode Program to use it. In fact, “standard” FCode Programs are forbidden from altering its value directly.

306

Writing FCode Programs for PCI

screen-#rows

stack: code: (-- n) none This conﬁguration variable is an integer specifying the maximum number of rows on the console output device. Standard display packages use this value to determine the height in text lines of their text region. If the device is incapable of displaying that many rows, the device restrictions prevail. The suggested default value of screen-#rows is 24.

screen-width

stack: code: (-- width) 164 A value, containing the width of the display (in pixels). It can also be interpreted as the number of pixels (in memory) between one screen location and the next location immediately below it. The latter deﬁnition takes precedence if there is a conﬂict (e.g. there are unused/invisible memory locations at the end of each line). screen-width is an internal value used by the fb1- and fb8- frame buffer support packages. fb1-install and fb8-install set it to their width argument. This function is included for historical compatibility. There is little reason for an FCode Program to use it. In fact, “standard” FCode Programs are forbidden from altering its value directly.

s>d

stack: code: (n -- d) none Converts a number to a double number.

security-#badlogins

stack: code: (-- n) none This conﬁguration variable is an integer containing the total count of invalid security access attempts. This counter is incremented by one, whenever a bad password is entered when attempting to enter the command interpreter while security-mode is set (to either command mode or full mode). The value in security-#badlogins is not affected by the set-default or set-defaults commands. There is no suggested default value for security-#badlogins.

security-mode

stack: code: (-- n) none This conﬁguration variable contains the level of security access protection. When security is in effect, user knowledge of a password is required to allow use of most commands through the command interpreter.

Chapter 12 - Open Firmware Dictionary

307

The following keywords denote the security levels:

Table 38 Keyword none command full security-mode Settings Description No security, no password required. Requires password entry to execute any command except for go, boot (default device and default ﬁle), or automatic boot after system power-on or boot call. Requires password entry to execute any command except for go command. Automatic booting is disabled, machine will not automatically re-boot after a power failure.

For example:

ok setenv security-mode full

The value of security-mode is not affected by the set-default or set-defaults commands. There is no suggested default value for security-mode. It is not possible to determine the level of security protection from within a program, as the value n returned by this command cannot be related unambiguously to the security level keywords.

security-password

stack: code: (-- password-str password-len) none The value of this conﬁguration variable is a string specifying the security password text string. The value of security-password is normally set with the password command, although setenv can also be used. The value of security-password is not be displayed when printenv is executed. The value of security-password is not affected by the set-default or set-defaults commands. There is no suggested default value for security-password.

see

stack: code: ("old-name< >" --) none Decompiles the Forth command old-name. For example:

ok see see : see ' ['] (see) catch if drop then ;

308

Writing FCode Programs for PCI

(see)

stack: code: (xt --) none Decompiles the Forth command whose execution token is xt. For example:

ok ['] see (see) : see ' ['] (see) catch if drop then ;

seek

stack: code: (pos.lo pos.hi -- status) none Sets the device position at which the next read or write will take place. The position is speciﬁed by a pair of numbers pos.lo pos.hi, whose interpretation depends on the device type. status is -1 if the operation fails and either zero or one if it succeeds.

select

stack: code: ("device-speciﬁer< >" --) none A User Interface extension provided by some implementations (e.g. FirmWorks/Sun). Creates an instance chain for the device speciﬁed by device-speciﬁer. See also: “Using select” on page 37.

select-dev

stack: code: (dev-str dev-len --) none A User Interface extension provided by some implementations (e.g. FirmWorks/Sun). Creates an instance chain for the device speciﬁed by dev-str dev-len. See also: “Using select-dev” on page 35.

selftest

stack: code: (-- 0 | error-code) none Note – United States Patent No. 4,633,466, "Self Testing Data Processing System with Processor Independent Test Program", issued December 30, 1986 may apply to some or all elements of Open Firmware selftest. Anyone implementing Open Firmware should take such steps as may be necessary to avoid infringement of that patent and any other applicable intellectual property rights.

Chapter 12 - Open Firmware Dictionary

309

Performs the selftest for this device. Returns 0 if successful or a device-speciﬁc nonzero error-code if an error is detected. The complexity of this test will typically be much greater than that of the test performed when open is called. This method is typically invoked by the user commands test or test-all, via execute-device-method. Consequently, the package’s open method has not necessarily been executed before selftest is invoked. (execute-device-method does not call open, but it is possible for the device to have already been previously opened.) selftest should leave the device in a state similar to that before selftest was executed. Therefore, selftest is responsible for establishing any device state necessary to perform its function prior to starting the tests and for releasing any resources that were allocated during the process after completing the tests. The extent of the testing performed by selftest can be made to be dependent upon the value returned by diagnostic-mode?; if so, more extensive testing should be performed when diagnostic-mode? return true.

selftest-#megs

stack: code: (-- n) none This conﬁguration variable is an integer specifying the maximum number of megabytes of memory that should be tested by the selftest routine of the "memory" node (i.e. the node whose device-path is /memory). In most systems that memory test is automatically executed after the secondary diagnostics. (Some smaller portion of memory is usually tested by POST, as well.) selftest-#megs controls the extent of memory selftest. If diagnostic-mode? is true, the system may ignore the value of selftest-#megs. The suggested default value of selftest-#megs is 1.

"serial"

This is the standard property value of the "device_type" property for byte-oriented devices such as a serial port. Devices of type "serial" must implement the following methods:

s s s

open close read The read method receives a number of bytes equal to the minimum of len and the number of bytes available for immediate reception from the device, and places those bytes in memory at addr, returning either the number of bytes actually read or -2 if no bytes are currently available from the device.

s s s

write install-abort remove-abort

If a device of type "serial" can cause the display to become invisible (e.g. the video is turned off) in the case of an unexpected system reset, and if the display can be restored to visibility without performing memory mapping or memory allocation operations, the package should implement the restore method. If a device of type "serial" has an audible annunciator that is activated by some action other than sending an ASCII BEL character then the package should implement

310

Writing FCode Programs for PCI

the ring-bell method. A package with this "device_type" property value may implement additional device-speciﬁc methods. See also: character-set

set-args

stack: code: (arg-str arg-len unit-str unit-len --) 23F Sets the address and arguments of a new device node. unit-string is a text string representation of a physical address within the address space of the parent device. set-args translates unit-string to the equivalent numerical representation by executing the parent instance’s decode-unit method, and sets the current instance’s probe-address (i.e. the values returned by my-address and myspace) to that numerical representation. set-args then copies the string arg-string to instance-speciﬁc storage, and arranges for my-args to return the address and length of that copy when executed from the current instance. set-args is typically used just after new-device. new-device creates and selects a new device node, and set-args sets its probe-address and arguments. Subsequently, the device node’s properties and methods are created by interpreting an FCode Program with byte-load or by interpreting Forth source code. The empty string is commonly used as the arguments for a new device node. For example:

0 0 " 3" set-args

set-default

stack: code: ("param-name<eol>" --) none Sets the speciﬁed conﬁguration variable to its default value. For example:

ok set-default auto-boot?

Some conﬁguration variables are unaffected by set-default, as noted in individual conﬁguration variable command descriptions.

set-defaults

stack: code: (--) none Resets most conﬁguration variables to their default values. Some conﬁguration variables are unaffected by set-defaults, as noted in individual conﬁguration variable command descriptions.

Chapter 12 - Open Firmware Dictionary

311

setenv

stack: code: ("nv-param< >new-value<eol>" --) none Sets the conﬁguration variable nv-param to the value speciﬁed by new-value. If new-value is the empty string, setenv displays an error message and returns. Otherwise, it performs the equivalent of $setenv with string arguments denoting nv-param and new-value. For example:

ok setenv auto-boot? true ok setenv oem-banner The nEw TeXt looks

Just like this!

See also: $setenv

$setenv

stack: code: (data-addr data-len name-str name-len --) none Sets the conﬁguration variable name-string to the value speciﬁed by data-addr data-len. $setenv interprets the new value according to the conﬁguration variable’s conﬁguration variable data type. If the given value string is not suitable for that data type, $setenv displays an error message. Otherwise, $setenv sets the conﬁguration variable to the new value, truncating it to ﬁt the available space (if necessary), and then displays the new value. For example:

ok " new-value" " nv-name" $setenv

See also: setenv

set-font

stack: code: (addr width height advance min-char #glyphs --) 16B This routine declares the font table to be used for printing characters on the screen. This routine must be called if you wish to use any of the fb1- or fb8- utility routines or >font. Normally, set-font is called just after default-font. default-font leaves the exact set of parameters needed by set-font on the stack. This approach allows your FCode Program to inspect and/or alter the default parameters if desired. See default-font for more information on these parameters.

set-rev-level

stack: (revision --) generates: value of “revision-level” ﬁeld of PCI Expansion ROM header A FirmWorks extension to the tokenizer. set-rev-level sets the value used by pci-header-end when creating the “revision level” ﬁeld of the PCI Expansion ROM. set-rev-level must be executed prior to pci-header.

312

Writing FCode Programs for PCI

See also: fcode-end, pci-header, pci-header-end, not-last-image, set-vpd-offset

set-vpd-offset

stack: (addr --) generates: value of “pointer to vital product data” ﬁeld of PCI Expansion ROM header A FirmWorks extension to the tokenizer. set-vpd-offset sets the value used by pci-header-end when creating the “pointer to vital product data” ﬁeld of the PCI Expansion ROM. set-vpd-offset must be executed prior to pci-header. See also: fcode-end, pci-header, pci-header-end, not-last-image, set-rev-level

set-token

stack: code: (xt immediate? fcode# --) DB Assigns the FCode number fcode# to the FCode function whose execution token is xt, with compilation behavior speciﬁed by immediate? as follows:

s

s

If immediate? is zero, then the FCode Evaluator will execute the function’s execution semantics if it encounters that FCode number while in interpretation state, or append those execution semantics to the current deﬁnition if it encounters that FCode number while in compilation state. If immediate? is nonzero, the FCode Evaluator will execute the functions’s FCode Evaluation semantics anytime it encounters that FCode number.

show-devs

stack: code: ("{device-speciﬁer}<eol>" --) none Shows the full device path for each device in the sub-tree of the device tree underneath the node speciﬁed by device-speciﬁer. If device-speciﬁer is the empty string (i.e. there is nothing on the command line following show-devs), shows all system devices.

showstack

stack: code: (… -- …) none Displays the entire stack, with a format similar to the .s command, just before each ok prompt. This feature can be turned off with the noshowstack command. The system default is noshowstack. See also: noshowstack

$sift

stack: code: (text-addr text-len --) none Display all command-names containing text-string.

Chapter 12 - Open Firmware Dictionary

313

Searches the current vocabulary and displays the names of all commands which include text-string as part of the command-name. Upper and lower-case distinctions are ignored. This command is useful for ﬁnding all commands of a particular “type” or for ﬁnding any command where the name is only partially known. For example:

ok " spaces" $sift In vocabulary hidden (1e10e90) .spaces In vocabulary forth (1e0d990) spaces (1e0302c) backspaces (1e02fec) spaces

See also: sifting order

sifting

stack: code: ("text< >" --) none Display all command-names containing text. For example:

ok sifting spaces In vocabulary hidden (1e10e90) .spaces In vocabulary forth (1e0d990) spaces (1e0302c) backspaces (1e02fec) spaces

See also: $sift

sign

stack: code: (n --) 98 If n is negative, appends an ASCII “-” (minus sign) to the pictured numeric output string. Typically used between <# and #>. See (.) for a typical usage.

"#size-cells"

This standard property applies to bus nodes. The property value is an integer encoded with encode-int and speciﬁes the number of cells that are used to encode the size ﬁeld of a child’s "reg" format property. A missing "#size-cells" property signiﬁes the default value of one. Plug-in devices should use the value speciﬁed for their bus and, if unspeciﬁed, should use the default value of one. For PCI, "#size-cells" is 2 which reﬂects PCI’s 64-bit address space.

314

Writing FCode Programs for PCI

sm/rem

stack: code: (d n -- rem quot) none Divides d by n returning rem and quot. rem carries the sign of d or is zero. quot is the quotient rounded towards zero.

source

stack: code: (-- addr len) none Returns the location and size of the input buffer.

space

stack: (--) generates: bl emit Displays a single ASCII space character.

spaces

stack: (cnt --) generates: 0 max 0 ?do space loop Displays cnt ASCII space characters. Nothing is displayed if cnt is zero.

span

stack: code: (-- a-addr) 88 A variable containing the count of characters actually received and stored by the last execution of expect. For example:

h# 10 buffer: my-name-buff : hello (--) ." Enter Your First name " my-name-buff h# 10 expect ." FirmWorks Welcomes " my-name-buff span @ type cr ;

start0

stack: code: (--) F0 start0 may only be used as the ﬁrst byte of an FCode Program. start0:

s s s

Sets the spread value to 0 causing the FCode Evaluator to read successive bytes of the current FCode Program from the same address. Establishes the use of 16-bit branches. Reads an FCode header from the current FCode Program and either discards it or uses it to verify the integrity of the current FCode program in an implementationdependent manner.

For portability, the preferred way to begin an FCode program in source form is with

Chapter 12 - Open Firmware Dictionary

315

the fcode-version2 tokenizer macro. This macro causes the tokenizer to begin the FCode binary with the appropriate start byte and an FCode header. See also: fcode-version2, start1, start2, start4, version1

start1

stack: code: (--) F1 start1 may only be used as the ﬁrst byte of an FCode Program. start1:

s s s

Sets the spread value to 1 causing the FCode Evaluator to read successive bytes of the current FCode Program from addresses one address unit apart. Establishes the use of 16-bit branches. Reads an FCode header from the current FCode Program and either discards it or uses it to verify the integrity of the current FCode program in an implementationdependent manner.

For portability, the preferred way to begin an FCode program in source form is with the fcode-version2 tokenizer macro. This macro causes the tokenizer to begin the FCode binary with the appropriate start byte and an FCode header. See also: fcode-version2, start0, start2, start4, version1

start2

stack: code: (--) F2 start2 may only be used as the ﬁrst byte of an FCode Program. start2:

s s s

Sets the spread value to 2 causing the FCode Evaluator to read successive bytes of the current FCode Program from addresses two address units apart. Establishes the use of 16-bit branches. Reads an FCode header from the current FCode Program and either discards it or uses it to verify the integrity of the current FCode program in an implementationdependent manner.

For portability, the preferred way to begin an FCode program in source form is with the fcode-version2 tokenizer macro. This macro causes the tokenizer to begin the FCode binary with the appropriate start byte and an FCode header. See also: fcode-version2, start0, start1, start4, version1

start4

stack: code: (--) F3 start4 may only be used as the ﬁrst byte of an FCode Program. start4:

s s s

Sets the spread value to 4 causing the FCode Evaluator to read successive bytes of the current FCode Program from addresses four address units apart. Establishes the use of 16-bit branches. Reads an FCode header from the current FCode Program and either discards it or uses it to verify the integrity of the current FCode program in an implementationdependent manner.

For portability, the preferred way to begin an FCode program in source form is with

316

Writing FCode Programs for PCI

the fcode-version2 tokenizer macro. This macro causes the tokenizer to begin the FCode binary with the appropriate start byte and an FCode header. See also: fcode-version2, start0, start1, start2, version1

state

stack: code: (-- a-addr) DC A variable containing true if the system is in compilation state.

state-valid

stack: code: (-- a-addr) none A variable containing true if saved-program-state is valid. state-valid is set to true by init-program and by actions that result in the saving of program state. saved-program-state must be valid in order for execution with go to perform properly.

status

stack: code: (--) none status is a defer word, initially vectored to noop, which can be used to modify the user interface prompt to display whatever additional information the user wishes to see. For example:

ok hex : showbase (--) ." (" base @ .d .") " ; ok ['] showbase to status (16) ok ['] noop to status ok

"status"

If this standard property is present, the value is a string indicating the status of the device, as follows:

Table 39 "status" Property Value Descriptions Description The device is believed to be operational. The device represented by this node is not operational, but it might become operational in the future (e.g. an external switch is turned off, or something isn’t plugged in.) The device represented by this node is not operational because a fault has been detected, and it is unlikely that the device will become operational without repair. No additional failure details are available.

"status" "okay" "disabled"

"fail"

Chapter 12 - Open Firmware Dictionary

317

Table 39

(Continued)"status" Property Value Descriptions Description The device represented by this node is not operational because a fault has been detected, and it is unlikely that the device will become operational without repair. “xxx” is additional humanreadable information about the particular fault condition that was detected.

"status" "fail-xxx"

The absence of the "status" property means that the operational status is unknown or okay.

stdin

stack: code: (-- a-addr) none A variable containing the ihandle of the console input device.

"stdin"

This property appears in the /chosen node. The property value is an integer encoded with encode-int containing the ihandle of the console input device.

stdout

stack: code: (-- a-addr) none A variable containing the ihandle of the console output device.

"stdout"

This property appears in the /chosen node. The property value is an integer encoded with encode-int containing the ihandle of the console output device.

step

stack: code: (--) none step is one of the breakpoint commands. After a breakpoint has been encountered, step resumes client program execution as with go, but only executes one instruction. The effect is as if breakpoints were established at the possible successors to that instruction and then automatically removed when the breakpoint is handled.

.step

stack: code: (--) none .step is a defer word that is executed whenever a single step occurs. The default behavior is .instruction. For example, to display registers at every single step:

ok [’] .registers to .step

318

Writing FCode Programs for PCI

See also: defer

stepping

stack: code: (--) none Sets “step mode” for Forth source-level debugging. This mode allows interactive stepby-step execution of the command being debugged. “Step mode” is the default. While in “step mode”, before the execution of each command called by the debugged command, the user is prompted for one of a number of keystrokes. See debug for a list of these keystrokes.

steps

stack: code: (n --) none Executes step n times.

struct

stack: (-- 0) generates: 0 Initializes a struct…field structure by leaving a zero on the stack to deﬁne the initial offset. See field for details.

suppress-banner

stack: code: (--) none If executed within the NVRAM script, suppresses the automatic execution of the following Open Firmware start-up sequence:

s s s

probe-all install-console banner

suppress-banner is useful for modifying the standard startup sequence. For a usage example, see “Patching FCode of a Plug-in Card” on page 22. See also: banner, oem-banner, oem-banner?, oem-logo, oem-logo?, probe-all

suspend-fcode

stack: code: (--) 215 Tells the FCode interpreter that the device identiﬁcation properties for the active package have been declared, and that the interpreter may postpone interpreting the remainder of the package if it so chooses. If the FCode interpreter postpones (suspends) interpretation, it saves the state of the interpretation process so that interpretation can continue later. Attempts to open a suspended package cause the FCode interpreter to resume and complete the interpretation of that package before executing the package’s open method.

Chapter 12 - Open Firmware Dictionary

319

For example:

fcode-version2 " INTL,my-name" namea " INTL,my-model" encode-string " model" property suspend-fcode … fcode-end

This feature is intended to save memory space and reduce the system start-up time by preventing the compilation of FCode drivers that are not actually used.

swap

stack: code: (x1 x2 -- x2 x1) 49 Exchanges the top two stack items.

2swap

stack: code: (x1 x2 x3 x4 -- x3 x4 x1 x2) 55 Exchanges the top two pairs of stack items.

sym

stack: code: ("name< >" -- n) none Returns the value of the client program symbol name. If name cannot be resolved to a symbol, sym performs an abort. Otherwise, sym returns the symbol value n corresponding to name.

sym>value

stack: code: (addr len -- addr len false | n true) none This defer word is executed when the symbolic debugger needs to translate a symbol name into its corresponding value. If sym>value is present, the Forth interpreter attempts to perform such translation if a word is neither found in the normal dictionary search nor recognized as number. The translation is also attempted by sym. If a symbol whose name matches the string given by addr len is deﬁned, sym>value returns the corresponding symbol value and true. Otherwise, sym>value returns its addr len arguments and false. The default action for sym>value, when no symbol table is present, is to return addr len and false. A program can provide a symbol table and install a command into sym>value with to to search that symbol table. See also: value>sym

320

Writing FCode Programs for PCI

sync

stack: code: (--) none Flushes the system ﬁle buffers after a program interrupt. Equivalent to: callback sync <eol> The suggested callback behavior of the sync command is to ﬂush the system’s ﬁle buffers. sync is often used after a client program has been forcibly interrupted by aborting to Open Firmware.

test

stack: code: ("device-speciﬁer<eol>" --) none If the device node speciﬁed by device-speciﬁer has a selftest method, test invokes it with execute-device-method. Otherwise, test displays an error message. For example:

ok test device-alias

test-all

stack: code: ("{device-speciﬁer}<eol>" --) none test-all visits each node in the sub-tree of the device tree at and below the speciﬁed node, or below the root node if no node is speciﬁed. For each node with a selftest method, test-all invokes that selftest routine using execute-device-method. The system may choose not to test certain active devices that it believes are “unsafe” to test while active. For example:

ok test-all device-alias

then

stack: (C: orig-sys --) (--) generates: b(>resolve) Terminates an if…then or an if…else…then conditional structure. See if for more details.

throw

stack: code: (… error-code -- ??? error-code | …) 218 If error-code is 0, drops error-code and exits. If error-code is non-zero, pops the exception frame, restores the value of my-self, restores the input source, adjusts the stack depth as speciﬁed by the exception frame, pushes error-code on top of the stack, and transfers control to just beyond the catch

Chapter 12 - Open Firmware Dictionary

321

that pushed the exception frame. If error-code is non-zero and there is no exception frame on the exception stack, the behavior is as follows:

s s s

If error-code is -1, abort is performed. If error-code is -2, abort" is performed. Otherwise, the system may display an implementation-dependent message giving information about the condition associated with the throw code error-code, and abort is performed.

See catch for an example of use.

till

stack: code: (addr --) none till is one of the breakpoint commands. till adds the speciﬁed address to the breakpoint list and resumes execution. till is equivalent to: +bp go

to

stack: (param [old-name< >] --) generates: b(to) old-FCode# Changes the contents of a value or a defer word:

number to name (for a value) xt to name (for a defer word)

toggle-cursor

stack: code: (--) 159 toggle-cursor is one of the defer words of the display device interface. The terminal emulator package executes toggle-cursor when it is about to process a character sequence that might involve screen drawing activity, and executes it again after it has ﬁnished processing that sequence. The ﬁrst execution removes the cursor from the screen so that any screen drawing will not interfere with the cursor, and the second execution restores the cursor, possibly at a new position, after the drawing activity related to that character sequence is ﬁnished. toggle-cursor is also called once during the terminal emulator initialization sequence. If the text cursor is on, toggle-cursor turns it off. If the text cursor is off, toggle-cursor turns it on. (On a bitmapped display, a typical implementation of this function inverts the pixels of the character cell to the right of the current cursor position.) toggle-cursor is initially empty, but must be loaded with an appropriate routine in order for the terminal emulator to function correctly. This can be done with to, or it can be loaded automatically with fb1-install or fb8-install (which load fb1-toggle-cursor or fb8-toggle-cursor, respectively). If the display device hardware has internal state (for example color map settings) that might have been changed by external software without ﬁrmware’s knowledge, that

322

Writing FCode Programs for PCI

hardware state should be re-established to the state that the ﬁrmware driver requires when the cursor is toggled to the “off” state (which indicates that ﬁrmware drawing operations are about to begin). This situation can occur, for example, when an operating system is using a display device, but that operating system uses ﬁrmware text output services from time to time, e.g. for critical warning messages. See also: to, fb1-install, fb8-install

tokenizer[

stack: code: (--) none This is a tokenizer command that ends FCode byte generation and begins interpretation of the following text as tokenizer commands (up to the closing]tokenizer). A tokenizer[…]tokenizer sequence may be used anywhere in an FCode Program, either within any deﬁnition or outside of deﬁnitions. One plausible use for tokenizer[would be to generate debugging text during the tokenizing process. (A cr ﬂushes the text from the output buffer immediately, which is useful if the tokenizer crashes.) For example:

… tokenizer[… tokenizer[…

.(step a) .(step b)

cr cr

]tokenizer]tokenizer

emit-byte can be used with tokenizer[to output a desired byte of FCode. This would be useful, for example, if you wished to generate a new FCode command that the tokenizer did not understand. For example:

… tokenizer[1 emit-byte 27 emit-byte \ manually output finish-device fcode …

]tokenizer

]tokenizer

stack: code: (--) none Ends a tokenizer-only command sequence. See tokenizer[.

tracing

stack: code: (--) none Sets “trace mode” for Forth source-level debugging. This mode causes execution of the word being debugged to be traced, showing the name and stack contents for each command called by the debugged command. Tracing continues until stepping is executed or a system reset takes place. See also: debug

Chapter 12 - Open Firmware Dictionary

323

-trailing

stack: code: (str len1 -- str len2) none Removes any trailing spaces from a string.

translate

stack: code: (virt -- false | phys.lo … phys.hi mode … true) none If a valid virtual to physical address translation exists for the virtual address virt, translate returns the physical address phys.lo … phys.hi, the translation mode mode … (typically, but not necessarily, one cell) and true. Otherwise, translate returns false. The physical address format is the same as that of the "memory" node (i.e. the node whose ihandle is given by the value of the /chosen node’s "memory" property). The interpretation of mode … is MMU-dependent.

true

stack: (-- true) generates: -1 Leaves the value for the true ﬂag (which is -1) on the stack.

tuck

stack: code: (x1 x2 -- x2 x1 x2) 4C Copies the top stack item underneath the second stack item.

type

stack: code: (text-str text-len --) 90 A defer word that transfers text-len characters to the output beginning with the character at address text-str and continuing through text-len consecutive addresses. No action is taken if text-len is zero. For example:

h# 10 buffer: my-name-buff : hello (--) ." Enter Your First name " my-name-buff h# 10 expect ." FirmWorks Welcomes " my-name-buff span @ type cr ;

The output will go either to a framebuffer or to a serial port depending on which is enabled.

u#

stack: code:

“you number”

(u1 -- u2) 99 The remainder of u1 divided by the value of base is converted to an ASCII character

324

Writing FCode Programs for PCI

and appended to the output string with hold. u2 is the quotient and is maintained for further processing. Typically used between <# and #>.

u#>

stack: code:

“you number greater than”

(u -- str len) 97 Pictured numeric output conversion is ended dropping u. str is the address of the resulting output array. len is the number of characters in the output array. str and len together are suitable for type. See (.) and (u.) for typical usages.

u#s

stack: code:

“you number ess”

(u1 -- u2) 9A u1 is converted, appending each resultant character into the pictured numeric output string until the quotient is zero (see: #). A single zero is added to the output string if u1 was initially zero. Typically used between <# and #>. See (.) and (u.) for typical usages. This word is equivalent to calling # repeatedly until the number remaining is zero.

u*

stack: code:

“you star”

(u1 u2 -- uprod) none Multiplies u1 by u2 yielding uprod, all unsigned.

u.

stack: code:

“you dot”

(u --) 9B Displays u as an unsigned number in a free-ﬁeld format according to the value in base. A trailing space is also displayed. For example:

ok hex -1 u. ffffffff

u<

stack: code: (u1 u2 -- unsigned-less?) 40 Returns true if u1 is less than u2 where u1 and u2 are treated as unsigned integers.

u<=

stack: code: (u1 u2 -- unsigned-less-or-equal?) 3F Returns true if u1 is less than or equal to u2 where u1 and u2 are treated as unsigned integers.

Chapter 12 - Open Firmware Dictionary

325

u>

stack: code: (u1 u2 -- unsigned-greater?) 3E Returns true if u1 is greater than u2 where u1 and u2 are treated as unsigned integers.

u>=

stack: code: (u1 u2 -- unsigned-greater-or-equal?) 41 Returns true if u1 is greater than or equal to u2 where u1 and u2 are treated as unsigned integers.

(u.)

stack: (u -- str len) generates: <# u#s u#> This is a numeric conversion primitive used to implement display words such as u. . It converts an unsigned number into a string according to the value in base. For example:

ok hex d# -12 (u.) type fffffff4

u2/

stack: code:

“you two slash”

(x1 -- x2) 58 x2 is the result of x1 logically shifted right one bit. A zero is shifted into the vacated sign bit. For example:

ok -2 u2/ .s 7fffffff

um*

stack: code:

“you em star”

(u1 u2 -- ud.prod) D4 Multiplies two unsigned 32-bit numbers yielding an unsigned 64-bit product. For example:

ok hex 3 3 u*x .s 9 0 ok 4 ffff.ffff u*x .s fffffffc 3

See also: um/mod, d+, d-

326

Writing FCode Programs for PCI

um/mod “you em slash mod”

stack: code: (ud u -- urem uquot) D5 Divides an unsigned 64-bit number by an unsigned 32-bit number yielding an unsigned 32-bit remainder and quotient See also: um*, d+, d-

u/mod

stack: code:

“you slash mod”

(u1 u2 -- urem uquot) 2B rem is the remainder and quot is the quotient after dividing u1 by u2. All values and arithmetic are unsigned. All values are 32-bit. For example:

ok -1 5 u/mod .s 0 33333333

unaligned-l!

stack: code: (quad addr --) none Stores a quadlet quad to addr without requiring alignment.

unaligned-l@

stack: code: (addr -- quad) none Fetches a quadlet quad from addr without requiring alignment.

unaligned-w!

stack: code: (w addr --) none Stores a doublet w to addr without requiring alignment.

unaligned-w@

stack: code: (addr -- w) none Fetches doublet w from addr without requiring alignment.

unloop

stack: code: (--) (R: loop-sys --) 89 Used within do or ?do loops to discard loop control parameters prior to calling exit.

Chapter 12 - Open Firmware Dictionary

327

For example:

: find-value (test-value start-addr --) \ Searches up to 100 locations looking for a test value. 100 bounds do (test-value) i c@ over = if (test-value) ." Found at " i . cr drop unloop exit then loop (test-value) . ." not found" cr ;

See also: exit, leave

unmap

stack: code: (virt len --) none Invalidates any existing address translation for the region of virtual address space beginning at virt and continuing for len bytes. unmap does not free either the virtual address space (as with the release standard method) or any physical memory that was associated with virt. If the operation fails for any reason, unmap uses throw to signal the error.

unselect-dev

stack: code: (--) none A User Interface extension provided by some implementations (e.g. FirmWorks/Sun). Destroys the instance chain whose ihandle is stored in my-self, clears my-self and deactivates the active package leaving no active package. Used to reverse the effect of select, select-dev, begin-select or begin-select-dev. See also: “Using select-dev” on page 35.

until

stack: (C: dest-sys --) (done? --) generates: b?branch -offset Marks the end of a begin…until conditional loop. When until is encountered, done? is removed and tested. If done? is true, the loop is terminated and execution continues just after the until. If done? is false, execution jumps back to just after the corresponding begin. For example:

: probe-loop (addr --) \ generate a tight 'scope loop until a key is pressed. begin dup l@ drop key? until drop ;

328

Writing FCode Programs for PCI

upc

stack: code: (char1 -- char2) 81 char2 is the upper case version of char1. If char1 is not a lower case letter, it is left unchanged. For example:

: continue? (-- continue?) ." Want to Continue? Enter Y/N" key dup emit upc ascii Y = ;

See also: lcc

u.r

stack: code:

“you dot are”

(u size --) 9C u is converted according to the value of base and then displayed as an unsigned number right-aligned in a ﬁeld size digits wide. A trailing space is not displayed. If the number of digits required to display u is greater than size, all the digits are displayed with no leading spaces in a ﬁeld as wide as necessary. For example:

: formatted-output (--) my-base h# 8 u.r ." my-offset h# 8 u.r ." ;

base" cr offset" cr

use-nvramrc?

stack: (-- enabled?) This conﬁguration variable is a boolean specifying whether the NVRAM script should be evaluated at system start-up. If use-nvramrc? is true, the script is evaluated. If use-nvramrc? is false, the script is not evaluated. The suggested default value of use-nvramrc? is false.

user-abort

stack: code: (… --) (R: … --) 219 Used within an alarm routine to signify that the user has typed an abort sequence. When alarm ﬁnishes, instead of returning to the program that was interrupted by the execution of alarm, it enters the Open Firmware command interpreter by calling abort.

Chapter 12 - Open Firmware Dictionary

329

For example:

: test-dev-status (-- error?) … ; : my-checker (--) test-dev-status if user-abort then : install-abort (--) ['] my-checker d# 10 alarm ;

;

value

stack: (E: -- x) (x "new-name< >" --) generates: new-token|named-token|external-token b(value) Creates and initializes a value with the name new-name. When later executed, new-name leaves its value on the stack. The value of new-name can be changed with to. For example:

ok 123 value foo foo . 123 ok 456 to foo foo . 456

Open Firmware uses value items widely. We encourage the use of value instead of variable. A value acts identically to a constant in that it leaves its value on the stack when executed; a variable must be fetched to obtained its value. But, unlike a constant, the contents of a value can be changed. By consistently using value (as opposed to intermixing value and variable), your code will be cleaner and you will not have to wonder whether a given datum should be stored with ! or to, or whether or not you need to use @ . In FCode Source, value cannot appear inside a colon deﬁnition.

value>sym “value to sym”

stack: code: (n1 -- n1 false | n2 addr len true) none Defer word to resolve symbol values. This defer word is executed when the symbolic debugger needs to translate a symbol value into its corresponding name. If value>sym is present, the disassembler attempts to perform such a translation to display the symbolic representations of the addresses that it displays. The translation is also attempted by .adr. If the symbol table contains a symbol whose value is sufﬁciently close to, but not greater than, the value n1, value>sym returns the string addr len representing the name of that symbol, the non-negative difference n2 between the symbol value and n1, and true. Otherwise, value>sym returns n1 and false. The default action for value>sym, when no symbol table is present, is to return n1 and false. A program can provide a symbol table and install a command into value>sym with to to search that symbol table. See also: sym>value

330

Writing FCode Programs for PCI

variable

stack: (E: -- a-addr) ("new-name< >" --) generates: new-token|named-token|external-token b(variable) Creates an uninitialized variable named new-name. When later executed, new-name leaves its address on the stack. The alignment of the returned address is systemdependent. The address holds a 32-bit value. The value of new-name can be changed with ! and fetched with @ . For example:

ok variable foo 123 foo ! 123 ok 456 foo ! foo ? 456 foo @ .

FirmWorks encourages the use of value instead of variable. A value acts identically to a constant in that it leaves its value on the stack when executed; a variable must be fetched to obtained its value. But, unlike a constant, the contents of a value can be changed. By consistently using value (as opposed to intermixing value and variable), your code will be cleaner and you will not have to wonder whether a given datum should be stored with ! or to, or whether or not you need to use @ . In FCode Source, value cannot appear inside a colon deﬁnition.

version1

stack: code: (--) FD version1 may only be used as the ﬁrst byte of an FCode Program. version1:

s s s

Sets the spread value to 0 causing the FCode Evaluator to read successive bytes of the current FCode Program from the same address. Establishes the use of 8-bit branches. Reads an FCode header from the current FCode Program and either discards it or uses it to verify the integrity of the current FCode program in an implementationdependent manner.

For portability, the preferred way to begin an FCode program in source form is with the fcode-version1 tokenizer macro. This macro causes the tokenizer to begin the FCode binary with the version1 byte and an FCode header. See also: fcode-version2, start0, start1, start2, start4

w!

stack: code:

“double you store”

(w waddr --) 74 The low-order 16-bits of w are stored at location waddr. waddr must be aligned on a 16-bit boundary. See also: rw!

Chapter 12 - Open Firmware Dictionary

331

w,

stack: code:

“double you comma”

(w --) D1 Compile 16-bits into the dictionary. The dictionary pointer must be 16-bit-aligned. See also: c,

w@

stack: code:

“double you fetch”

(waddr -- w) 6F Fetch the 16-bit number stored at waddr and leave the result on the stack. waddr must be aligned on a 16-bit boundary. See also: rw@

/w

stack: code:

“per double you”

(-- n) 5B n is the number of address units to a 16-bit word, typically 2.

/w*

stack: code:

“per double you star”

(nu1 -- nu2) 67 nu2 is the result of multiplying nu1 by /w. This is the portable way to convert an index into a byte offset.

<w@

stack: code: (waddr -- n) 70 Fetches the 16-bit number stored at waddr and extends its sign into the upper bytes. waddr must be 16-bit-aligned. For example:

ok 9123 8000 w! ffff9123 ok 8000 w@ .h 9123 8000 <w@ .h

wa+

stack: code: (addr1 index -- addr2) 5F Increments addr1 by index times the value of /w. This is the portable way to increment an address.

332

Writing FCode Programs for PCI

wa1+

stack: code: (addr1 -- addr2) 63 Increments addr1 by the value of /w. This is the portable way to increment an address.

wbﬂip

stack: code: (w1 -- w2) 80 w2 is the result of exchanging the two low-order bytes of the number w1. The two upper bytes of w1 must be zero, or erroneous results will occur.

wbﬂips

stack: code: (waddr len --) 236 Swaps the order of the bytes within each 16-bit word in the memory buffer waddr len. waddr must be 16-bit-aligned. len must be a multiple /w.

wbsplit

stack: code: (w -- b1.lo b2.hi) AF Splits the lower 16 bits of w into two separate bytes. All but the least signiﬁcant 8 bits of each output stack result are zero.

while

stack: (C: dest-sys -- orig-sys dest-sys) (continue? --) generates: b?branch +offset Tests the exit condition for a begin…while…repeat conditional loop. When the while is encountered, continue? is removed from the stack and tested. If continue? is true, execution continues from just after the while through to the repeat which then jumps back to just after the begin. If continue? is false, the loop is exited by causing execution to jump ahead to just after the repeat. For example:

: probe-loop (addr --) \ generate a tight 'scope loop until a key is pressed. begin key? 0= while dup l@ drop repeat drop ;

"width"

This standard property is associated with display devices. The property value is an integer (encoded with encode-int) that speciﬁes the number of displayable pixles in the “x” dimension.

Chapter 12 - Open Firmware Dictionary

333

window-left

stack: code: (-- border-width) 166 A value, containing the offset (in pixels) of the left edge of the active text area from the left edge of the visible display. The “active text area” is where characters are actually printed. (There is generally a border of unused blank area surrounding it on all sides.) window-left contains the size of the left portion of the unused border. The size of the right portion of the unused border is determined by the difference between screen-width and the sum of window-left plus the width of the active text area (#columns times char-width). This word is initially set to 0, but should always be set explicitly to an appropriate value if you wish to use any fb1- or fb8- utility routines. This can be done with to, or it can be set automatically by calling fb1-install or fb8-install. When set with fbx-install, a calculation is done to set window-left so that the available unused border area is evenly split between the left border and the right border. (The calculated value for window-left is rounded down to the nearest multiple of 32, though. This allows all pixel-drawing to proceed more efﬁciently.) If you wish to use fbx-install but desire a different value for window-left, simply change it with to after calling fbx-install.

window-top

stack: code: (-- border-height) 165 A value, containing the offset (in pixels) of the top of the active text area from the top of the visible display. The “active text area” is where characters are actually printed. (There is generally a border of unused blank area surrounding it on all sides.) windowtop contains the size of the top portion of the unused border. The size of the bottom portion of the unused border is determined by the difference between screen-height and the sum of window-top plus the height of the active text area (#lines times char-height). This word is initially set to 0, but should always be set explicitly to an appropriate value if you wish to use any fb1- or fb8- utility routines. This can be done with to, or it can be set automatically by calling fb1-install or fb8-install. When set with fbx-install, a calculation is done to set window-top so that the available unused border area is evenly split between the top border and the bottom border. If you wish to use fbx-install but desire a different value for window-top, simply change it with to after calling fbx-install.

within

stack: code: (n min max -- min<=n<max?) 45 min<=n<max? is true if n is between min and max, inclusive of min and exclusive of max. See also: between

334

Writing FCode Programs for PCI

wljoin

stack: code: (w.lo w.hi -- quad) 7D Combines the least signiﬁcant 16-bits of each of the two input stack arguments into one 32-bit output stack result. All but the least signiﬁcant 16-bits of w.lo and w.hi must be zero.

word

stack: code: (delim "<delims>text<delim>" -- pstr) none Parses text from the input buffer delimited by delim.

words

stack: code: (--) none If there is an active package, displays the names of its methods. Otherwise, displays an implementation-dependent subset (preferably the entire set) of the globally-visible Forth commands. In either case, the order of display is to display more-recentlydeﬁned names before less-recently-deﬁned names. The particular words displayed by words can be affected by the tokenizer directives external, headers and headerless, and by the state of the conﬁguration variable fcode-debug?. If the FCode program was interpreted from text source, the tokenizer directives have no affect on the words that are displayed. However, if the FCode program is ﬁrst tokenized and then evaluated, words displays:

s

All words which were created by the FCode evaluator while the tokenizer directive external was in effect. All words created by the FCode evaluator while the tokenizer directive headers was in effect if the conﬁguration variable fcode-debug? was true when the FCode was evaluated.

s

words never displays words created by the FCode evaluator while the headerless tokenizer directive was in effect.

wpeek

stack: code: (waddr -- false | w true) 221 Tries to read the 16-bit word at address waddr. Returns w and true if the access was successful. A false return indicates that a read access error occurred. waddr must be 16bit aligned.

wpoke

stack: code: (w waddr -- okay?) 224 Tries to write the 16-bit word at address waddr. Returns true if the access was successful. A false return indicates that a write access error occurred. waddr must be 16-

Chapter 12 - Open Firmware Dictionary

335

bit aligned. Note: wpoke may be unreliable on bus adapters that buffer write accesses.

write

stack: code: (addr len -- actual) none Writes len bytes to the device from the memory buffer beginning at addr. Returns actual, the number of bytes actually written. If actual is less than len, the write did not succeed. Devices of type network place additional requirements on their write methods:

s

network The write method transmits the network packet of len bytes from memory at addr, returning the number of bytes actually transmitted. The caller must supply the complete packet including the MAC header with source and destination address.

For some devices, the seek method sets the position for the next write.

write-blocks

stack: code: (addr block# #blocks -- #written) none Writes #blocks records of length block-size bytes from memory (starting at addr) to the device (starting at device block block#). Returns #written, the number of blocks actually written. If the device is not capable of random access (e.g. a sequential access tape device), block# is ignored.

wxjoin

stack: code: (w.lo w.2 w.3 w.hi -- o) 244 Join four doublets to form an octlet. The high-order bits of each of the doublets are ignored. This function is only available on 64-bit implementations.

x,

stack: code:

“ecks comma”

(o --) 245 Compile an octlet, o, into the dictionary (doublet-aligned). This function is only available on 64-bit implementations.

x@

stack: code:

“ecks fetch”

(oaddr -- o) 246 Fetch octlet from an octlet aligned address. This function is only available on 64-bit implementations.

336

Writing FCode Programs for PCI

x!

stack: code:

“ecks store”

(o oaddr --) 247 Store octlet to an octlet aligned address. This function is only available on 64-bit implementations.

/x

stack: code:

“per ecks”

(-- n) 248 Number of address units in an octlet, typically eight. This function is only available on 64-bit implementations.

/x*

stack: code:

“per ecks star”

(nu1 -- nu2) 249 Multiply nu1 by the value of /x. This function is only available on 64-bit implementations.

xa+

stack: code:

“ecks ay plus”

(addr1 index -- addr2) 24A Increment addr1 by index times the value of /x. This function is only available on 64-bit implementations.

xa1+

stack: code:

“ecks ay one plus”

(addr1 -- addr2) 24B Increment addr1 by the value of /x. This function is only available on 64-bit implementations.

xbﬂip

stack: code: (oct1 -- oct2) 24C Reverse the bytes within an octlet. This function is only available on 64-bit implementations.

Chapter 12 - Open Firmware Dictionary

337

xbﬂips

stack: code: (oaddr len --) 24D Reverse the bytes within each octlet in the given region. The region begins at oaddr and spans len bytes. The behavior is undeﬁned if len is not a multiple of /x. This function is only available on 64-bit implementations.

xbsplit

stack: code: (o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi) 24E Split an octlet into 8 bytes. The high-order bits of each of the eight bytes are zero. This function is only available on 64-bit implementations.

xlﬂip

stack: code: (oct1 -- oct2) 24F Reverse the quadlets within an octlet. The bytes within each quadlet are not reversed. This function is only available on 64-bit implementations.

xlﬂips

stack: code: (oaddr len --) 250 Reverse the quadlets within each octlet in the given region. The bytes within each quadlet are not reversed. The region begins at oaddr and spans len bytes. The behavior is undeﬁned if len is not a multiple of /x. This function is only available on 64-bit implementations.

xlsplit

stack: code: (o -- quad.lo quad.hi) 251 Split on octlet into 2 quadlets. The high-order bits of each of the two quadlets are zero. This function is only available on 64-bit implementations.

xor

stack: code: (x1 x2 -- x3) 25 x3 is the bit-by-bit exclusive-or of x1 with x2.

338

Writing FCode Programs for PCI

xwﬂip

stack: code: (oct1 -- oct2) 252 Reverse the doublets within an octlet. The bytes within each doublet are not reversed. This function is only available on 64-bit implementations.

xwﬂips

stack: code: (oaddr len --) 253 Reverse the doublets within each octlet in the given region. The bytes within each doublet are not reversed. The region begins at oaddr and spans len bytes. The behavior is undeﬁned if len is not a multiple of /x. This function is only available on 64-bit implementations.

xwsplit

stack: code: (o -- w.lo w.2 w.3 w.hi) 254 Split an octlet into 4 doublets. The high-order bits of each doublet are zero. This function is only available on 64-bit implementations.

Chapter 12 - Open Firmware Dictionary

339

340

Writing FCode Programs for PCI

A

Appendix A

FCode Reference

FCode Primitives

This appendix contains three lists:

s s s

FCodes sorted according to functional group FCodes sorted by byte value FCodes sorted alphabetically by name

Each of these lists consist of one or more tables. The tables describe FCodes currently supported by Open Firmware. Both the FCode token values and Forth names are included. A token value entry of TG indicates a tokenizer-generated sequence, while indicates a tokenizer directive.

341

FCodes by Function

Table 40 Value 51 46 52 TG 47 53 TG 50 4D 48 54 4E 30* 31* 32 4F 4A 4B 56 49 55 4C Function depth drop 2drop 3drop dup 2dup 3dup ?dup nip over 2over pick >r r> r@ roll rot -rot 2rot swap 2swap tuck Stack (-- u) (x --) (x1 x2 --) (x1 x2 x3 --) (x -- x x) (x1 x2 -- x1 x2 x1 x2) (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) (x -- 0 | x x) (x1 x2 -- x2) (x1 x2 -- x1 x2 x1) (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) (xu … x1 x0 u -- xu … x1 x0 xu) (x --) (R: -- x) (-- x) (R: x --) (-- x) (R: x -- x) (xu … x1 x0 u -- xu-1 … x1 x0 xu) (x1 x2 x3 -- x2 x3 x1) (x1 x2 x3 -- x3 x1 x2) (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) (x1 x2 -- x2 x1) (x1 x2 x3 x4 -- x3 x4 x1 x2) (x1 x2 -- x2 x1 x2) Stack Manipulation Description How many items on stack? Removes top item from the stack Removes 2 items from the stack Removes 3 items from the stack Duplicates the top stack item Duplicates 2 stack items Copies top 3 stack items Duplicates the top stack item if it is non-zero Discards the second stack item Copies the second stack item to the top of stack Copies 2 stack items Copies u-th stack item Moves a stack item to the return stack* Moves item from return stack to data stack* Copies the top of the return stack to the data stack Rotates u stack items Rotates 3 stack items Shufﬂes top 3 stack items Rotates 3 pairs of stack items Exchanges the top 2 stack items Exchanges 2 pairs of stack items Copies the top stack item belowthe second item

* USE THIS FCODE CAUTIOUSLY.

Table 41 Value Function Stack 1E 1F 20 21 TG TG TG TG 2D AC 2F 2E + * / 1+ 12+ 2abs bounds max min

Single-Precision Arithmetic Operations Description Adds nu1 + nu2. Subtracts nu1 - nu2. Multiplies nu1 times nu2 Divide n1 by n2; remainder is discarded. Adds one. Subtracts one. Adds two. Subtracts two. Absolute value. n3 is maximum of n1 and n2 n3 is minimum of n1 and n2

(nu1 nu2 -- sum) (nu1 nu2 -- diff) (nu1 nu2 -- prod) (n1 n2 -- quot) (nu1 -- nu2) (nu1 -- nu2) (nu1 -- nu2) (nu1 -- nu2) (n -- u) (n1 n2 -- n1|n2) (n1 n2 -- n1|n2)

(start len -- len+start start) Converts start,len to end,start for do or ?do loop.

342

Writing FCode Programs for PCI

Table 41 Value Function Stack 22 TG 2A 2C 2B mod */mod /mod negate u/mod

Single-Precision Arithmetic Operations (Continued) Description Remainder of n1 / n2. Remainder, quotient of n1 * n2 / n3. Remainder, quotient of n1/n2 Changes the sign of n1 Divide unsigned one-cell number by an unsigned one-cell number; yield one-cell remainder and quotient.

(n1 n2 -- rem) (n1 n2 n3 -- rem quot) (n1 n2 -- rem quot) (n1 -- n2) (u1 u2 -- urem uquot)

Table 42 Value Function Stack TG TG 59 57 29 23 26 27 TG 24 28 58 25 << >> 2* 2/ >>a and invert lshift not or rshift u2/ xor (x1 u -- x2) (x1 u -- x2) (x1 -- x2) (x1 -- x2) (x1 u -- x2)

Bitwise Logical Operations Description Synonym for lshift. Synonym for rshift. Multiplies by 2 Divides by 2 Arithmetic right shifts n1 by u places Bitwise logical AND Invert all bits of x1 Left-shift x1 by u bits. Zero-ﬁll low bits. Synonym for invert Bitwise logical OR Right-shift x1 by u bits. Zero-ﬁll high bits. Logical right shift 1 bit; zero shifted into high bit. Bitwise exclusive OR.

(x1 x2 -- x3) (x1 -- x2) (x1 u -- x2) (x1 -- x2) (x1 x2 -- x3) (x1 u -- x2) (x1 -- x2) (x1 x2 -- x3)

Table 43 Value Function Stack D8 D9 D4 D5 d+ dum*

Double Number Arithmetic Operations Description Adds two double numbers yielding a double number Subtracts two double numbers yielding a double number Multiplies two unsigned numbers yielding an unsigned double number product. Divides an unsigned double number by an unsigned yielding an unsigned remainder and quotient

(d1 d2 --d.sum) (d1 d2 -- d.diff) (u1 u2 -- ud.prod)

um/mod (ud u -- urem uquot)

Table 44 Value Function Stack 72 6C 77 ! +! 2!

Memory Access Description Stores a number into the variable at a-addr Adds nu to the number stored in the variable at a-addr Stores 2 numbers at a-addr; x2 at lower address

(x a-addr --) (nu a-addr --) (x1 x2 a-addr --)

343

Table 44 Value Function Stack 76 6D TG 75 71 TG 7A TG 79 0228 0237 73 6E 78 6B 6A 0236 74 6F 70 2@ @ ? c! c@ blank comp erase ﬁll lbﬂips lwﬂips l! l@ move off on wbﬂips w! w@ <w@

Memory Access (Continued) Description Fetches 2 numbers from a-addr; x2 from lower address Fetches a number from the variable at a-addr Displays the number at a-addr Stores low byte of n at addr Fetches a byte from addr Sets len bytes of memory to ASCII space, starting at addr Compares two byte arrays including case. n=0 if same Sets len bytes of memory to zero, starting at addr Sets len bytes of memory to value byte Reverses bytes within each quadlet in given region Exchanges doublets within quadlets in qaddr len Stores the quadlet at qaddr, must be 32-bit aligned Fetches the quadlet at qaddr, must be 32-bit aligned

(a-addr -- x1 x2) (a-addr -- x) (a-addr --) (byte addr --) (addr -- byte) (addr len --) (addr1 addr2 len -- n) (addr len --) (addr len byte --) (qaddr len --) (qaddr len --) (quad qaddr --) (qaddr -- quad)

(src-addr dest-addr len --) Copies len bytes from src-addr to dest-addr, handles overlap correctly. (a-addr --) (a-addr --) (waddr len --) (w waddr --) (waddr -- w) (waddr -- n) Stores false (32-bit 0) at a-addr Stores true (32-bit -1) at a-addr Exchanges bytes within doublets in the speciﬁed region Stores a doublet at waddr, must be 16-bit aligned Fetches the unsigned doublet at waddr, must be 16-bit aligned Fetches the signed doublet at waddr, must be 16-bit aligned

The memory access commands listed in Table 45 are available only on 64-bit Open Firmware implementations.

Table 45 Value 0242 0246 0247 024D 0250 Function Stack <l@ x@ x! xbﬂips xlﬂips (qaddr -- n) (oaddr -- o) (o oaddr --) 64-Bit Memory Access Description Fetch quadlet from qaddr, sign-extended. Fetch octlet from an octlet aligned address. Store octlet to an octlet aligned address.

(oaddr len --) Reverse the bytes within each octlet in the given region.The behavior is undeﬁned if len is not a multiple of /x. (oaddr len --) Reverse the quadlets within each octlet in the given region. The bytes within each quadlet are not reversed. The behavior is undeﬁned if len is not a multiple of /x. (oaddr len --) Reverse the doublets within each octlet in the given region. The bytes within each doublet are not reversed. The behavior is undeﬁned if len is not a multiple of /x.

0253

xwﬂips

344

Writing FCode Programs for PCI

Table 46 Value 0230 0231 0232 0233 0234 0235 Function rb@ rb! rw@ rw! rl@ rl! Stack

Atomic Access Description Reads the 8-bit value at the given address, atomically Writes the 8-bit value at the given address, atomically Reads the doublet at the given address, atomically Writes the doublet at the given address, atomically Reads the quadlet at the given address, atomically Writes the quadlet at the given address, atomically

(addr -- byte) (byte addr --) (waddr -- w) (w waddr --) (qaddr -- quad) (quad qaddr --)

The atomic access commands listed in Table 47 are available only on 64-bit Open Firmware implementations.

Table 47 Value 022E 022F Function rx@ rx! Stack (oaddr -- o) (o oaddr --) 64-Bit Atomic Access Description Reads the octlet at the given address, atomically Writes the octlet at the given address, atomically

Table 48 Value Function Stack 0220 0221 0222 0223 0224 0225 cpeek wpeek lpeek cpoke wpoke lpoke

Data Exception Tests Description Reads 8-bit value at given address, returns false if unsuccessful Reads doublet at given address, returns false if unsuccessful Writes 8-bit value at given address, returns false if unsuccessful Writes doublet at given address, returns false if unsuccessful Writes quadlet at given address, returns false if unsuccessful

(addr -- false | byte true) (waddr -- false | w true) (byte addr -- okay?) (w waddr -- okay?) (quad qaddr -- okay?)

(qaddr -- false | quad true) Reads quadlet at given address, returns false if unsuccessful

Table 49 Value Function 36 37 35 34 38 39 3A 43 3D 3C 3B 0< 0<= 0<> 0= 0> 0>= < <= <> = > Stack

Comparison Operations Description True if n < 0 True if n <= 0 True if n <> 0 True if n = 0, also inverts any ﬂag True if n > 0 True if n >= 0 True if n1 < n2 True if n1 <= n2 True if x1 <> x2 True if x1 = x2 True if n1 > n2

(n -- less-than-0?) (n -- less-or-equal-to-0?) (n -- not-equal-to-0?) (nulﬂag -- equal-to-0?) (n -- greater-than-0?) (n -- greater-or-equal-to-0?) (n1 n2 -- less?) (n1 n2 -- less-or-equal?) (x1 x2 -- not-equal?) (x1 x2 -- equal?) (n1 n2 -- greater?)

345

Table 49 Value Function 42 44 TG TG 40 3F 3E 41 45 >= between false true u< u<= u> u>= within Stack

Comparison Operations (Continued) Description True if n1 >= n2 True if min <= n <= max The value false The value true True if u1 < u2, unsigned True if u1 <= u2, unsigned True if u1 > u2, unsigned True if u1 >= u2, unsigned True if min <= n < max

(n1 n2 -- greater-or-equal?) (n min max -- min<=n<=max?) (-- false) (-- true) (u1 u2 -- unsigned-less?) (u1 u2 -- unsigned-less-or-equal?) (u1 u2 -- unsigned-greater?) (u1 u2 -- unsigned-greater-or-equal?) (n min max -- min<=n<max?)

Table 50 Value TG TG 8E 8D TG 8A 88 Function (\ ascii control key key? accept expect span Stack

Text Input Description Begins a comment (ignored) Ignore rest of line (comment) ASCII value of next character Interprets next character as ASCII control character Reads a character from the keyboard True if a key has been typed on the keyboard Gets a line of edited input from the keyboard; stores it at addr Variable containing the number of characters read by expect

([text<)> --) (--) ([text< >] -- char) ([text< >] -- char) (-- char) (-- pressed?) (addr len --) (-- a-addr)

(addr len1 -- len2) Gets an edited input line, stores it at addr

Table 51 Value AB A9 AA TG TG TG Function bell bl bs carret linefeed newline Stack (-- 0x07) (-- 0x20) (-- 0x08)

ASCII Constants Description The ASCII code for the bell character; decimal 7 The ASCII code for the space character; decimal 32 The ASCII code for the backspace character; decimal 8 The ASCII code for the carriage return character; decimal 13 The ASCII code for the linefeed character; decimal 10 The ASCII code for the newline character; decimal 10

(-- 0x0D) (-- 0x0A) (-- n)

Table 52 Value A4 A5 A6 A7 Function Stack -1 0 1 2 (-- -1) (-- 0) (-- 1) (-- 2)

Numeric Input Description Constant -1 Constant 0 Constant 1 Constant 2

346

Writing FCode Programs for PCI

Table 52 Value A8 TG TG TG Function Stack 3 d# decimal h# hex o# octal (-- 3) (--) (--) (--)

Numeric Input (Continued) Description Constant 3 If outside deﬁnition, change numeric conversion base to decimal If outside deﬁnition, change numeric conversion base to hexadecimal If outside deﬁnition, change numeric conversion base to octal

([number< >] -- n) Interprets next number in decimal ([number< >] -- n) Interprets next number in hexadecimal ([number< >] -- n) Interprets next number in octal

Table 53 Value Function Stack 99 97 96 C7 C9 A0 A3 95 C8 9A 98 A2 u# u#> <# # #> base digit hold #s u#s sign (u1 -- u2)

Numeric Primitives Description Converts a digit in pictured numeric output Ends pictured numeric output Initializes pictured numeric output Converts a digit in pictured numeric output conversion Ends pictured numeric output conversion Variable containing number base Inserts the char in the pictured numeric output string Converts remaining digits in pictured numeric output Converts rest of the digits in pictured numeric output Sets sign of pictured output Converts a string to a number

(u -- str len) (--) (ud1 -- ud2) (ud -- str len) (-- a-addr) (char --) (ud -- 0 0) (u1 -- u2) (n --)

(char base -- digit true | char false) Converts a character to a digit

$number (addr len -- true | n false)

Table 54 Value 9D TG TG TG TG TG 9E 9F TG 9B 9C Function . .d decimal .h hex octal .r .s s. u. u.r Stack (nu --) (n --) (--) (n --) (--) (--)

Numeric Output Description Displays a number Displays number in decimal If inside deﬁnition, output in decimal Displays number in hexadecimal If inside deﬁnition, output in hexadecimal If inside deﬁnition, output in octal Displays a number in a ﬁxed width ﬁeld Displays the contents of the data stack Displays n as a signed number Displays an unsigned number Prints an unsigned number in a ﬁxed width ﬁeld

(n size --) (… -- …) (n --) (u --) (u size --)

347

Table 55 Value TG 91 92 8F TG TG 90 Function .((cr cr emit space spaces type Stack

General-purpose Output Description Displays a string now Outputs ASCII CR character; decimal 13 Starts a new line of display output Displays the character Outputs a single space character Outputs cnt spaces Displays n characters

([text<)>] --) (--) (--) (char --) (--) (cnt --) (text-str text-len --)

Table 56 Value 94 93 Function #line #out Stack

Formatted Output Description Variable holding the line number on the output device Variable holding the column number on the output device

(-- a-addr) (-- a-addr)

Table 57 Value TG TG TG TG TG Function again begin repeat until while Stack

begin Loops Description Ends begin…again (inﬁnite) loop Starts conditional loop Returns to loop start If true, exits begin…until loop If true, continues begin…while…repeat loop, else exits loop

(C: dest-sys --) (C: -- dest-sys) (--) (C: orig-sys dest-sys --) (--) (C: dest-sys --) (done? --) (C: dest-sys -- orig-sys dest-sys) (continue? --)

Table 58 Value TG TG TG Function if else then Stack

Conditionals Description If true, executes next FCode(s) (optional) Executes next FCode(s) if if failed Terminates if…else…then

(C: -- orig-sys) (do-next? --) (C: orig-sys1 -- orig-sys2) (--) (C: orig-sys --) (--)

Table 59 Value TG Function case Stack

case Statements Description Begins a case (multiple selection) statement

(C: -- case-sys) (sel -- sel)

348

Writing FCode Programs for PCI

Table 59 Value TG TG TG Function endcase of endof Stack

case Statements (Continued) Description Marks end of a case statement Returns to loop start

(C: case-sys --) (sel --) (C: case-sys1 -- case-sys2 of-sys) (sel of-val -- sel | <nothing>)

(C: case-sys1 of-sys -- case-sys2) (--) If true, exits begin…until loop

Table 60 Value TG TG 19 1A TG TG TG TG 89 Function do ?do i j leave ?leave loop +loop unloop Stack

do Loops Description Loops, index start to end-1 inclusive Like do, but skips loop if end = start Returns current loop index value Returns value of next outer loop index Exits do loop immediately If ﬂag is true, exits do loop Increments index, returns to do Increments by n, returns to do. If n<0, index start to

end

(C: -- dodest-sys) (limit start --) (R: -- sys) (C: -- dodest-sys) (limit start --) (R: -- sys) (-- index) (R: sys -- sys) (-- index) (R: sys -- sys) (--) (R: sys --) (exit? --) (R: sys --) (C: dodest-sys --) (--) (R: sys1 -- <nothing> | sys2) (C: dodest-sys --) (delta --) (R: sys1 -- <nothing> | sys2) (--) (R: sys --)

Discards loop control parameters

Table 61 Value 1D 33 Function execute exit Stack

Control Words Description Executes the word whose compilation address is on the stack Returns from the current word

(… xt -- ???) (--) (R: sys --)

Table 62 Value TG TG 84 82 83 81 0240 011B Function

"

Strings Description Collects a string Gathers the immediately-following string Unpacks a packed string Converts char to lower case Makes a packed string from addr len, placing it at pstr Converts char to upper case Splits a string at the given delimiter (which is discarded) Converts a string into a physical address and space

Stack ([text<">< >] -- text-str text-len) ([text<“>] -- test-str text-len) (pstr -- str len) (char1 -- char2) (str len addr -- pstr) (char1 -- char2) (str len char -- R-str R-len L-str L-len) (str len -- val.lo val.hi)

s" count lcc pack upc left-parse-string parse-2int

349

Table 63 Value TG TG TG TG TG TG TG C0 TG TG TG Function : (colon) name ; (semicolon) alias buffer: constant create defer ﬁeld instance struct variable value Stack

Deﬁning Words Description Begins colon deﬁnition Ends colon deﬁnition Creates newname with behavior of oldname Creates data array of size bytes Creates a constant Generic deﬁning word Execution vector (change with is) Creates a named offset pointer Declare a data type to be local Initializes for ﬁeld creation Creates a data variable Creates named value-type variable (change with is)

(E: … -- ???) (--) (--) (E: … -- ???) (“new-name< >old-name< >” --) (E: -- a-addr) (len "new-name< >" --) (E: -- x) (x "new-name< >" --) (E: -- a-addr) ("new-name< >" --) (E: … -- ???) ("new-name< >" --) (E: addr -- addr+offset) (offset size "new-name< >" -- offset+size) (--) (-- 0) (E: -- a-addr) ("new-name< >"--) (E: -- x) (x "new-name< >"--)

Table 64 Value D3 D0 AD D2 D1 TG TG DD DC Function , c, here l, w, allot to compile state Stack (x --) (byte --) (-- addr)

Dictionary Compilation Description Places a number in the dictionary Places a byte in the dictionary Address of top of dictionary Places a quadlet in the dictionary Places a doublet in the dictionary Allocates len bytes in the dictionary Changes value in a defer word or a value Compiles following command at run time Variable containing true if in compilation state

(quad --) (w --) (len --) (param [old-name< >] --) (--) (-- a-addr)

The dictionary compilation commands listed in Table 65 are available only on 64-bit Open Firmware implementations.

Table 65 Value 0245 Function x, Stack (o --) 64-Bit Dictionary Compilation Description Compile an octlet, o, into the dictionary (doublet-aligned).

350

Writing FCode Programs for PCI

Table 66 Value TG TG CB CD CD Function ' ['] name $ﬁnd eval evaluate Stack

Dictionary Search Description Finds the word (while executing) Finds word (while compiling) Finds a name in the dictionary Executes Forth commands within a string Interprets Forth text from the given string

("old-name< >" -- xt) (-- xt) (name-str name-len -- xt true | name-str name-len false) (… str len -- ???) (… str len -- ???)

Table 67 Value AE 5A TG 5E TG 65 69 62 66 5C 68 60 64 5D TG 61 TG 5B 67 5F 63 Function aligned /c /c* ca+ ca1+ cell+ cells char+ chars /l /l* la+ la1+ /n /n* na+ na1+ /w /w* wa+ wa1+ Stack

Address Arithmetic Description Increases n1 if necessary to yield a variable aligned address. Address increment for a byte; 1 Synonym for chars Increments addr1 by index times /c Synonym for chars+ Increments addr1 by /n Multiplies by /n Increments addr1 by /c Multiplies by /c Address increment for a quadlet; Multiplies by /l Increments addr1 by index times /l Increments addr1 by /l Address increment for a normal; Synonym for cells Increments addr1 by index times /n Synonym for cell+ Address increment for a doublet; Multiplies by /w Increments addr1 by index times /w Increments addr1 by /w

(n1 -- n1|a-addr) (-- n) (nu1 -- nu2) (addr1 index -- addr2) (addr1 -- addr2) (addr1 -- addr2) (nu1 -- nu2) (addr1 -- addr2) (nu1 -- nu2) (-- n) (nu1 -- nu2) (addr1 index -- addr2) (addr1 -- addr2) (-- n) (nu1 -- nu2) (addr1 index -- addr2) (addr1 -- addr2) (-- n) (nu1 -- nu2) (addr1 index -- addr2) (addr1 -- addr2)

The address arithmetic commands listed in Table 68 are available only on 64-bit Open Firmware implementations.

Table 68 Value Function Stack 0248 /x (-- n) 64-Bit Address Arithmetic Description Number of address units in an octlet, typically eight.

351

Table 68 Value Function Stack 0249 024A 024B /x* xa+ xa1+

64-Bit Address Arithmetic (Continued) Description Multiply nu1 by the value of /x. Increment addr1 by index times the value of /x. Increment addr1 by the value of /x.

(nu1 -- nu2) (addr1 index -- addr2) (addr1 -- addr2)

Table 69 Value 7F B0 0227 7E 7E 7C 80 AF 7D Function bljoin bwjoin lbﬂip lbsplit lwﬂip lwsplit wbﬂip wbsplit wljoin Stack

Data Type Conversion Description Joins four bytes to form a quadlet Joins two bytes to form a doublet Reverses the bytes within a quadlet Splits a quadlet into four bytes Swaps the doublets within a quadlet Splits a quadlet into two doublets Swaps the bytes within a doublet Splits a doublet into two bytes Joins two doublets to form a quadlet

(bl.lo b2 b3 b4.hi -- quad) (b.lo b.hi -- w) (quad1 -- quad2) (quad -- b.lo b2 b3 b4.hi) (quad1 -- quad2) (quad -- w1.lo w2.hi) (w1 -- w2) (w -- b1.lo b2.hi) (w.lo w.hi -- quad)

The data type conversion commands listed in Table 70 are available only on 64-bit Open Firmware implementations.

Table 70 Value Function Stack 0241 0243 0244 024C 024E 024F 0251 0252 0254 bxjoin lxjoin wxjoin xbﬂip xbsplit xlﬂip xlsplit xwﬂip xwsplit (quad.lo quad.hi -- o) (w.lo w.2 w.3 w.hi -- o) (oct1 -- oct2) (oct1 -- oct2) (o -- quad.lo quad.hi) (oct1 -- oct2) (o -- w.lo w.2 w.3 w.hi) 64-Bit Data Type Conversion Description Join two quadlets to form an octlet. Join four doublets to form an octlet. Reverse the bytes within an octlet. Reverse the quadlets within an octlet. The bytes within each quadlet are not reversed. Split on octlet into two quadlets. Reverse the doublets within an octlet. The bytes within each doublet are not reversed. Split an octlet into four doublets.

(b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o) Join eight bytes to form an octlet.

(o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi) Split an octlet into eight bytes.

Table 71 Value 8B 8C Function alloc-mem free-mem Stack

Memory Buffers Allocation Description Allocates nbytes of memory and returns its address Frees memory allocated by alloc-mem

(len -- a-addr) (a-addr len --)

352

Writing FCode Programs for PCI

Table 72 Value 86 85 DA DB 00 FF TG 023E 7B CC TG Function >body body> get-token set-token end0 end1 fcode-version1 byte-load ﬂoad headerless headers noop offset16 tokenizer[]tokenizer fcode-version2 external

Miscellaneous Operators Description Finds parameter ﬁeld address from compilation address Finds compilation address from parameter ﬁeld address Converts FCode Number to function execution token Assigns FCode Number to existing function Marks the end of FCode Alternates form for end0 (not recommended) Begins FCode program Interprets FCode beginning at location addr Begins tokenizing filename Creates new names with new-token (no name ﬁelds) Creates new names with named-token (default) Does nothing All further branches use 16-bit offsets (instead of 8-bit) Begins tokenizer program commands Ends tokenizer program commands Begins 2.0 FCode program, compiles start1 Creates new names with external-token

Stack (xt -- a-addr) (a-addr -- xt) (FCode# -- xt immediate?) (xt immediate? FCode# --) (--) (--) (--) (addr xt --) ([ﬁlename<cr>] --) (--) (--) (--) (--) (--) (--) (--) (--)

Table 73 Value Function 01-0F 10 11 12 C3 FD b(lit) b(') b(") b(to) version1 Stack

Internal Operators, (invalid for program text) Description First byte of a two byte FCode Followed by 32-bit#. Compiled by numeric data Followed by a token (1 or 2-byte code) . Compiled by [’] or ’ Followed by count byte, text. Compiled by " or ." Compiled by to Compiled by fcode-version1 as the ﬁrst FCode byte followed by a reserved byte, the FCode checksum (2 bytes) and the FCode length (4 bytes). Followed by offset. Compiled by else or again Followed by offset. Compiled by if or until Followed by offset. Compiled by loop Followed by offset. Compiled by +loop Followed by offset. Compiled by do

(-- n) (F: /FCode-num32/ --) (-- xt) (F: /FCode#/ --) (-- str len) (F: /FCode-string/ --) (x --) (--)

13 14 15 16 17

bbranch b?branch b(loop) b(+loop) b(do)

(--) (F: /FCode-offset/ --) (don’t-branch? --) (F: /FCode-offset/ --) (--) (F: /FCode-offset/ --) (delta --) (F: /FCode-offset/ --) (limit start --) (F: /FCode-offset/ --)

353

Table 73 Value Function 18 1B B1 B2 C4 C5 C6 1C B5 b(?do) b(leave) b(<mark) b(>resolve) b(case) b(endcase) b(endof) b(of) new-token Stack

Internal Operators, (invalid for program text) (Continued) Description Followed by offset. Compiled by ?do Compiled by leave or ?leave Compiled by begin Compiled by else or then Compiled by case Compiled by endcase Compiled by endof Followed by offset. Compiled by of Followed by table#, code#, token-type. Compiled by any deﬁning word. Headerless, not used normally. Followed by packed string (count,text), table#, code#, token-type. Compiled by any deﬁning word (: value constant etc.) Token-type compiled by : Token-type compiled by value Token-type compiled by variable Token-type compiled by constant Token-type compiled by create Token-type compiled by defer Token-type compiled by buffer: Token-type compiled by ﬁeld End a colon deﬁnition. Compiled by ; vt Like start1, but fetches successive tokens from same address Compiled by fcode-version2 as the ﬁrst FCode byte followed by a reserved byte, the FCode checksum (2 bytes) and the FCode length (4 bytes). Uses 16bit branches. Fetches successive tokens from consecutive addresses Like start1, but fetches successive tokens from consecutive 16-bit addresses Like start1, but fetches successive tokens from consecutive 32-bit addresses

(limit start --) (F: /FCode-offset/ --) (F: --) (F: --) (--) (F: --) (sel -- sel) (F: --) (sel --) (F: --) (--) (F: /FCode-offset/ --) (sel of-val -- sel | <nothing>) (F: /FCode-offset/ --) (--) (F: /FCode#/ --)

B6

named-token

(--) (F: /FCode-string FCode#/ --) (E: … -- ???) (F: -- colon-sys) (E: -- x) (F: x --) (E: -- a-addr) (F: --) (E: -- n) (F: n --) (E: -- a-addr) (F: --) (E: … -- ???) (F: --) (E: -- a-addr) (F: size --) (E: addr -- addr+offset) (F: offset size -- offset+size) (--) (F: colon-sys --) (--) (F: /FCode-string FCode#/ --) (--) (--)

B7 B8 B9 BA BB BC BD BE C2 CA F0 F1

b(:) b(value) b(variable) b(constant) b(create) b(defer) b(buffer:) b(ﬁeld) b(;) external-token start0 start1

F2 F3

start2 start4

(--) (--)

Table 74 Value 0105 Function free-virtual Stack

Memory Allocation Description Frees virtual memory from memmap, dma-alloc,or map-low

(virt size --)

354

Writing FCode Programs for PCI

Table 75 Value Function 0110 property

Properties Stack (prop-addr prop-len name-str name-len --) Description Declares a property with the given value structure, for the given name string. Deletes the property with the given name Converts a byte array into an prop-format string Converts a number into an prop-format string Converts physical address and space into an prop-format string Converts a string into an propformat string

021E 0115 0111 0113 0114 0112

delete-property encode-bytes encode-int encode-phys encode-string encode+

(nam-str nam-len --) (data-addr data-len -- prop-addr prop-len) (n -- prop-addr prop-len) (phys.lo … phys.hi -- prop-addr prop-len) (str len -- prop-addr prop-len)

(prop-addr1 prop-len1 prop-addr2 prop-len2 Merges two prop-format strings. -- prop-addr3 prop-len3) They must have been created sequentially (prop-addr1 prop-len1 data-len Decodes a byte array from a -- prop-addr2 prop-len2 data-addr data-len) prop-encoded-array (prop-addr1 prop-len1 -- prop-addr2 prop-len2 n) (prop-addr1 prop-len1 -- prop-addr2 prop-len2 str len) (prop-addr1 prop-len1 -- prop-addr2 prop-len2 phys.lo … phys.hi) (nam-str nam-len -- true | prop-addr prop-len false) Converts the beginning of an prop-format string to an integer Converts the beginning of an prop-format string to a normal string Decode a unit-address from a prop-encoded-array Returns the prop-format string for the given property name Returns the value string for the given property, searches parents’ properties if not found Returns the prop-format string for the given property name in the package "phandle"

TG 021B 021C

decode-bytes decode-int decode-string

0128 021A 021D

decode-phys get-my-property

get-inherited-property (nam-str nam-len -- true | prop-addr prop-len false) get-package-property (name-str name-len phandle -- true | prop-addr prop-len false)

021F

Table 76 Value 0116 0119 011A TG 0201 Function reg model device-type name device-name Stack

Commmonly-used Properties Description Declares location and size of device registers Declares model number for this device, such as " SUNW,501-1415-01" Declares type of device, e.g. " display", " block", " byte", " network", or " serial" Declares SunOS driver name, as in " SUNW,zebra" Creates the "name" property with the given value

(phys.lo … phys.hi size --) (str len --) (str len --) (addr len --) (str len --)

355

Table 77 Value 87 Function fcode-revision Stack (-- n)

System Version Information Description Returns major/minor FCode interface version

Table 78 Value 011F 0127 Function new-device

Device Node Creation

Stack Description (--) Creates a new device node as a child of the active package. and makes the new node the active package. Completes a device node that was created by new-device.

ﬁnish-device (--)

Table 79 Value 0120 0121 0122 0124 Function diagnostic-mode? display-status memory-test-suite mask

Self-test Utility Routines Stack (-- diag?) (n --) (addr len -- fail?) (-- a-addr) Description Returns "true" if extended diagnostics are desired Obsolete Calls memory tester for given region Variable, holds "mask" used by memory-test-suite

Table 80 Value 0125 0126 0213 Function get-msecs ms alarm Stack (-- n) (n --)

Time Utilities Description Returns the current time, in milliseconds, approx. Delays for n milliseconds. Resolution is 1 millisecond Periodically execute xt. If n=0, stop.

(xt n --)

Table 81 Value 0130 0131 Function map-low sbus-intr>cpu

Machine-speciﬁc Support Description Maps a region of memory in ’sbus’ address space Translates SBus interrupt# into CPU interrupt#

Stack (phys.lo … size -- virt) (sbus-intr# -- cpu-intr#)

Note – Note – Table 82 through Table 89 apply only to display device-types.

Table 82 Value 011C 011D 011E Function is-install is-remove is-selftest Stack (xt --) (xt --) (xt --) Terminal Emulator Interface Description Identiﬁes "install" routine to allocate a framebuffer Identiﬁes "remove" routine, to deallocate a framebuffer Identiﬁes "selftest" routine for this framebuffer

356

Writing FCode Programs for PCI

Table 83 Value 0150 Function #lines Stack (-- rows)

User-set Terminal Emulator State Values Description Number of lines of text being used for display. This word must be initialized (using to). fbx-install does this automatically, and also properly incorporates the conﬁguration variable screen-#rows. Number of columns (chars/line) used for display. This word must be initialized (using to). fbx-install does this automatically, and also properly incorporates the conﬁguration variable screen-#columns.

0151

#columns

(-- columns)

Table 84 Value 0152 0153 0154 0155 Function line# column# inverse? inverse-screen?

Terminal Emulator-set Terminal Emulator State Values Description Current cursor position (line#). 0 is top line Current cursor position. 0 is left char. True if output is inverted (white-on-black) True if screen has been inverted (black background)

Stack (-- line#) (-- column#) (-- white-on-black?) (-- black?)

Table 85 Value 0157 0158 0159 015A 015B 015C 015D 015E 015F 0160 0161 Function draw-character reset-screen toggle-cursor erase-screen blink-screen invert-screen insert-characters delete-characters insert-lines delete-lines draw-logo

Display Device Low-level Interface defer Words Stack (char --) (--) (--) (--) (--) (--) (n --) (n --) (n --) (n --) (line# addr width height --) Description Paints the given character and advances the cursor Initializes the display device Draws or erase the cursor Clears all pixels on the display Flashes the display momentarily Changes all pixels to the opposite color Inserts n blanks just before the cursor Deletes n characters to the right of the cursor Remaining chars slide left Inserts n blank lines just before the current line, lower lines are scrolled downward Deletes n lines starting with the current line, lower lines are scrolled upward Draws the logo

Table 86 Value 016C 016D 016F Function char-height char-width fontbytes

Frame Buffer Parameter Values* Stack (-- height) (-- width) (-- bytes) Description Height (in pixels) of a character (usually 22) Width (in pixels) of a character (usually 12) Number of bytes/scan line for font entries (usually 2)

357

Table 86 Value 0162 0163 0164 0165 0166 Function frame-buffer-adr screen-height screen-width window-top window-left

Frame Buffer Parameter Values* (Continued) Stack (-- addr) (-- height) (-- width) (-- border-height) (-- border-width) Description Address of frame buffer memory Total height of the display (in pixels) Total width of the display (in pixels) Distance (in pixels) between display top and text window Distance (in pixels) between display left edge and text window left edge

*These must all be initialized before using any fbx- routines.

Table 87 Value Function 016A 016B 016E Stack

Font Operators Description

default-font (-- addr width height advance min- char #glyphs) Returns default font values, plugs directly into set-font set-font >font (addr width height advance min-char #glyphs --) (char -- addr) Sets the character font for text output Returns font address for given ASCII character

Table 88 Value Function 0170 0171 0172 0173 0174 0175 0176 0177 fb1-draw-character fb1-reset-screen fb1-toggle-cursor fb1-erase-screen fb1-blink-screen fb1-invert-screen fb1-insert-characters

One-bit Framebuffer Utilities Stack (char --) (--) (--) (--) (--) (--) (n --) Description Paints the character and advance the cursor Initializes the display device (noop) Draws or erases the cursor Clears all pixels on the display Inverts the screen, twice (slow) Changes all pixels to the opposite color Inserts n blanks just before the cursor Deletes n characters, starting at with cursor character, rightward. Remaining chars slide left Inserts n blank lines just before the current line, lower lines are scrolled downward Deletes n lines starting with the current line,lower lines are scrolled upward Draws the logo Like fb1-delete-lines, but doesn’t clear lines at bottom

fb1-delete-characters (n --)

0178 0179 017A 017B 017C

fb1-insert-lines fb1-delete-lines fb1-draw-logo fb1-install fb1-slide-up

(n --) (n --) (line# addr width height --) (n --)

(width height #columns #lines --) Installs the one-bit built-in routines

358

Writing FCode Programs for PCI

Table 89 Value Function 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 018A 018B fb8-draw-character fb8-reset-screen fb8-toggle-cursor fb8-erase-screen fb8-blink-screen fb8-invert-screen fb8-insert-characters

Eight-bit Framebuffer Utilities Stack (char --) (--) (--) (--) (--) (--) (n --) Description Paints the character and advance the cursor Initializes the display device (noop) Draws or erases the cursor Clears all pixels on the display Inverts the screen, twice (slow) Changes all pixels to the opposite color Inserts n blanks just before the cursor Deletes n characters starting with cursor char, rightward. Remaining chars slide left Inserts n blank lines just before the current line, lower lines are scrolled downward Deletes n lines starting with the current line, lower lines are scrolled upward Draws the logo

fb8-delete-characters (n --) fb8-insert-lines fb8-delete-lines fb8-draw-logo fb8-install (n --) (n --) (line# addr width height --)

(width height #columns #lines --) Installs the eight-bit built-in routines

Table 90 Value 023C 023B 0204 0205 020F 020A 0203 020B 0206 0207 0208 020E Function peer child ﬁnd-package open-package $open-package my-parent my-self ihandle>phandle close-package ﬁnd-method call-package $call-method

Package Support Stack (phandle -- phandle.sibling) (phandle.parent -- phandle.child) (name-str name-len -- false | phandle true) (arg-str arg-len phandle -- ihandle | 0) (arg-str arg-len name-str name-len -- ihandle | 0) (-- ihandle) (-- ihandle) (ihandle -- phandle) (ihandle --) (method-str method-len phandle -- false | xt true) (… xt ihandle -- ???) (… method-str method-len ihandle -- ???) Description Returns phandle of package that is the next child of the the parent of the package Returns phandle of the package that is the ﬁrst child of the package parent-phandle Finds a package named "name-str" Opens an instance of the package "phandle," passes arguments "arg-str arg-len" Finds a package "name-str name-len" then opens it with arguments "arg-str arg-len" Returns the ihandle of the parent of the current package instance Returns the instance handle of currentlyexecuting package instance Converts an ihandle to a phandle Closes an instance of a package Finds the method (command) named "method-str" within the package "phandle" Executes the method "xt" within the instance "ihandle" Executes the method named "method-str" within the instance "ihandle"

359

Table 90 Value 0209 0202 020D 0102 Function $call-parent my-args my-unit my-address

Package Support (Continued) Stack (… method-str method-len -- ???) (-- arg-str arg-len) (-- phys.lo … phys.hi) (-- phys.lo …) Description Executes the method "method-str" within the parent’s package Returns the argument str passed when this package was opened Returns the physical unit number pair for this package Returns the physical addr of this plug-in device. "phys" is a "magic" number, usable by other routines Returns address space of plug-in device. "space" is a "magic" number, usable by other routines

0103

my-space

(-- phys.hi)

Table 91 Value 0213 0219 Function alarm user-abort Stack (xt n --)

Asynchronous Support Description Executes method (command) indicated by "xt" every "n" milliseconds Abort after alarm routine ﬁnishes execution

(… --) (R: … --)

Table 92 Value 0214 01A4 Function Stack

Miscellaneous Operations Description

(is-user-word) (E: … -- ???) Creates a new word called "name-str" which executes "xt" (name-str name-len xt --) mac-address (-- mac-str mac-len) Returns the MAC address

Table 93 Value 0215 Function suspend-fcode

Interpretation Description Suspends execution of FCode, resumes later if an undeﬁned command is required

Stack (--)

Table 94 Value 0216 0217 0218 FC Function Stack abort catch throw ferror

Error Handling Description Aborts FCode execution, returns to the "ok" prompt Executes "xt," returns throw error code or 0 if throw not encountered Displays “Unimplemented FCode” and stops FCode interpretation

(… --) (R:… --) (… xt -- ??? error-code | ??? false)

(… error-code -- ??? error-code | …) Returns given error code to catch (--)

360

Writing FCode Programs for PCI

FCodes by Byte Value

The following table lists, in hexadecimal order, currently-assigned FCode byte values. FCode values marked with an asterisk are available only on 64-bit implementations.

Table 95 Value 00 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 Function end0 b(lit) b(') b(") bbranch b?branch b(loop) b(+loop) b(do) b(?do) i j b(leave) b(of) execute + * / mod and or xor invert lshift rshift >>a /mod u/mod negate abs min max >r r> r@ exit FCodes by Byte Value Stack (--) (-- n) (F: /FCode-num32/ --) (-- xt) (F: /FCode#/ --) (-- str len) (F: /FCode-string/ --) (--) (F: /FCode-offset/ --) (don’t-branch? --) (F: /FCode-offset/ --) (--) (F: /FCode-offset/ --) (delta --) (F: /FCode-offset/ --) (limit start --) (F: /FCode-offset/ --) (limit start --) (F: /FCode-offset/ --) (-- index) (R: sys -- sys) (-- index) (R: sys -- sys) (F: --) (sel of-val -- sel | <nothing>) (F: /FCode-offset/ --) (… xt -- ???) (nu1 nu2 -- sum) (nu1 nu2 -- diff) (nu1 nu2 -- prod) (n1 n2 -- quot) (n1 n2 -- rem) (x1 x2 -- x3) (x1 x2 -- x3) (x1 x2 -- x3) (x1 -- x2) (x1 u -- x2) (x1 u -- x2) (x1 u -- x2) (n1 n2 -- rem quot) (u1 u2 -- urem uquot) (n1 -- n2) (n -- u) (n1 n2 -- n1|n2) (n1 n2 -- n1|n2) (x --) (R: -- x) (-- x) (R: x --) (-- x) (R: x -- x) (--) (R: sys --)

361

Table 95 Value 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C Function 0= 0<> 0< 0<= 0> 0>= < > = <> u> u<= u< u>= >= <= between within drop dup over swap rot -rot tuck nip pick roll ?dup depth 2drop 2dup 2over 2swap 2rot 2/ u2/ 2* /c /w /l

FCodes by Byte Value (Continued) Stack (nulﬂag -- equal-to-0?) (n -- not-equal-to-0?) (n -- less-than-0?) (n -- less-or-equal-to-0?) (n -- greater-than-0?) (n -- greater-or-equal-to-0?) (n1 n2 -- less?) (n1 n2 -- greater?) (x1 x2 -- equal?) (x1 x2 -- not-equal?) (u1 u2 -- unsigned-greater?) (u1 u2 -- unsigned-less-or-equal?) (u1 u2 -- unsigned-less?) (u1 u2 -- unsigned-greater-or-equal?) (n1 n2 -- greater-or-equal?) (n1 n2 -- less-or-equal?) (n min max -- min<=n<=max?) (n min max -- min<=n<max?) (x --) (x -- x x) (x1 x2 -- x1 x2 x1) (x1 x2 -- x2 x1) (x1 x2 x3 -- x2 x3 x1) (x1 x2 x3 -- x3 x1 x2) (x1 x2 -- x2 x1 x2) (x1 x2 -- x2) (xu … x1 x0 u -- xu … x1 x0 xu) (xu … x1 x0 u -- xu-1 … x1 x0 xu) (x -- 0 | x x) (-- u) (x1 x2 --) (x1 x2 -- x1 x2 x1 x2) (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) (x1 x2 x3 x4 -- x3 x4 x1 x2) (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) (x1 -- x2) (x1 -- x2) (x1 -- x2) (-- n) (-- n) (-- n)

362

Writing FCode Programs for PCI

Table 95 Value 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 Function /n ca+ wa+ la+ na+ char+ wa1+ la1+ cell+ chars /w* /l* cells on off +! @ l@ w@ <w@ c@ ! l! w! c! 2@ 2! move ﬁll comp noop lwsplit wljoin lbsplit bljoin wbﬂip upc lcc pack count body>

FCodes by Byte Value (Continued) Stack (-- n) (addr1 index -- addr2) (addr1 index -- addr2) (addr1 index -- addr2) (addr1 index -- addr2) (addr1 -- addr2) (addr1 -- addr2) (addr1 -- addr2) (addr1 -- addr2) (nu1 -- nu2) (nu1 -- nu2) (nu1 -- nu2) (nu1 -- nu2) (a-addr --) (a-addr --) (nu a-addr --) (a-addr -- x) (qaddr -- quad) (waddr -- w) (waddr -- n) (addr -- byte) (x a-addr --) (quad qaddr --) (w waddr --) (byte addr --) (a-addr -- x1 x2) (x1 x2 a-addr --) (src-addr dest-addr len --) (addr len byte --) (addr1 addr2 len -- n) (--) (quad -- w1.lo w2.hi) (w.lo w.hi -- quad) (quad -- b.lo b2 b3 b4.hi) (bl.lo b2 b3 b4.hi -- quad) (w1 -- w2) (char1 -- char2) (char1 -- char2) (str len addr -- pstr) (pstr -- str len) (a-addr -- xt)

363

Table 95 Value 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF Function >body fcode-revision span unloop expect alloc-mem free-mem key? key emit type (cr cr #out #line hold <# u#> sign u# u#s u. u.r . .r .s base $number digit -1 0 1 2 3 bl bs bell bounds here aligned wbsplit

FCodes by Byte Value (Continued) Stack (xt -- a-addr) (-- n) (-- a-addr) (--) (R: sys --) (addr len --) (len -- a-addr) (a-addr len --) (-- pressed?) (-- char) (char --) (text-str text-len --) (--) (--) (-- a-addr) (-- a-addr) (char --) (--) (u -- str len) (n --) (u1 -- u2) (u1 -- u2) (u --) (u size --) (nu --) (n size --) (… -- …) (-- a-addr) (addr len -- true | n false) (char base -- digit true | char false) (-- -1) (-- 0) (-- 1) (-- 2) (-- 3) (-- 0x20) (-- 0x08) (-- 0x07) (n cnt -- n+cnt n) (-- addr) (n1 -- n1|a-addr) (w -- b1.lo b2.hi)

364

Writing FCode Programs for PCI

Table 95 Value B0 B1 B2 B5 B6 B7 B8 B9 BA BB BC BD BE C0 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD D0 D1 D2 D3 D4 D5 D8 D9 DA DB DC DD DE F0 F1 Function bwjoin b(<mark) b(>resolve) new-token named-token b(:) b(value) b(variable) b(constant) b(create) b(defer) b(buffer:) b(ﬁeld) instance b(;) b(to) b(case) b(endcase) b(endof) # #s #> external-token $ﬁnd offset16 eval c, w, l, , um* um/mod d+ dget-token set-token state compile, behavior start0 start1

FCodes by Byte Value (Continued) Stack (b.lo b.hi -- w) (F: --) (--) (F: --) (--) (F: /FCode#/ --) (--) (F: /FCode-string FCode#/ --) (E: … -- ???) (F: -- colon-sys) (E: -- x) (F: x --) (E: -- a-addr) (F: --) (E: -- n) (F: n --) (E: -- a-addr) (F: --) (E: … -- ???) (F: --) (E: -- a-addr) (F: size --) (E: addr -- addr+offset) (F: offset size -- offset+size) (--) (--) (F: colon-sys --) (x --) (sel -- sel) (F: --) (sel --) (F: --) (--) (F: /FCode-offset/ --) (ud1 -- ud2) (ud -- 0 0) (ud -- str len) (--) (F: /FCode-string FCode#/ --) (name-str name-len -- xt true | name-str name-len false) (--) (… str len -- ???) (byte --) (w --) (quad --) (x --) (u1 u2 -- ud.prod) (ud u -- urem uquot) (d1 d2 --d.sum) (d1 d2 -- d.diff) (fcode# -- xt immediate?) (xt immediate? fcode# --) (-- a-addr) (xt --) (defer-xt -- contents-xt) (--) (--)

365

Table 95 Value F2 F3 FC FD FF 0102 0103 0105 0110 0111 0112 0113 0114 0115 0116 0119 011A 011B 011C 011D 011E 011F 0120 0121 0122 0124 0125 0126 0127 0128 0130 0131 0150 0151 0152 0153 0154 0155 0157 0158 0159 Function start2 start4 ferror version1 end1 my-address my-space free-virtual property encode-int encode+ encode-phys encode-string encode-bytes reg model device-type parse-2int is-install is-remove is-selftest new-device diagnostic-mode? display-status memory-test-suite mask get-msecs ms ﬁnish-device decode-phys map-low sbus-intr>cpu #lines #columns line# column# inverse? inverse-screen? draw-character reset-screen toggle-cursor

FCodes by Byte Value (Continued) Stack (--) (--) (--) (--) (--) (-- phys.lo …) (-- phys.hi) (virt size --) (prop-addr prop-len name-str name-len --) (n -- prop-addr prop-len) (prop-addr1 prop-len1 prop-addr2 prop-len2 -- prop-addr3 prop-len3) (phys.lo … phys.hi -- prop-addr prop-len) (str len -- prop-addr prop-len) (data-addr data-len -- prop-addr prop-len) (phys.lo … phys.hi size --) (str len --) (str len --) (str len -- val.lo val.hi) (xt --) (xt --) (xt --) (--) (-- diag?) (n --) (addr len -- fail?) (-- a-addr) (-- n) (n --) (--) (prop-addr1 prop-len1 -- prop-addr2 prop-len2 phys.lo … phys.hi) (phys.lo … size -- virt) (sbus-intr# -- cpu-intr#) (-- rows) (-- columns) (-- line#) (-- column#) (-- white-on-black?) (-- black?) (char --) (--) (--)

366

Writing FCode Programs for PCI

Table 95 Value 015A 015B 015C 015D 015E 015F 0160 0161 0162 0163 0164 0165 0166 016A 016B 016C 016D 016E 016F 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 017A 017B 017C 0180 0181 0182 0183 0184 0185 0186 0187 0188 Function erase-screen blink-screen invert-screen insert-characters delete-characters insert-lines delete-lines draw-logo frame-buffer-adr screen-height screen-width window-top window-left default-font set-font char-height char-width >font fontbytes fb1-draw-character fb1-reset-screen fb1-toggle-cursor fb1-erase-screen fb1-blink-screen fb1-invert-screen fb1-insert-characters fb1-delete-characters fb1-insert-lines fb1-delete-lines fb1-draw-logo fb1-install fb1-slide-up fb8-draw-character fb8-reset-screen fb8-toggle-cursor fb8-erase-screen fb8-blink-screen fb8-invert-screen fb8-insert-characters fb8-delete-characters fb8-insert-lines

FCodes by Byte Value (Continued) Stack (--) (--) (--) (n --) (n --) (n --) (n --) (line# addr width height --) (-- addr) (-- height) (-- width) (-- border-height) (-- border-width) (-- addr width height advance min-char #glyphs) (addr width height advance min-char #glyphs --) (-- height) (-- width) (char -- addr) (-- bytes) (char --) (--) (--) (--) (--) (--) (n --) (n --) (n --) (n --) (line# addr width height --) (width height #columns #lines --) (n --) (char --) (--) (--) (--) (--) (--) (n --) (n --) (n --)

367

Table 95 Value 0189 018A 018B 01A4 0201 0202 0203 0204 0205 0206 0207 0208 0209 020A 020B 020D 020E 020F 0213 0214 0215 0216 0217 0218 0219 021A 021B 021C 021D 021E 021F 0220 0221 0222 0223 0224 0225 0226 0227 0228 022E* Function fb8-delete-lines fb8-draw-logo fb8-install mac-address device-name my-args my-self ﬁnd-package open-package close-package ﬁnd-method call-package $call-parent my-parent ihandle>phandle my-unit $call-method $open-package alarm (is-user-word) suspend-fcode abort catch throw user-abort get-my-property decode-int decode-string get-inherited-property delete-property get-package-property cpeek wpeek lpeek cpoke wpoke lpoke lwﬂip lbﬂip lbﬂips rx@

FCodes by Byte Value (Continued) Stack (n --) (line# addr width height --) (width height #columns #lines --) (-- mac-str mac-len) (str len --) (-- arg-str arg-len) (-- ihandle) (name-str name-len -- false | phandle true) (arg-str arg-len phandle -- ihandle | 0) (ihandle --) (method-str method-len phandle -- false | xt true) (… xt ihandle -- ???) (… method-str method-len -- ???) (-- ihandle) (ihandle -- phandle) (-- phys.lo … phys.hi) (… method-str method-len ihandle -- ???) (arg-str arg-len name-str name-len -- ihandle | 0) (xt n --) (E: … -- ???) (name-str name-len xt --) (--) (… --) (R:… --) (… xt -- ??? error-code | ??? false) (… error-code -- ??? error-code | …) (… --) (R: … --) (nam-str nam-len -- true | prop-addr prop-len false) (prop-addr1 prop-len1 -- prop-addr2 prop-len2 n) (prop-addr1 prop-len1 -- prop-addr2 prop-len2 str len) (nam-str nam-len -- true | prop-addr prop-len false) (nam-str nam-len --) (name-str name-len phandle -- true | prop-addr prop-len false) (addr -- false | byte true) (waddr -- false | w true) (qaddr -- false | quad true) (byte addr -- okay?) (w waddr -- okay?) (quad qaddr -- okay?) (quad1 -- quad2) (quad1 -- quad2) (qaddr len --) (oaddr -- o)

368

Writing FCode Programs for PCI

Table 95 Value 022F* 0230 0231 0232 0233 0234 0235 0236 0237 023B 023C 023D 023E 023F 0240 0241* 0242* 0243* 0244* 0245* 0246* 0247* 0248* 0249* 024A* 024B* 024C* 024D* 024E* 024F* 0250* 0251* 0252* 0253* 0254* Function rx! rb@ rb! rw@ rw! rl@ rl! wbﬂips lwﬂips child peer next-property byte-load set-args left-parse-string bxjoin <l@ lxjoin wxjoin x, x@ x! /x /x* xa+ xa1+ xbﬂip xbﬂips xbsplit xlﬂip xlﬂips xlsplit xwﬂip xwﬂips xwsplit (]tokenizer \ alias decimal

FCodes by Byte Value (Continued) Stack (o oaddr --) (addr -- byte) (byte addr --) (waddr -- w) (w waddr --) (qaddr -- quad) (quad qaddr --) (waddr len --) (qaddr len --) (phandle.parent -- phandle.child) (phandle -- phandle.sibling) (previous-str previous-len phandle -- false | name-str name-len true) (addr xt --) (arg-str arg-len unit-str unit-len --) (str len char -- R-str R-len L-str L-len) (b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o) (qaddr -- n) (quad.lo quad.hi -- o) (w.lo w.2 w.3 w.hi -- o) (o --) (oaddr -- o) (o oaddr --) (-- n) (nu1 -- nu2) (addr1 index -- addr2) (addr1 -- addr2) (oct1 -- oct2) (oaddr len --) (o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi) (oct1 -- oct2) (oaddr len --) (o -- quad.lo quad.hi) (oct1 -- oct2) (oaddr len --) (o -- w.lo w.2 w.3 w.hi) ([text<)> --) (--) (--) (E: … -- ???) (“new-name< >old-name< >” --) (--)

369

Table 95 Value TG Function external ﬂoad headerless headers hex octal tokenizer[" ' (.) ." .(: (colon) ; (semicolon) << >> ? ['] 1+ 12+ 2accept again allot ascii begin blank buffer: /c* ca1+ carret case constant control create d# .d decimal decode-bytes defer

FCodes by Byte Value (Continued) Stack (--) ([ﬁlename<cr>] --) (--) (--) (--) (--) (--) ([text<">< >] -- text-str text-len) ("old-name< >" -- xt) (n -- str len) ([text<)>] --) ([text<)>] --) ("new-name< >" -- colon-sys) (E: … -- ???) (--) (x1 u -- x2) (x1 u -- x2) (addr --) ([old-name< >] -- xt) (nu1 -- nu2) (nu1 -- nu2) (nu1 -- nu2) (nu1 -- nu2) (addr len1 -- len2) (C: dest-sys --) (len --) ([text< >] -- char) (C: -- dest-sys) (--) (addr len --) (E: -- a-addr) (len "new-name< >" --) (nu1 -- nu2) (addr1 -- addr2) (-- 0x0D) (C: -- case-sys) (sel -- sel) (E: -- x) (x "new-name< >" --) ([text< >] -- char) (E: -- a-addr) ("new-name< >" --) ([number< >] -- n) (n --) (--) (prop-addr1 prop-len1 data-len -- prop-addr2 prop-len2 data-addr data-len) (E: … -- ???) ("new-name< >" --)

370

Writing FCode Programs for PCI

Table 95 Value TG Function do ?do 3drop 3dup else endcase endof erase eval false fcode-version2 ﬁeld h# .h hex if leave ?leave linefeed loop +loop /n* na1+ not o# octal of repeat s" s. space spaces struct then to true (u.) until value variable while

FCodes by Byte Value (Continued) Stack (C: -- dodest-sys) (limit start --) (R: -- sys) (C: -- dodest-sys) (limit start --) (R: -- sys) (x1 x2 x3 --) (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) (C: orig-sys1 -- orig-sys2) (--) (C: case-sys --) (sel --) (C: case-sys1 of-sys -- case-sys2) (--) (addr len --) (… str len -- ???) (-- false) (--) (E: addr -- addr+offset) (offset size "new-name< >" -- offset+size) ([number< >] -- n) (n --) (--) (C: -- orig-sys) (do-next? --) (--) (R: sys --) (exit? --) (R: sys --) (-- 0x0A) (C: dodest-sys --) (--) (R: sys1 -- <nothing> | sys2) (C: dodest-sys --) (delta --) (R: sys1 -- <nothing> | sys2) (nu1 -- nu2) (addr1 -- addr2) (x1 -- x2) ([number< >] -- n) (--) (C: case-sys1 -- case-sys2 of-sys) (sel of-val -- sel | <nothing>) (C: orig-sys dest-sys --) (--) ([text<“>] -- test-str text-len) (n --) (--) (cnt --) (-- 0) (C: orig-sys --) (--) (param [old-name< >] --) (-- true) (u -- str len) (C: dest-sys --) (done? --) (E: -- x) (x "new-name< >"--) (E: -- a-addr) ("new-name< >"--) (C: dest-sys -- orig-sys dest-sys) (continue? --)

371

FCodes by Name

The following table lists, in alphabetic order, currently-assigned FCodes. FCode values marked with an asterisk are available only on 64-bit implementations.

Table 96 Value 72 TG C7 C9 TG TG 20 1E 6C D3 1F 9D TG TG 21 TG TG 3A 96 TG 43 3D 3C 0B 42 TG TG 6D TG A5 36 37 35 34 Function ! " # #> ' ((.) * + +! , . ." .(/ : (colon) ; (semicolon) < <# << <= <> = > >= >> ? @ ['] \]tokenizer 0 0< 0<= 0<> 0= FCodes by Name Stack (x a-addr --) ([text<">< >] -- text-str text-len) (ud1 -- ud2) (ud -- str len) ("old-name< >" -- xt) ([text<)> --) (n -- str len) (nu1 nu2 -- prod) (nu1 nu2 -- sum) (nu a-addr --) (x --) (nu1 nu2 -- diff) (nu --) ([text<)>] --) ([text<)>] --) (n1 n2 -- quot) ("new-name< >" -- colon-sys) (E: … -- ???) (--) (n1 n2 -- less?) (--) (x1 u -- x2) (n1 n2 -- less-or-equal?) 30 (n1 n2 -- greater?) (n1 n2 -- greater?) (n1 n2 -- greater-or-equal?) (x1 u -- x2) (addr --) (a-addr -- x) ([old-name< >] -- xt) (--) (--) (-- 0) (n -- less-than-0?) (n -- less-or-equal-to-0?) (n -- not-equal-to-0?) (nulﬂag -- equal-to-0?)

372

Writing FCode Programs for PCI

Table 96 Value 38 39 A6 TG TG A4 A7 77 59 TG TG 57 76 A8 29 0216 2D TG TG 0213 AE 8B TG 23 TG 12 11 B7 C2 A0 13 14 BD C4 BA BB BC 17 18 TG Function 0> 0>= 1 1+ 1-1 2 2! 2* 2+ 22/ 2@ 3 >>a abort abs accept again alarm alias aligned alloc-mem allot and ascii b(") b(') b(:) b(;) base g b?branch b(buffer:) b(case) b(constant) b(create) b(defer) b(do) b(?do) begin

FCodes by Name (Continued) Stack (n -- greater-than-0?) (n -- greater-or-equal-to-0?) (-- 1) (nu1 -- nu2) (nu1 -- nu2) (-- -1) (-- 2) (x1 x2 a-addr --) (x1 -- x2) (nu1 -- nu2) (nu1 -- nu2) (x1 -- x2) (a-addr -- x1 x2) (-- 3) (x1 u -- x2) (… --) (R:… --) (n -- u) (addr len1 -- len2) (C: dest-sys --) (xt n --) (E: … -- ???) (“new-name< >old-name< >” --) (n1 -- n1|a-addr) (len -- a-addr) (len --) (x1 x2 -- x3) ([text< >] -- char) (-- str len) (F: /FCode-string/ --) (-- xt) (F: /FCode#/ --) (E: … -- ???) (F: -- colon-sys) (--) (F: colon-sys --) (-- a-addr) (--) (F: /FCode-offset/ --) (don’t-branch? --) (F: /FCode-offset/ --) (E: -- a-addr) (F: size --) (sel -- sel) (F: --) (E: -- n) (F: n --) (E: -- a-addr) (F: --) (E: … -- ???) (F: --) (limit start --) (F: /FCode-offset/ --) (limit start --) (F: /FCode-offset/ --) (C: -- dest-sys) (--)

373

Table 96 Value DE AB C5 C6 44 BE A9 TG 1B 015B 10 7F 15 16 B1 85 86 1C AC B2 AA C3 TG B8 B9 B0 241* 023E 75 D0 5A 71 5E TG 62 020E 0208 0209 TG TG Function behavior bell b(endcase) b(endof) between b(ﬁeld) bl blank b(leave) blink-screen b(lit) bljoin b(loop) b(+loop) b(<mark) body> >body b(of) bounds b(>resolve) bs b(to) buffer: b(value) b(variable) bwjoin bxjoin byte-load c! c, /c /c* c@ ca+ ca1+ char+ $call-method call-package $call-parent carret case

FCodes by Name (Continued) Stack (defer-xt -- contents-xt) (-- 0x07) (sel --) (F: --) (--) (F: /FCode-offset/ --) (n min max -- min<=n<=max?) (E: addr -- addr+offset) (F: offset size -- offset+size) (-- 0x20) (addr len --) (F: --) (--) (-- n) (F: /FCode-num32/ --) (bl.lo b2 b3 b4.hi -- quad) (--) (F: /FCode-offset/ --) (delta --) (F: /FCode-offset/ --) (F: --) (a-addr -- xt) (xt -- a-addr) (sel of-val -- sel | <nothing>) (F: /FCode-offset/ --) (n cnt -- n+cnt n) (--) (F: --) (-- 0x08) (x --) (E: -- a-addr) (len "new-name< >" --) (E: -- x) (F: x --) (E: -- a-addr) (F: --) (b.lo b.hi -- w) (b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o) (addr xt --) (byte addr --) (byte --) (-- n) (nu1 -- nu2) (addr -- byte) (addr1 index -- addr2) (addr1 -- addr2) (addr1 -- addr2) (… method-str method-len ihandle -- ???) (… xt ihandle -- ???) (… method-str method-len -- ???) (-- 0x0D) (C: -- case-sys) (sel -- sel)

374

Writing FCode Programs for PCI

Table 96 Value 0217 65 69 62 016C 66 016D 0236 0206 0153 0151 7A DD TG TG 84 0220 0223 92 91 TG TG D8 D9 TG TG 021B 0128 021C 016A TG 015E 0160 021E 51 0201 011A 0120 A3 0121 Function catch cell+ cells char+ char-height chars char-width child close-package column# #columns comp compile, constant control count cpeek cpoke cr (cr create d# d+ d.d decimal decimal decode-int decode-phys decode-string default-font defer delete-characters delete-lines delete-property depth device-name device-type diagnostic-mode? digit display-status

FCodes by Name (Continued) Stack (… xt -- ??? error-code | ??? false) (addr1 -- addr2) (nu1 -- nu2) (addr1 -- addr2) (-- height) (nu1 -- nu2) (-- width) (phandle.parent -- phandle.child) (ihandle --) (-- column#) (-- columns) (addr1 addr2 len -- n) (xt --) (E: -- x) (x "new-name< >" --) ([text< >] -- char) (pstr -- str len) (addr -- false | byte true) (byte addr -- okay?) (--) (--) (E: -- a-addr) ("new-name< >" --) ([number< >] -- n) (d1 d2 --d.sum) (d1 d2 -- d.diff) (n --) (--) (--) (prop-addr1 prop-len1 -- prop-addr2 prop-len2 n) (prop-addr1 prop-len1 -- prop-addr2 prop-len2 phys.lo … phys.hi) (prop-addr1 prop-len1 -- prop-addr2 prop-len2 str len) (-- addr width height advance min-char #glyphs) (E: … -- ???) ("new-name< >" --) (n --) (n --) (nam-str nam-len --) (-- u) (str len --) (str len --) (-- diag?) (char base -- digit true | char false) (n --)

375

Table 96 Value TG TG 0157 0161 46 52 TG 47 53 TG 50 TG 8F 0112 0115 0111 0113 0114 00 FF TG TG TG 015A TG CD 1D 33 8A CA TG 0174 0177 0179 0170 017A 0173 0176 0178 017B Function do ?do draw-character draw-logo drop 2drop 3drop dup 2dup 3dup ?dup else emit encode+ encode-bytes encode-int encode-phys encode-string end0 end1 endcase endof erase erase-screen eval evaluate execute exit expect external external-token false fb1-blink-screen fb1-delete-characters fb1-delete-lines fb1-draw-character fb1-draw-logo fb1-erase-screen fb1-insert-characters fb1-insert-lines fb1-install

FCodes by Name (Continued) Stack (C: -- dodest-sys) (limit start --) (R: -- sys) (C: -- dodest-sys) (limit start --) (R: -- sys) (char --) (line# addr width height --) (x --) (x1 x2 --) (x1 x2 x3 --) (x -- x x) (x1 x2 -- x1 x2 x1 x2) (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) (x -- 0 | x x) (C: orig-sys1 -- orig-sys2) (--) (char --) (prop-addr1 prop-len1 prop-addr2 prop-len2 -- prop-addr3 prop-len3) (data-addr data-len -- prop-addr prop-len) (n -- prop-addr prop-len) (phys.lo … phys.hi -- prop-addr prop-len) (str len -- prop-addr prop-len) (--) (--) (C: case-sys --) (sel --) (C: case-sys1 of-sys -- case-sys2) (--) (addr len --) (--) (… str len -- ???) (… str len -- ???) (… xt -- ???) (--) (R: sys --) (addr len --) (--) (--) (F: /FCode-string FCode#/ --) (-- false) (--) (n --) (n --) (char --) (line# addr width height --) (--) (n --) (n --) (width height #columns #lines --)

376

Writing FCode Programs for PCI

Table 96 Value 0175 0171 017C 0172 0184 0187 0189 0180 018A 0183 0186 0188 018B 0185 0181 0182 87 TG FC TG 79 CB 0207 0204 0127 016E 016F 0162 8C 0105 021d 0125 021A 021F DA TG TG AD Function fb1-invert-screen fb1-reset-screen fb1-slide-up fb1-toggle-cursor fb8-blink-screen fb8-delete-characters fb8-delete-lines fb8-draw-character fb8-draw-logo fb8-erase-screen fb8-insert-characters fb8-insert-lines fb8-install fb8-invert-screen fb8-reset-screen fb8-toggle-cursor fcode-revision fcode-version2 ferror ﬁeld ﬁll $ﬁnd ﬁnd-method ﬁnd-package ﬁnish-device >font ﬂoad fontbytes frame-buffer-adr free-mem free-virtual get-inherited-property get-msecs get-my-property get-package-property get-token h# .h headerless headers here

FCodes by Name (Continued) Stack (--) (--) (n --) (--) (--) (n --) (n --) (char --) (line# addr width height --) (--) (n --) (n --) (width height #columns #lines --) (--) (--) (--) (-- n) (--) (--) (E: addr -- addr+offset) (offset size "new-name< >" -- offset+size) (addr len byte --) (name-str name-len -- xt true | name-str name-len false) (method-str method-len phandle -- false | xt true) (name-str name-len -- false | phandle true) (--) (char -- addr) ([ﬁlename<cr>] --) (-- bytes) (-- addr) (a-addr len --) (virt size --) (nam-str nam-len -- true | prop-addr prop-len false) (-- n) (nam-str nam-len -- true | prop-addr prop-len false) (name-str name-len phandle -- true | prop-addr prop-len false) (fcode# -- xt immediate?) ([number< >] -- n) (n --) (--) (--) (-- addr)

377

Table 96 Value TG 95 19 TG 020B 015D 015F C0 0154 0155 26 015C 011C 011D 011E 0214 1A 8E 8D 73 D2 6E 5C 68 242* 60 64 0227 0228 7E 82 TG TG 0240 0152 94 TG 0150 TG TG Function hex hex hold i if ihandle>phandle insert-characters insert-lines instance inverse? inverse-screen? invert invert-screen is-install is-remove is-selftest (is-user-word) j key key? l! l, l@ /l /l* <l@ la+ la1+ lbﬂip lbﬂips lbsplit lcc leave ?leave left-parse-string line# #line linefeed #lines loop +loop

FCodes by Name (Continued) Stack (--) (--) (char --) (-- index) (R: sys -- sys) (C: -- orig-sys) (do-next? --) (ihandle -- phandle) (n --) (n --) (--) (-- white-on-black?) (-- black?) (x1 -- x2) (--) (xt --) (xt --) (xt --) (E: … -- ???) (name-str name-len xt --) (-- index) (R: sys -- sys) (-- char) (-- pressed?) (quad qaddr --) (quad --) (qaddr -- quad) (-- n) (nu1 -- nu2) (qaddr -- n) (addr1 index -- addr2) (addr1 -- addr2) (quad1 -- quad2) (qaddr len --) (quad -- b.lo b2 b3 b4.hi) (char1 -- char2) (--) (R: sys --) (exit? --) (R: sys --) (str len char -- R-str R-len L-str L-len) (-- line#) (-- a-addr) (-- 0x0A) (-- rows) (C: dodest-sys --) (--) (R: sys1 -- <nothing> | sys2) (C: dodest-sys --) (delta --) (R: sys1 -- <nothing> | sys2)

378

Writing FCode Programs for PCI

Table 96 Value 0222 0225 27 0226 0237 7C 243* 01A4 0130 0124 2F 0122 2E 22 2A 0119 78 0126 0102 0202 020A 0203 0103 020D 5D TG 61 TG B6 2C 011F B5 023D 4D 7B TG A2 TG TG TG Function lpeek lpoke lshift lwﬂip lwﬂips lwsplit lxjoin mac-address map-low mask max memory-test-suite min mod /mod model move ms my-address my-args my-parent my-self my-space my-unit /n /n* na+ na1+ named-token negate new-device new-token next-property nip noop not $number o# octal octal of

FCodes by Name (Continued) Stack (qaddr -- false | quad true) (quad qaddr -- okay?) (x1 u -- x2) (quad1 -- quad2) (qaddr len --) (quad -- w1.lo w2.hi) (quad.lo quad.hi -- o) (-- mac-str mac-len) (phys.lo … size -- virt) (-- a-addr) (n1 n2 -- n1|n2) (addr len -- fail?) (n1 n2 -- n1|n2) (n1 n2 -- rem) (n1 n2 -- rem quot) (str len --) (src-addr dest-addr len --) (n --) (-- phys.lo …) (-- arg-str arg-len) (-- ihandle) (-- ihandle) (-- phys.hi) (-- phys.lo … phys.hi) (-- n) (nu1 -- nu2) (addr1 index -- addr2) (addr1 -- addr2) (--) (F: /FCode-string FCode#/ --) (n1 -- n2) (--) (--) (F: /FCode#/ --) (previous-str previous-len phandle -- false | name-str name-len true) (x1 x2 -- x2) (--) (x1 -- x2) (addr len -- true | n false) ([number< >] -- n) (--) (--) (C: case-sys1 -- case-sys2 of-sys) (sel of-val -- sel | <nothing>)

379

Table 96 Value 6B CC 6A 0205 020F 24 93 48 54 83 011B 023C 4E 0110 31 32 9E 30 0231 0230 0116 TG 0158 0235 0234 4F 4A 4B 56 28 0233 0232 022E* 022F* TG TG C8 9F 0131 0163 Function off offset16 on open-package $open-package or #out over 2over pack parse-2int peer pick property r> r@ .r >r rb! rb@ reg repeat reset-screen rl! rl@ roll rot -rot 2rot rshift rw! rw@ rx@ rx! s" s. #s .s sbus-intr>cpu screen-height

FCodes by Name (Continued) Stack (a-addr --) (--) (a-addr --) (arg-str arg-len phandle -- ihandle | 0) (arg-str arg-len name-str name-len -- ihandle | 0) (x1 x2 -- x3) (-- a-addr) (x1 x2 -- x1 x2 x1) (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) (str len addr -- pstr) (str len -- val.lo val.hi) (phandle -- phandle.sibling) (xu … x1 x0 u -- xu … x1 x0 xu) (prop-addr prop-len name-str name-len --) (-- x) (R: x --) (-- x) (R: x -- x) (n size --) (x --) (R: -- x) (byte addr --) (addr -- byte) (phys.lo … phys.hi size --) (C: orig-sys dest-sys --) (--) (--) (quad qaddr --) (qaddr -- quad) (xu … x1 x0 u -- xu-1 … x1 x0 xu) (x1 x2 x3 -- x2 x3 x1) (x1 x2 x3 -- x3 x1 x2) (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) (x1 u -- x2) (w waddr --) (waddr -- w) (oaddr -- o) (o oaddr --) ([text<“>] -- test-str text-len) (n --) (ud -- 0 0) (… -- …) (sbus-intr# -- cpu-intr#) (-- height)

380

Writing FCode Programs for PCI

Table 96 Value 0164 023F 016B DB 98 TG TG 88 F0 F1 F2 F3 DC TG 0215 49 55 TG 0218 TG 0159 TG 4C 90 99 97 9A 9B 40 3F 3E 41 TG 58 D4 D5 2B 89 TG 81 Function screen-width set-args set-font set-token sign space spaces span start0 start1 start2 start4 state struct suspend-fcode swap 2swap then throw to toggle-cursor tokenizer[true tuck type u# u#> u#s u. u< u<= u> u>= (u.) u2/ um* um/mod u/mod unloop until upc

FCodes by Name (Continued) Stack (-- width) (arg-str arg-len unit-str unit-len --) (addr width height advance min-char #glyphs --) (xt immediate? fcode# --) (n --) (--) (cnt --) (-- a-addr) (--) (--) (--) (--) (-- a-addr) (-- 0) (--) (x1 x2 -- x2 x1) (x1 x2 x3 x4 -- x3 x4 x1 x2) (C: orig-sys --) (--) (… error-code -- ??? error-code | …) (param [old-name< >] --) (--) (--) (-- true) (x1 x2 -- x2 x1 x2) (text-str text-len --) (u1 -- u2) (u -- str len) (u1 -- u2) (u --) (u1 u2 -- unsigned-less?) (u1 u2 -- unsigned-less-or-equal?) (u1 u2 -- unsigned-greater?) (u1 u2 -- unsigned-greater-or-equal?) (n -- addr len) (x1 -- x2) (u1 u2 -- ud.prod) (ud u -- urem uquot) (u1 u2 -- urem uquot) (--) (R: sys --) (C: dest-sys --) (done? --) (char1 -- char2)

381

Table 96 Value 9C 0219 TG TG FD 74 D1 6F 5B 67 70 5F 63 80 0236 AF TG 0166 0165 45 7D 0221 0224 0244* 0245* 0246* 0247* 0248* 0249* 024A* 024B* 024C* 024D* 024E* 024F* 0250* 0251* 25 0252* 0253* 0254* Function u.r user-abort value variable version1 w! w, w@ /w /w* <w@ wa+ wa1+ wbﬂip wbﬂips wbsplit while window-left window-top within wljoin wpeek wpoke wxjoin x, x@ x! /x /x* xa+ xa1+ xbﬂip xbﬂips xbsplit xlﬂip xlﬂips xlsplit xor xwﬂip xwﬂips xwsplit(

FCodes by Name (Continued) Stack (u size --) (… --) (R: … --) (E: -- x) (x "new-name< >"--) (E: -- a-addr) ("new-name< >"--) (--) (w waddr --) (w --) (waddr -- w) (-- n) (nu1 -- nu2) (waddr -- n) (addr1 index -- addr2) (addr1 -- addr2) (w1 -- w2) (waddr len --) (w -- b1.lo b2.hi) (C: dest-sys -- orig-sys dest-sys) (continue? --) (-- border-width) (-- border-height) (n min max -- min<=n<max?) (w.lo w.hi -- quad) (waddr -- false | w true) (w waddr -- okay?) (w.lo w.2 w.3 w.hi -- o) (o --) (oaddr -- o) (o oaddr --) (-- n) (nu1 -- nu2) (addr1 index -- addr2) (addr1 -- addr2) (oct1 -- oct2) (oaddr len --) (o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi) (oct1 -- oct2) (oaddr len --) (o -- quad.lo quad.hi) (x1 x2 -- x3) (oct1 -- oct2) (oaddr len --) (o -- w.lo w.2 w.3 w.hi)

382

Writing FCode Programs for PCI

383

384

Writing FCode Programs for PCI

B

Appendix B

Coding Style

This appendix describes the coding style used in some Open Firmware implementations. These guidelines are a “living” document that ﬁrst came into existence in 1985. By following these guidelines in your own code development, you will produce code that is similar in style to a large body of existing Open Firmware work. This will make your code more easily understood by others within the Open Firmware community.

Typographic Conventions

The following typographic conventions are used in this document:

s s s

The symbol (is used to represent space characters (i.e. ASCII 0x20). The symbol … is used to represent an arbitrary amount of Forth code. Within prose descriptions, Forth words are shown in this font.

Use of Spaces

Since Forth code can be very terse, the judicious use of spaces can increase the readability of your code. Two consecutive spaces are used to separate a deﬁnition’s name from the beginning of the stack diagram, another two consecutive spaces (or a newline) are used to separate the stack diagram from the word’s deﬁnition, and two consecutive spaces (or a newline) separate the last word of a deﬁnition from the closing semi-colon. For example:

: new-name((((stack-before(--(stack-after()((foo(bar((; : new-name((((stack-before(--(stack-after() (((foo(bar(framus(dup(widget(foozle(ribbit(grindle ;

Forth words are usually separated by one space. If a phrase consisting of several words performs some function, that phrase should be separated from other words/phrases by two consecutive spaces or a newline.

: name((((stack before(--(stack after()((this1(this2((that1(that2((;

385

If you are uncertain how to group words into phrases, one useful algorithm is to look at the stack effect of a group of words. A group of words is a phrase when the group has no net stack effect (i.e. the stack looks the same after the group has executed as it did before the group was executed). When creating multiple line deﬁnitions, all lines except the ﬁrst and last should be indented by three (3) spaces. If additional indentation is needed with control structures, the left margin of each additional level of indentation should start three (3) spaces to the right of the preceding level.

: name (stack before -- stack after)

(((qqq… ((((((qqq… ((((((qqq… (((qqq…

;

if…else…then

In if…then or if…else…then control structures that occupy no more than one line, two spaces should be used both before and after each if, else or then.

((if((qqq((then((((if((qqq((else((ppp((then((

Longer constructs should be structured like this:

<code to generate flag>((if

(((<true

clause>

then <code to generate flag>((if

(((<true

clause>

else

(((<false

clause>

then

do…loop

In do…loop constructs that occupy no more than one line, two spaces should be used both before and after each do or loop.

<code to calculate limits>((do((qqq((loop((

Longer constructs should be structured like this:

<code to calculate limits>((do

(((<body>

loop

The longer +loop construct should be structured like this:

<code to calculate limits>((do

(((<body>

<incremental value>(+loop

386

Writing FCode Programs for PCI

begin…while…repeat

In begin…while…repeat constructs that occupy no more than one line, two spaces should be used both before and after each begin, while or repeat).

((begin((<flag

code>((while((<body>((repeat((

Longer constructs:

begin((<short flag code>((while (((<body> repeat begin

(((<long

flag code>

while

(((<body>

repeat

begin…until…again

In begin…until and begin…again constructs that occupy no more than one line, two spaces should be used both before and after each begin, until or again.

((begin((<body>((until ((begin((<body>((again

Longer constructs:

begin

(((<body>

until begin

(((<body>

again

Block Comments

Block comments begin with \(. All text following the space is ignored until after the next newline. (While it would be possible to delimit block comments with parentheses, the use of parentheses is reserved by convention for stack comments. Precede each non-trivial deﬁnition with a block comment giving a clear and concise explanation of what the word does. Put more comments at the very beginning of the ﬁle to describe external words which could be used from the User Interface.

387

Stack Comments

Stack comments begin with ((and end with). Use stack comments liberally within deﬁnitions. Try to structure each deﬁnition so that, when you put stack comments at the end of each line, the stack picture makes a nice pattern.

: name (stack before -- stack after)

(((qqq (((qqq (((qqq

ppp bar (stack condition after the execution of bar) ppp foo (stack condition after the execution of foo) ppp dup (stack condition after the execution of dup)

;

Return Stack Comments

Return stack comments are also delimited with parentheses. In addition, the notation r: is used at the beginning of the return stack comment to differentiate it from a parameter stack comment. Place return stack comments on any line that contains one or more words that cause the return stack to change. (This limitation is a practical one; it is often difﬁcult to do otherwise due to lack of space.) The words >r and r> must be paired inside colon deﬁnitions and inside do…loop constructs.

: name (stack before -- stack after)

(((qqq

>r (r: addr)

(((qqq r>(r:)

;

Numbers

Hexadecimal numbers should be typed in lower case. If a given number contains more than 4 digits, the number may be broken into groups of four digits with periods. For example:

dead.beef

Since the default number base is hexadecimal, the convention is not to precede hexadecimal numbers with h#.

388

Writing FCode Programs for PCI

Optimizations

A number of commonly used operations have been given optimized deﬁnitions. The use of these optimizations will improve the performance and reduce the size of your code.

Table 97 Forth Optimizations Use 1+ 12+ 22* 2/ 0= 0< 0> 0<= 0>= 0<> Instead of 1+ 12+ 22* 2/ 0= 0< 0> 0 <= 0 >= 0 <>

Case Insensitivity

Forthmacs is case insensitive. However, the convention is to use lower case for Forth words. Upper case characters may be used in comments while typing a regular English text.

\ This is an example comment

389

390

Writing FCode Programs for PCI

Index

Symbols

, 19 "#address-cells", 11, 69 "#size-cells", 11, 69 "address", 69 "address-bits", 69 "alternate-reg", 70 "assigned-addresses", 70 "available", 71 "big-endian-aperture", 71 "bus-range", 71 "character-set", 71 "class-code", 71 "compatible", 72 "depth", 72, 211 "device_type", 72 "device-id", 72 "devsel-speed", 73 "fast-back-to-back", 73 "has-fcode", 73 "height", 73, 248 "interrupts", 73 "linebytes", 74, 263 "little-endian-aperture", 74 "local-mac-address", 74 "mac-address", 75 "max-frame-size", 76 "max-latency", 76 "min-grant", 76 "model", 76 "name", 3, 11, 77 "page-size", 78 "power-consumption", 3, 78 "ranges", 78 "reg", 3, 11, 81, 275, 298 "revision-id", 83 "slot-names", 83 "status", 83 "translations", 84 "vendor-id", 84 "width", 84, 333 $call-method, 43, 44, 47, 49 to 51 $call-parent, 43, 49 to 51 $open-package, 44, 48 to 49, 287 (patch), 291 .properties, 34 /aliases, 173 /chosen, 196 /packages, 47, 57, 289 /deblocker, 59, 204 /disk-label, 61, 215

391

/obp-tftp, 58, 283 /openprom, 287 /options, 287 opening packages in, 48 :, 6 ;, 6 <l@, 259 ['], 47]tokenizer, 14, 19

blink-screen, 141 buffer:, 45 byte-load, 33

C

$call-method, 44, 47, 49 to 51 call-package, 47, 49 $call-parent, 49 to 51 char-height, 139 char-width, 139 Client Interface $callback, 191 callback, 190 sym, 320 close, 53 close-dev, 26 code examples $open-package, 48 begin-package, 57 d+, 12 data instance-speciﬁc, 54 static, 54 encode+, 11 encode-int, 11 encode-phys, 11 encode-string, 11 find-package, 47 my-address, 11 my-space, 11 open-dev, 56 property, 11 :, 6 colon deﬁnition, 6 and stack comment, 7 command line editor, 24 to 26 FCode download/test commands, 26 optional command completion commands, 26 optional commands, 24 optional history commands, 25 required commands, 24 compile state, 6

A

accessing methods, 49 packages, 55 active package, 42 address, 140 "#address-cells", 11, 69 addressing packages, 56 PCI, 156 SBus, 157 VMEBus, 157 alias, 14 ANS Forth and FCode, 5 apply, 51 assembler c;, 190 code, 197 end-code, 224 label, 260 auto-boot?, 21

B

banner, 22 begin-package, 26, 32, 56, 57 begin-select, 27, 38, 181 begin-select-dev, 26, 38, 181 binary format FCode, 5 BIOS extension, 1

392

Writing FCode Programs for PCI—August 1996

config-b!, 199 config-b@, 199 config-l!, 200 config-l@, 200 conﬁguration address header, 1 conﬁguration variable manipulation creating with nodefault-bytes, 278 displaying with printenv, 293 setting to default value with set-default, 311 set-defaults, 311 setting with $setenv, 312 setenv, 312 conﬁguration variables auto-boot?, 21, 175 boot-command, 185 boot-device, 185 boot-file, 186 diag-device, 213 diag-file, 213 diag-switch?, 214 fcode-debug?, 21, 35, 236, 335 input-device, 251 load-base, 265 oem-banner, 284 oem-banner?, 284 oem-logo, 284 oem-logo?, 285 output-device, 288 pci-probe-list, 24 screen-#columns, 306 screen-#rows, 307 security-#badlogins, 307 security-mode, 307 security-password, 308 selftest-#megs, 310 use-nvramrc?, 329 config-w!, 201 config-w@, 200 current instance, 43

D

d#, 14 data initialized, 45 instance-speciﬁc, 45 package, 45 packages, 42 static, 45 zero-ﬁlled, 45 data deﬁnition packages, 54 deblocker support, 59, 204 debugger commands $, 206 (, 206 (debug, 207), 206)debug, 207 *, 206 +bp, 186 +dis, 215 .bp, 187 .breakpoint, 187 .fregisters, 244 .instruction, 253 .registers, 300 .step, 318 <, 206 ?, 206 --bp, 186 -bp, 186 bpoff, 187 c, 206 ctrace, 203 d, 206 debug, 205 debug(, 207 debugging, 207 debug-me, 207 debug-off, 207 dis, 215 dump, 220 f, 206 g, 206

393

go, 246 gos, 246 h, 206 hop, 249 hops, 249 q, 206 resume, 206 resume, 302 return, 302 s, 206 space-bar, 206 step, 318 stepping, 319 steps, 319 sym>value, 320 till, 322 tracing, 323 u, 206 value>sym, 330 decimal, 14 decode-unit, 46, 153 default-colors, 140 default-font, 140 defer, 45 deﬁning Forth words, 5 delete-characters, 141 delete-lines, 141 depth, 140 dev, 34 dev, 34, 42, 46, 57 device drivers, plug-in, 52 identiﬁcation, 3 device addressing PCI, 156 SBus, 157 VMEBus, 157 device methods block-size, 100, 184 claim, 196 close, 197 decode-unit, 153, 209 dma-alloc, 100, 153, 217

dma-free, 154, 217 dma-map-in, 154, 217 dma-map-out, 154, 218 dma-sync, 155, 218 encode-unit, 223 install-abort, 131 load, 100, 122, 265 map, 268 map-in, 155, 269 map-out, 156, 270 max-transfer, 100, 271 modify, 273 PCI bus node speciﬁc config-b!, 199 config-b@, 199 config-l!, 200 config-l@, 200 config-w!, 201 config-w@, 200 probe-self, 155, 293 read, 100, 121, 131 read-blocks, 101 remove-abort, 131 seek, 101 write, 101, 122, 131 write-blocks, 101 device node, 3, 41 browsing, 34 creating with begin-package/end-pac kage, 32 device tree, 3 “/”, 164 node, 4 device types "block", 183 "byte", 188 "display", 216 "memory", 271 "network", 277 "serial", 310 device-end, 26, 34, 46, 57 devices serial, 131 disk label support, 61

394

Writing FCode Programs for PCI—August 1996

dl, 27 to 31 dma-alloc, 153, 217 dma-free, 154, 217 dma-map-in, 154, 217 dma-map-out, 154, 218 dma-sync, 155, 218 draw-character, 141 draw-logo, 141

E

emit-byte, 14, 19 end0, 3, 17 end1, 3 endcase, 224 end-package, 26, 33 erase-screen, 141 execute-device-method, 26, 38, 49, 51 to 52, 226 executing methods, 47 execution token, 47 obtaining, 47 external, 14, 21, 35, 228, 335

F

fb8-draw-character, 141 fb8-install, 140, 141 FCode and ANS Forth, 5 binary format, 5 characteristics, 5 compile state, 6 deﬁning words, 5 device identiﬁcation, 3 interpret state, 6 interpretation, 3 interpreting, 32 methods, 4 minimum program, 11 one-byte, 13 program, 1

programming style, 8 to 9 property-speciﬁc FCodes, 87 source format, 5 stack, 6 tokenizing, 5 two-byte, 13 words, 5 FCode driver functions, 2 FCode programs, 27 testing in source form, 39 FCode ROM image body, 3 end token, 3 format, 3 header, 3 PCI data structure, 3 size, 3 Fcode source, 17 to 18 FCode types interface, 13, 15 local, 13, 15 primitives, 13 system, 13 fcode-debug?, 21, 35, 335 fcode-end, 17 FCodes -, 163 !, 160 #, 161 #>, 161 #columns, 198 #line, 262 #lines, 263 #out, 288 #s, 305 $call-method, 43, 44, 47, 49 to 51, 191 $call-parent, 43, 49 to 51, 191 $find, 239 $number, 280 $open-package, 44, 48, 56, 287 ', 161 (, 161

395

(cr, 203 (is-user-word), 257 *, 162 +, 162 +!, 162 +loop, 266 ,, 163 ., 163 .r, 295 .s, 305 /, 164 /c, 190 /l, 259 /l*, 259 /mod, 272 /n, 275 /w, 332 /w*, 332 /x, 337 /x*, 337 <, 164 <#, 165 <=, 165 <>, 165 <l@, 259 <w@, 332 =, 165 >, 165 >=, 166 >>a, 170 >body, 185 >font, 242 >r, 296 ?dup, 221 @, 166 0, 167 0<, 167 0<=, 167 0<>, 168 0=, 168 0>, 168 0>=, 168 -1, 168 1, 168 2, 169 2!, 169

2*, 169 2/, 169 2@, 169 2drop, 220 2dup, 221 2over, 289 2rot, 303 2swap, 320 3, 170 abort, 170 abs, 171 alarm, 172 aligned, 173 alloc-mem, 173 and, 175 b("), 176 b('), 176 b(+loop), 184 b(:), 176 b(;), 176 b(<mark), 184 b(>resolve), 187 b(?do), 179 b(buffer:), 179 b(case), 179 b(constant), 179 b(create), 179 b(defer), 179 b(do), 179 b(endcase), 182 b(endof), 182 b(field), 182 b(leave), 182 b(lit), 183 b(loop), 184 b(of), 185 b(to), 187 b(value), 188 b(variable), 188 b?branch, 178 base, 177 bbranch, 178 behavior, 181 bell, 182 between, 182 bl, 182

396

Writing FCode Programs for PCI—August 1996

blink-screen, 141, 183 bljoin, 183 body>, 185 bounds, 186 bs, 187 bwjoin, 188 byte-load, 189 c!, 189 c,, 189 c@, 190 ca+, 190 call-package, 47, 49, 191 catch, 193 cell+, 194 cells, 194 char+, 194 char-height, 139, 195 chars, 195 char-width, 139, 195 child, 195 close-package, 197 column#, 197 comp, 198 compile,, 199 count, 201 cpeek, 202 cpoke, 202 cr, 202 d-, 204 d+, 204 decode-int, 208 decode-phys, 208 decode-string, 208 default-colors, 140 default-font, 140, 209 delete-characters, 141, 210 delete-lines, 141, 211 delete-property, 211 depth, 211 device-name, 212 device-type, 213 diagnostic-mode?, 214 digit, 215 display-status, 216 draw-character, 141, 219 draw-logo, 141, 219

drop, 220 dup, 221 emit, 221 encode+, 222 encode-bytes, 222 encode-int, 222 encode-phys, 223 encode-string, 223 end0, 17, 223 end1, 224 erase-screen, 225 evaluate, 225 execute, 226 exit, 227 expect, 228 external-token, 228 fb1-blink-screen, 229 fb1-delete-characters, 229 fb1-delete-lines, 229 fb1-draw-character, 230 fb1-draw-logo, 230 fb1-erase-screen, 230 fb1-insert-characters, 230 fb1-insert-lines, 231 fb1-install, 231 fb1-invert-screen, 232 fb1-reset-screen, 232 fb1-slide-up, 232 fb1-toggle-cursor, 232 fb8-blink-screen, 233 fb8-delete-characters, 233 fb8-delete-lines, 233 fb8-draw-character, 141, 234 fb8-draw-logo, 234 fb8-erase-screen, 234 fb8-insert-characters, 234 fb8-insert-lines, 235 fb8-install, 140, 141, 235 fb8-invert-screen, 236 fb8-reset-screen, 236 fb8-toggle-cursor, 236 fcode-revision, 237 ferror, 238 fill, 239 find-method, 47, 49 to 51, 240 find-package, 47, 240

397

finish-device, 55, 241 fontbytes, 139, 242 frame-buffer-adr, 140, 243 free-mem, 244 free-virtual, 244 get-inherited-property, 244 get-msecs, 245 get-my-property, 245 get-package-property, 245 get-token, 246 here, 248 hold, 249 i, 249 ihandle>phandle, 250 insert-characters, 141, 251 insert-lines, 141, 252 instance, 45, 252 interpose, 253 inverse?, 253 inverse-screen?, 254 invert, 254 invert-screen, 141, 255 is-install, 139, 140, 255 is-remove, 139, 140, 142, 256 is-selftest, 139, 140, 142, 257 j, 257 key, 258 key?, 258 l!, 259 l,, 259 l@, 259 la+, 259 la1+, 260 lbflip, 260 lbflips, 260 lbsplit, 261 lcc, 261 left-parse-string, 55, 262 line#, 262 lpeek, 266 lpoke, 266 lshift, 267 lwflip, 267 lwflips, 267 lwsplit, 267 lxjoin, 267

mac-address, 268 map-low, 269 mask, 270 max, 270 memory-test-suite, 271 min, 271 mod, 271 model, 84, 272 move, 273 ms, 273 my-address, 11, 273 my-args, 55, 274 my-parent, 43, 274 my-self, 43, 44, 47, 274 my-space, 11, 275 my-unit, 57, 275 na+, 276 named-token, 277 negate, 277 new-device, 44, 277 new-token, 278 next-property, 278 nip, 278 noop, 279 off, 285 on, 286 open-package, 48, 56, 286 or, 288 over, 289 pack, 289 parse-2int, 290 peer, 291 pick, 292 property, 84, 294 r>, 295 r@, 295 rb!, 297 rb@, 297 reg, 298 reset-screen, 141, 301 rl!, 302 rl@, 302 roll, 303 -rot, 303 rot, 303 rshift, 303

398

Writing FCode Programs for PCI—August 1996

rw!, 303 rw@, 304 rx!, 304 rx@, 305 sbus-intr>cpu, 306 screen-height, 306 screen-width, 307 set-args, 56, 311 set-colors, 140 set-font, 139, 140, 312 set-token, 313 sign, 314 span, 315 start0, 315 start1, 17, 316 start2, 316 start4, 316 state, 317 suspend-fcode, 319 swap, 320 throw, 321 toggle-cursor, 141, 322 tuck, 324 type, 324 u#, 324 u#>, 325 u#s, 325 u., 325 u.r, 329 u/mod, 327 u<, 325 u<=, 325 u>, 326 u>=, 326 u2/, 326 um*, 326 um/mod, 327 unloop, 327 upc, 329 user-abort, 329 version1, 331 w!, 331 w,, 332 w@, 332 wa+, 332 wa1+, 333

wbflip, 333 wbflips, 333 wbsplit, 333 window-left, 141, 334 window-top, 141, 334 within, 334 wljoin, 335 wpeek, 335 wpoke, 335 x!, 337 x,, 336 x@, 336 xa+, 337 xa1+, 337 xbflip, 337 xbflips, 338 xbsplit, 338 xlflip, 338 xlflips, 338 xlsplit, 338 xor, 336, 338 xwflip, 339 xwflips, 339 xwsplit, 339 fcode-version2, 17 ﬁles opening, 225 find-device, 42, 46, 57, 240 find-method, 47, 49 to 51, 240 find-package, 47, 240 finish-device, 55, 241 fload, 14, 18, 241 fontbytes, 139 format FCode ROM image, 3 Forth compile state, 6 interpret state, 6 stack, 6 tokenizing, 5 words, 5 forth, 243 frame-buffer-adr, 140

399

G

get-inherited-property, 34 get-my-property, 34

L

left-parse-string, 55 linebytes, 140 ls, 34

H

h#, 14 headerless, 14, 21, 35, 247, 335 headers, 14, 21, 35, 247, 335 height, 140 hex, 14

M

map-in, 155 map-out, 156 mapping packages, 57 methods /deblocker, 59 /disk-label, 61 /obp-tftp, 58 calling other package methods, 49 executing, 47 FCode for accessing, 49 instance-speciﬁc, 46 package, 41 static, 46 model, 84 my-address, 11 my-args, 55 my-parent, 43 my-self, 43, 44, 47 my-space, 11 my-unit, 57

I

ihandle, 47 avoiding confusion with phandle, 49 initialized data, 45 insert-characters, 141 insert-lines, 141 install-console, 22 instance arguments, 55 creation, 42 package, 42 parameters, 55 instance, 45 instance chain, 43 instance, package, 41 instance-speciﬁc data, 45 methods, 46 interpret state, 6 interpreting FCode, 3, 32 to 33 invert-screen, 141 is-install, 139, 140 iso6429-1983-colors, 140 is-remove, 139, 140, 142 is-selftest, 139, 140, 142

N

"name", 3, 11 name of property, 4, 63 new-device, 44 notation stack comments, 9 not-last-image, 20 null modem cable, 27 nvedit commands, 281 $nvalias, 281 $nvunalias, 283 nvalias, 280

K

keyboard, 258

400

Writing FCode Programs for PCI—August 1996

nvquit, 282 nvrecover, 282 nvrun, 282 nvstore, 283 nvunalias, 283 NVRAM parameters setting, 21 nvramrc, 22, 24, 282

O

o#, 14 octal, 14 open, 53 Open Firmware command dev, 46 device-end, 46 open-dev, 26, 44 opening disk ﬁles, 225 $open-package, 44, 48 to 49, 56 open-package, 48, 56, 286 organizationally unique identiﬁer, 12 OUI, 12

P

package instance, 41 package methods close, 53, 197 draw-logo, 220 install-abort, 252 offset, 285 open, 53, 286 read, 297 read-blocks, 298 release, 300 remove-abort, 300 reset, 53, 301 restore, 301 ring-bell, 302 seek, 309 selftest, 53, 309 translate, 324 unmap, 328

write, 336 write-blocks, 336 package, deﬁnition, 41 /packages, 47, 57 /deblocker, 59, 204 /disk-label, 61, 215 /obp-tftp, 58 opening packages in, 48 packages accessing, 55 active, 42 addressing, 56 data, 42, 45 data deﬁnition, 54 FCodes for accessing, 48 instances, 42 mapping, 57 methods, 41, 52 properties, 41 (patch), 291 patch, 291 PCI conﬁguration address header, 1 conﬁguration registers, 1 device probing process, 3 expansion ROM, 1, 3 expansion ROM base address register, 1 PCI addressing, 156 pci-header, 19 pci-header-end, 19 pci-probe-list, 24 phandle, 47, 245 avoiding confusion with ihandle, 49 plug-in device drivers, 52 "power-consumption", 3 power-on banner, 22 probe-all, 22 probe-self, 155 probing sequence expansion bus, 23 modifying with NVRAM script, 24 programming style

401

FCode, 8 to 9 .properties, 34 properties "#address-cells", 11, 69, 171 "#size-cells", 11, 69, 314 "address", 69, 171 "address-bits", 69, 171 "alternate-reg", 70, 174 "assigned-addresses", 70 "available", 71, 176 "big-endian-aperture", 71 "bootargs", 186 "bootpath", 186 "bus-range", 71 "character-set", 71, 195 "class-code", 71 "compatible", 72, 198 "depth", 72, 211 "device_type", 72, 213 "device-id", 72 "devsel-speed", 73 "existing", 226 "fast-back-to-back", 73 "has-fcode", 73 "height", 73, 248 "interrupts", 73, 253 "intr", 253 "linebytes", 74, 263 "little-endian-aperture", 74 "local-mac-address", 74, 265 "mac-address", 75, 268 "max-frame-size", 76, 270 "max-latency", 76 "min-grant", 76 "model", 76, 272 "name", 3, 11, 77, 276 "page-size", 78, 289 "power-consumption", 3, 78 "ranges", 78, 296 "reg", 3, 11, 81, 275, 299 "relative-addressing", 300 "revision-id", 83 "slot-names", 83 "status", 83, 317 "stdin", 318

"stdout", 318 "translations", 84 "vendor-id", 84 "width", 84, 333 address, 140 block or byte device, 101 depth, 140 display device, 65, 140 height, 140 iso6429-1983-colors, 140 linebytes, 140 memory device, 66 memory-mapped buses, 156 to 158 modifying from User Interface, 57 network device, 66, 122 packages, 41 parent node, 67 PCI child node, 68 PCI parent node, 67 serial device, 131 width, 140 property creation, 64, 84 decoding, 86 deﬁnition, 63 encoding, 85 modiﬁcation, 84 property name, 4, 63 property value, 4, 63, 85 property value array formats, 63 retrieval, 85 standard names, 65 property, 84 property list, 3 creation, 3 pwd, 34

R

rb!, 297 rb@, 297 "reg", 3, 11, 81, 275, 298 reset, 53 reset-screen, 141

402

Writing FCode Programs for PCI—August 1996

resume, 206 reverse polish notation, 5 rl!, 302 rl@, 302 rw!, 303 rw@, 304 rx!, 304 rx@, 305

S

SBus addressing, 157 screen, 306 script, 22, 24 see, 34, 36 select, 26, 37, 309 select-dev, 26, 35 to 37, 44, 309 selftest, 53 ;, 6 serial device, 131 set-args, 26, 56 set-colors, 140 set-font, 139, 140 set-rev-level, 20 set-vpd-offset, 20 show-devs, 34 size FCode ROM image, 3 "#size-cells", 11, 69 source, 315 source format FCode, 5 space-bar, debugger command, 206 stack, 6 diagram, 6 operation, 6 stack comment and colon deﬁnition, 7 stack comments, 9 notation, 9 standard methods decode-unit, 46

standard support packages, 57 start1, 17 state, 317 state-valid, 317 static data, 45 static methods, 46 stdin, 318 stdout, 318 support package, 41 support packages standard support packages, 41 suppress-banner, 22, 319 sync, 321

T

test, 321 TFTP support, 58 toggle-cursor, 141]tokenizer, 19 tokenizer description, 18 directives, 14 macros, 13 output, 18 tokenizer directives]tokenizer, 19 .(, 163 [char], 195 \, 167]tokenizer, 19, 323 alias, 173 char, 194 decimal, 208 emit-byte, 19, 221 external, 21, 35, 228, 335 false, 229 fload, 18, 241 headerless, 21, 35, 247, 335 headers, 21, 35, 247, 335 hex, 248 not-last-image, 20, 279 octal, 284 offset16, 286

403

pci-header, 19, 292 pci-header-end, 19, 292 set-rev-level, 20, 312 set-vpd-offset, 20, 313 tokenizer[, 19, 323 tokenizer macros ", 160 (.), 162 (u.), 326 .", 163 .d, 204 .h, 247 /c*, 190 /n*, 276 :, 164 ;, 164 <<, 165 >>, 166 ?, 166 ?do, 219 ?leave, 261 ['], 47, 166 1-, 168 1+, 168 2-, 169 2+, 169 3drop, 220 3dup, 221 accept, 171 again, 172 allot, 174 ascii, 175 begin, 180 blank, 182 buffer:, 45, 187 ca1+, 190 carret, 192 case, 192 constant, 201 control, 201 create, 203 d#, 203 decimal, 208 decode-bytes, 208 defer, 45, 209

do, 218 else, 221 endcase, 224 endof, 224 erase, 225 eval, 225 fcode-end, 17 fcode-version1, 237 fcode-version2, 17, 237 field, 238 h#, 247 if, 250 leave, 261 linefeed, 263 loop, 265 na1+, 276 not, 279 o#, 283 of, 285 repeat, 300 s", 305 s., 305 space, 315 spaces, 315 struct, 319 then, 321 to, 322 true, 324 until, 328 value, 45, 330 variable, 45, 331 while, 333 tokenizer[, 14, 19 tokenizing, 5

U

unit-address, 275 unselect-dev, 27, 37, 328 User Interface $create, 203 $sift, 313 (patch), 291 (see), 309 */, 162

404

Writing FCode Programs for PCI—August 1996

*/mod, 272 .adr, 172 .calls, 192 .properties, 294 >in, 250 >number, 280 [, 166 [char], 195 [compile], 199], 167 2constant, 201 abort", 170 align, 173 apply, 51, 175 assign-addresses, 175 banner, 176 begin-package, 26, 32, 56, 180 boot, 185 browsing device nodes, 34 .properties, 34 dev, 34, 212 device-end, 26, 34, 212 get-inheritedproperty, 34 get-my-property, 34 ls, 34 pwd, 34, 295 see, 34, 308 show-devs, 34 words, 34, 35 byte-load, 33 char, 194 clear, 196 close-dev, 197 command line editor, 24 to 26 optional command completion commands, 26 optional commands, 24 optional history commands, 25 required commands, 24 compile, 199 dev, 42, 57 devalias, 212 device-end, 57 dl, 27 to 31, 216 does>, 219

end0, 223 end-package, 26, 33, 224 environment?, 225 even, 226 execute-device-method, 49, 51 to 52, 226 exit?, 227 FCode download/test commands, 26 find, 239 find-device, 42, 46, 57, 240 fm/mod, 242 help, 248 immediate, 250 init-program, 250 input, 251 install-console, 252 interpreting FCode, 32 to 33 io, 255 literal, 263 load, 263 ls, 267 m*, 267 make-properties, 268 modifying properties, 57 noshowstack, 279 open-dev, 44, 286 output, 288 parse, 290 parse-word, 290 password, 290 patch, 291 postpone, 293 probe-all, 293 quit, 295 rb!, 297 rb@, 297 recurse, 298 recursive, 298 reset-all, 301 rl!, 302 rl@, 303 rw!, 304 rw@, 304 rx!, 304 rx@, 305 s", 305

405

s>d, 307 show-devs, 313 showstack, 313 sifting, 314 sm/rem, 315 source, 315 state-valid, 317 status, 317 stdin, 318 stdout, 318 sync, 321 test, 321 test-all, 321 testing a device driver, 35 to 39 begin-select, 27, 38, 181 begin-select-dev, 26, 38, 181 execute-devicemethod, 26, 38, 226 patch, 37 see, 36, 308 select, 26, 37, 309 select-dev, 26, 35, 309 unselect-dev, 27, 37, 328 -trailing, 324 u*, 325 unaligned-l!, 327 unaligned-l@, 327 unaligned-w!, 327 unaligned-w@, 327 word, 335 words, 335 using Windows Terminal, 27

Windows Terminal using with dl, 27 window-top, 141 word, 335 words FCode, 5 Forth, 5 words, 34, 35

V

value of property, 4, 63, 85 value, 45 variable, 45 VMEBus addressing, 157

W

width, 140 window-left, 141

406

Writing FCode Programs for PCI—August 1996

Sponsor Documents

Recommended

No recommend documents

×
Report

Your name

Email

Reason

Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Captcha

Close
Save changes

Share what you know and love through presentations, infographics, documents and more

Useful Links

	About Us
	Privacy Policy
	Terms of Service
	Help
	Copyright
	Contact Us

Get Updates

Subscribe to our newsletter and stay up to date with the latest updates and documents!

Social Network

	
	
	
	
	

	2015 - 2017 © All Rights Reserved.

	Login
	Register

 Facebook
 Google
 Twitter

Or use your account on DocShare.tips

E-mail

Password

Hide

Remember me

Forgot your password?

 Facebook
 Google
 Twitter

Or register your new account on DocShare.tips

Username

E-mail

Password

Hide

I agree to the Terms

Lost your password? Please enter your email address. You will receive a link to create a new password.

E-mail

Back to log-in

Close

