Suite 115

480 San Antonio Road
Mountain View, CA 94040-1218
US.A.

Part No.: 000-0000-0000005-02
Revision C, August 1996

Writing FCode Programsfor PCI

AnIntroductionto FCode Programming
Fully Compliantwith IEEE Standard 1275-1994

Copyright 0 1994-1996 FirmWorks
Suite 115, 480 San Antonio Road, Mountain View, California 94040-1218 U.S.A.

Copyright 0 1993 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this document may be reproduced in any form by any means
without prior written authorization of FirmWorks and its licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending
applications.

TRADEMARKS
Apple is aregistered trademark and MPW and MPW 411 are trademarks of Apple Computer Inc.

Ethernet is a registered trademark of Xerox Corporation.

IBM is a registered trademark and PowerPC, PowerPC 601, PowerPC 603, PowerPC 604, PowerPC 620 are
trademarks of International Business Machines Corporation.

Intel386, Intel486, 1486 and Pentium are trademarks of Intel Corporation.
MS-DOS is a registered trademark and Windows is a trademark of Microsoft Corporation.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the SMCC logo, and OpenBoot are
trademarks or registered trademarks of Sun Microsystems, Inc.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.
All other product names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. FIRMWORKS MAY MAKE IMPROVEMENTS
AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION
AT ANY TIME.

Preface . . .

Chapter 1:

Chapter 2:

Chapter 3:

Contents

.. XV
PClCardsand FCode. e 1
The Purpose of FCode. 1
Locatingthe FCode Program 1
FCode Program Functions 2
FCode ROMFormat. e e e e e 3
Interpreting FCode. 3
Device ldentification. e 3
Creating and Executing FCode Definitions 4
Elements of FCode Programming. 5
Colon Definitions 6
Stack Operations 6
Data TYpes o e 7
Additional Information 7
Programming Style 8

CommentingCode 8
Coding Style 8
Short Definitions 8
Stack Comments 9
A Minimum FCode Program 10
FCode Classes v v v i i 12
Primitive FCode Functions 13
System FCode Functions 14
Interface FCode Functions 14
Local FCode Functions 15
Testing FCode Programs 17
FCode Source. e 17
Tokenizing FCode SOUICe. o e 18
FCodeBinary Format e 18
PClExpansionROM Header 19
FirmWorks pci-header / pci-header-end Tokenizer Extensions 19
Testing FCode Programs on the Target Machine. 20
Configuring the Target Machine, 21
Setting Appropriate Configuration Parameters 21

“The Script” and the Open Firmware Startup Sequence 22

Modifying the Expansion Bus Probe Sequence 23
Gettingtothe UserInterface 24
Using the Command Line Editor of the User Interface 24
Using the User Interface to Test FCode Programs 26
Usingdl toLoad FromaSerial Port 27
Downloading Multiple Files withdl andfload 28
Using the User Interface to Interpret an FCode Program 32
Using the User Interface to Browse a DeviceNode 34
Using the User Interface to Testa Device Driver. 35
Device Node Methods 35
Testing FCode Programs in Source Form. 39
Producingan FCode ROM e 40
Exercising an Installed FCode ROM. 40
Chapter 4: Packages 41
Packagesand INStances 41
Package Data 45
Static and Instance-specific Methods L. 46
Defining Methods, Propertiesand Data 46
Execution Tokens. 47
Intra-package CallingMethods 47
Accessing Other Packages 47
Inter-package CallingMethods 49
execute-device-method andapply 51
Plug-in Device Drivers 52
Common Package Methods 52
Basic Methods 53
Supplemental Methods 53
Package Data Definitions. 54
Instance Arguments and Parameters oo 55
Package AAresses o 56
Package Mappings 57
Modifying Package Properties 57
Standard Support Packages 57
TFTP Booting SupportPackage 58
Deblocker SupportPackage o 59
Disk-Label Support Package 61
Chapter 5: Properties 63
Standard FCode Properties. 65
Standard Property Names 65
Display Device Properties 65
Network Device Properties 66
Memory Device Properties 66
MMU Properties o oo 66
General Properties For Parent Nodes 67
Properties For PCl Parent Nodes i ittt 67
Propertiesfor PCI Child Nodes 68
Detailed Descriptions of Standard Properties 69
Manipulating Properties 84
Property Creation and Modification 84
Property Values 85
Property Encoding 85

iv Writing FCode Programs for PCI

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

Chapter 10:

Property Retrieval 85

Property Decoding 86
Property-SpecificFCodes 87
FCode Basic Concepts o o i i ittt 89
Parent-Relative Addressing. 89
PCI Configuration Space e 90

PCI Configuration Space Header 91
Open Firmware Memory Types i 93

System Memory 93

Scratch Buffer 94

DMA MEMOry 94

Device MemoOry 96
Blockand Byte Devices. o o 99
Block Devices. 99
Byte DeVICeS o o 99
Required Methods 100
Required Properties 101
Device Driver Examples. e 102

Simple Block Device Driver 102

Extended Block Device Driver 103

Complete Block and Byte Device Driver 109
Network Devices 121
Required Methods 121
Required Device Properties. 122
Optional Device Properties 122
network Device DriverIssues. oo oo 122

write BufferFormat 122

read Buffer Format 124

Use of DMA e 124

selftest . .. 124
Device Driver Examples. 124

Simple Bootable Network Device Example 124
Serial DeVICES 131
Required Methods 131
Required Properties 131
Device Driver Examples. 132

Simple Serial FCode Program 132

Complete Serial FCode Program 132
Display Devices e 139
Required Methods 139
Required Properties 140
Structure of adisplay DeviceDriver 140

Probe Time Actions. 140

is-install Actions 140

is-remove ACtions 142

is-selftest ACtioNs 142
display Device Driver ISSues. 142

16-Color Text Extension Recommended Practice 142

8-Bit Graphics Extension 144

Use of Legacy VGA Addressing e 145

Device Driver Example 145

Generic VGA Display Device Driver 145

Chapter 11: Memory-Mapped BUSES 153
Required Methods. 153

PCIBUS AAIessSiNg. o o 156

PCl Required Properties 156

SBUS ADAIessing. 157

SBus Required Properties 157

VMEBUS AAressing o 157

VMEBuUSs Required Properties 158

Chapter 12: Open Firmware Dictionary 159
Appendix A: FCode Reference 341
FCode Primitives 341

FCodesby Function. e 342
FCodesbyByteValue. e 361

FCodesby Name. e 372

AppendixB: Coding Style. 385
Typographic Conventions 385

Useof Spaces. 385

if...else...then 386

do...Ioop 386
begin...while...repeat 387
begin...until...again 387

Block Comments. 387

Stack Comments. 388

Return Stack Comments 388

Numbers 388

Optimizations 389

Case Insensitivity 389
INdeX 391
Vi Writing FCode Programs for PCI

Table A

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35

Typographic Conventions XVii
Forth Data Type Definitions 7
Stack Item Notation 9
FCode Tokenizer Directives 13
FCodeBinary Format 18
FCode Header Format. 18
System Start-up Control Primitives 22
Required Command Line Editor Keystroke Commands 24
Optional Command Line Editor Keystroke Commands. 24
Optional Command Line History Keystroke Commands. 25
Optional Command Completion Keystroke Commands 26
File Download/Execute-related User Interface Commands 26
FirmWorks/Sun File Download/Execute-related User Interface Extensions. 26
Commands for Browsing the Device Tree. o v i i i it 34
Package Access FCOdes o o i i i 48
Manipulating phandles andihandles 49
Method-Access Words. 49
TFTP Package Methods 58
Deblocker Package Methods 59
Disk Label Package Methods 61
Standard Device TYPES o o v i 72
"interrupts" Property ValueEncoding 74
Child-Parent Address Relationships for a PCl Node in a PPCRP Machine 80
"status" Property Values. 83
Property-specificFCodes 87
Required Properties of Block and Byte Devices 101
Required Network Device Properties 122
Optional Network Device Properties i it 122
Serial Driver Required Properties 131
Required Display Device Properties. 140
16 Color Text Extension Color Assignments 143
Required PCI Properties. o e 156
Required SBUS Properties. o v v i i i 157
Required VMEbus Properties. 158
Escape Sequences in Text Strings. 160
“Step” Mode Commands for the Source-Level Debugger. 206

Vii

Table 36 FirmWorks/Sun “Step” Mode Extensions 206
Table 37 NVRAM Script Editor Keystroke Commands 281
Table 38 security-mode Settings e 308
Table 39 "status" Property Value Descriptions 317
Table 40 Stack Manipulation 342
Table 41 Single-Precision Arithmetic Operations., 342
Table 42 Bitwise Logical Operations. e 343
Table 43 Double Number Arithmetic Operations 343
Table 44 MEMOIrY ACCESS o o e e e e e e e e e e e e 343
Table 45 64-Bit Memory ACCESS. o o e e 344
Table 46 ATOMIC ACCESS . . . o o o o e e e e e 345
Table 47 64-Bit ATOMIC ACCESS« o 345
Table 48 Data Exception TeStS o o oo 345
Table 49 Comparison Operations 345
Table 50 TextINput. o o 346
Table 51 ASCIIConstants 346
Table 52 NumericInput 346
Table 53 Numeric Primitives 347
Table 54 Numeric Output. 347
Table 55 General-purpose Output 348
Table 56 Formatted Output. e 348
Table 57 begin Loops. 348
Table 58 Conditionals 348
Table 59 case Statements. 348
Table 60 do LoOpS 349
Table 61 Control Words 349
Table 62 StHiNGS. e 349
Table 63 Defining Words e 350
Table 64 Dictionary Compilation. 350
Table 65 64-Bit Dictionary Compilation 350
Table 66 Dictionary Search e 351
Table 67 Address Arithmetic 351
Table 68 64-Bit Address Arithmetic 351
Table 69 Data Type CONVErsSioN o o v i ittt e e e e e e 352
Table 70 64-Bit Data Type CONVErSiON. 352
Table 71 Memory Buffers Allocation. 352
Table 72 Miscellaneous Operators o v v v it 353
Table 73 Internal Operators, (invalid for programtext) 353
Table 74 Memory Allocation e 354
Table 75 Properties. 355
Table 76 Commmonly-used Properties 355
Table 77 System Version Information 356
Table 78 Device Node Creation.o i i i ittt 356
Table 79 Self-test Utility Routines e 356
Table 80 Time Utilities. o 356
Table 81 Machine-specific Support. 356
Table 82 Terminal Emulator Interface o 356
Table 83 User-set Terminal Emulator State VValues. 357
Table 84 Terminal Emulator-set Terminal Emulator State Values 357
Table 85 Display Device Low-level Interface defer Words 357
Table 86 Frame Buffer Parameter Values*. 357
Table 87 Font Operators. e 358
Table 88 One-bit Framebuffer Utilities. 358
Table 89 Eight-bit Framebuffer Utilities., 359
viii Writing FCode Programs for PCI

Table 90
Table 91
Table 92
Table 93
Table 94
Table 95
Table 96
Table 97

Package SUPpOrt o 359
AsSyNnchronous SUPPOrt 360
Miscellaneous Operations. 360
Interpretation. 360
ErrorHandling. e 360
FCodesbyByteValue. e 361
FCodesby Name. e 372
Forth Optimizations 389

Writing FCode Programs for PCI

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Figures

PClExpansionROMformat 2
Relationship of Package to Instance Record. 42
An Instance Chain for /pcifframus 43
An Instance Chain for /pci/framus with obp-tftp Support. 45
PCI Configuration Space Header Type O0h. 91
Hypothetical System with Plug-in PeripheralCard 94
Sample Device Tree o o 102
write Method Input Buffer Format. 0 123
Network Packet Format. 123

Xi

Xii

Preface

This manual, Writing FCode Programs for PCI, is derived from the Sun Microsystems
manual Writing FCode Programs with adaptations specific to IEEE Standard 1275-1994
and to PCI FCode drivers.

Who Should Use This Book

This manual is written for designers of PCI interface cards and other devices that use
the FCode programming language. It assumes that you have some familiarity with PCI
card design requirements and Forth programming.

This manual is oriented toward those developing FCode applications for PCI
peripherals. However, most of the material applies to any FCode driver. The FCode
language is defined by IEEE Standard 1275-1994 Standard for Boot Firmware (hereafter
referred to as Open Firmware). The specifics of FCode for the PCI bus are defined in the
PCI Bus Binding to IEEE Standard 1275-1994 1.6 (or later).

This manual also assumes that you have read and understood the PCI Local Bus
Specification, Revision 2.1 (or later).

How This Book Is Organized

Chapter 1, “PCI Cards and FCode”, introduces the basic relationships between
FCode device drivers and the hardware that they control.

Chapter 2, “Elements of FCode Programming”, introduces the basic elements of
FCode, stack notation, and programming style.

Chapter 3, “Testing FCode Programs”, describes the process of producing FCode
programs, from source file to testing working programs.

Chapter 4, “Packages”, describes the basic units of FCode program function.
Chapter 5, “Properties”, describes properties, which define how an FCode device
driver program “sees” the hardware that it controls.

Chapter 6, “FCode Basic Concepts”, discusses concepts that are common to most or
all FCode drivers.

Chapter 7, “Block and Byte Devices” through Chapter 11, “Memory-Mapped Buses”
describe currently-defined device types, programming requirements, and give some
examples of device drivers for the various device types.

Chapter 12, “Open Firmware Dictionary”, describes currently-defined FCode words,
their functions and use, with brief programming examples.

Appendix A, “FCode Reference”, lists all currently-defined Fcode words according
to functional grouping, name, and byte value.

xiii

m Appendix B, “Coding Style”, contains an Open Firmware coding guideline.

Related Books and Specifications

This manual does not pretend to cover everything you need to know to write FCode
drivers for PCI cards. You’ll have to read some other books, too.

For information about Open Firmware, see the following manuals and Internet
resources:

m |EEE Standard 1275-1994 Standard for Boot (Initialization Configuration) Firmware, Core
Requirements and Practices (IEEE Order Number SH17327. 800-678-4333. US$87.)

m Open Firmware “binding” documents are available by anonymous FTP from
ftp://playground.sun.com/pub/p1275/bindings. Among the bindings that may be
of interest is:
= PCI Bus Binding to IEEE Standard 1275-1994 1.6 (or later).

m Open Firmware “recommended practice” documents are also available by
anonymous FTP from ftp://playground.sun.com/pub/p1275/practice. Among the
recommended practice documents that may be of interest are:
= 16-color Text Extension 1.2 (or later).
= 8-bit Graphics Extension 1.2 (or later).

m Open Firmware Command Reference, FirmWorks PN 000-0000-0000006-02. US$50 plus
shipping, handling and applicable sales tax.

Since Open Firmware is a living technology that is constantly being enhanced by the
Open Firmware Working Group, you may want to monitor their FTP site and/or Web
page at http://playground.sun.com/pub/p1275 for changes and additions to Open
Firmware documentation. Working Group meetings are open to all interested parties.
See the Working Group’s Web page for details.

For information about PCI, see the following manual:

m PCI Local Bus Specification 2.1 (or later). Available from the PCI Special Interest
Group, Box 14070, Portland, OR 97214, 800-433-5177, 503-234-6762 (fax)
PCI_SIG@ccm.jf.intel.com. US$25 plus shipping.

For more information about Forth and Forth programming, see:

Programming Languages - Forth, American National Standards Institute, Inc.

Forth: A Text and Reference, Mahlon G. Kelly and Nicholas Spies. Prentice Hall, 1986.
Starting FORTH, Leo Brody. FORTH, Inc., second edition, 1987.

Forth: The New Model, Jack Woehr. M & T Books, 1992.

Information about FirmWorks publications can be obtained with an email request to
info@firmworks.com, from ftp://ftp.firmworks.com/pub/open_firmware/literature or
from FirmWorks World Wide Web page at http://www.firmworks.com.

Development Tools

FirmWorks has available PCI FCode Program developer tools that include an Open
Firmware FCode tokenizer and a BIOS compressor. In many cases, the compressor
makes it possible to include an FCode driver with an existing BIOS image in a card’s
existing PCI Expansion ROM without increasing the size of the Expansion ROM.

Xiv

Writing FCode Programs for PCI

If you don’t have the PCI Developer’s Kit and would like more information about it,
contact FirmWorks at info@firmworks.com.

What Typographic Changes and Symbols Mean
The following table describes the typeface changes and symbols used in this book.

Table A Typographic Conventions

Typeface or

Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories; Edit your autoexec.bat file.
on-screen computer output Use dir to list all files.

AaBbCc123 What you type, contrasted with on-screen C:\> dir
computer output

AaBbCc123 Command-line placeholder: To delete a file, type del filename.
replace with a real name or value

AaBbCcl123 Book titles, new words or terms, or words to be Read Chapter 6 in User’s Guide.
emphasized These are called class options.

Code samples are included in boxes and may display the following:

C:\> MS-DOS prompt C:\>

ok FirmWorks Open Firmware command prompt ok

0> Apple Open Firmware command prompt 0>

% UNIX C shell prompt system%
$ UNIX Bourne and Korn shell prompt system$
Superuser prompt, all shells system#

This manual follows a number of typographic conventions:

m Keys are indicated by their name. For example:
Press the Return key.

= When you see two key names separated by a dash, press and hold the first key
down, then press the second key. For example:

To enter Control-C, press and hold Control, then press C, then release both keys.

Although the keyname (i.e. C in the preceding example) is shown in uppercase, the
actual keystroke may be lowercase.

m When you see two key names separated by a space, press and release the first key
and then press and release the second key. For example:

To enter Escape B, press and release Escape, then press and release B.

Although the keyname (i.e. B in the preceding example) is shown in uppercase, the
actual keystroke may be lowercase.

= In acommand line, square brackets indicate an optional entry and italics indicate an
argument that you must replace with the appropriate text. For example:

cd [directory]

XV

m The Open Firmware system prompts and responses shown in this manual are based
upon those of the FirmWorks implementation. Other Open Firmware
implementations may format prompts and responses differently.

m When a table is too large to fit on a single page, the row separator is omitted from
the bottom of the portion of the table that fits on the first page. This is to alert you
to the fact that the table continues on the following page.

Similarly, the title line of the portion of the table on the second and succeeding
pages contain the notation (Continued) to alert you to the fact that the table
continues from the preceding page.

For example, the first portion of such a split table would look like:

Table 1 Diagnostic Test Commands

Command Description
probe-scsi Identify devices attached to a SCSI bus.
probe-scsi-all [device-path] | Perform probe-scsi on all SCSI buses installed in the system below the
specified device tree node. (If device-path is absent, the root node is used.)

while the second portion of the same table would look like:

Table 1 Diagnostic Test Commands (Continued)

Command Description
test device-specifier Execute the specified device’s self-test method. For example:
test floppy - test the floppy drive, if installed
test /memory - test number of megabytes specified in the selftest-#megs
NVRAM parameter; or test all of memory if diag-switch? is true

test net - test the network connection

test-all [device-specifier] Test all devices (that have a built-in self-test method) below the specified
device tree node. (If device-specifier is absent, the root node is used.)

Were this table contained within a single page, it would look like:

Table 1 Diagnostic Test Commands

Command Description
probe-scsi Identify devices attached to a SCSI bus.
probe-scsi-all [device-path] | Perform probe-scsi on all SCSI buses installed in the system below the

specified device tree node. (If device-path is absent, the root node is used.)

test device-specifier Execute the specified device’s self-test method. For example:

test floppy - test the floppy drive, if installed

test /memory - test number of megabytes specified in the selftest-#megs
NVRAM parameter; or test all of memory if diag-switch? is true

test net - test the network connection

test-all [device-specifier] Test all devices (that have a built-in self-test method) below the specified
device tree node. (If device-specifier is absent, the root node is used.)

XVi Writing FCode Programs for PCI

1

PCIl Cards and FCode

The Purpose of FCode

Each PCI card identifies itself with a set of up to 64, 32-bit “configuration registers”.
The purpose of these registers is to provide a standard set of descriptive information in
a known place. The configuration registers contain data identifying the type of card, its
manufacturer and various other characteristics of the card. In addition, a PCI card can
have an “Expansion ROM” containing additional information such as a BIOS extension
for the card or an FCode program.

A BIOS extension provides a driver for the card to be used when the card is installed in
a system that uses an Intel x86 compatible processor.

An FCode program provides, at a minimum, additional descriptive information
beyond that provided by the configuration registers and can provide a processor-
independent boot-time driver for use in Open Firmware-based systems. An FCode
program can also contain (or can help the operating system to locate) processor-specific
and operating system-specific OS drivers.

Locating the FCode Program

The first 16 PCI configuration registers are collectively known as the configuration space
header. Included within this header is the Expansion ROM base address register. If Bit 0 of
this register is reset, the PCI card has no expansion ROM. If Bit 0 is set, the PCI card
has one or more Expansion ROMs whose base address is specified by Bits 11 - 31 of the
register. The ROM(s) can contain several different images to accommodate different
machine and processor architectures.

As shown in Figure 1, each such ROM image has a header record and a PCI Data
Structure that together describe the image. The header record is located at the start of
the image and contains a pointer to the PCI Data Structure. The PCI Data Structure, in
turn, contains a number of fields including:

= A code type field
This field identifies the type of code contained within the image

= An image length field
This field defines the length of the image in integral multiples of 512 bytes.

Header
Image O
PCI Data Structure
Image 1
* end of code
Image N
512 byte boundary

Figure 1 PCI Expansion ROM format

= An indicator field
This field defines whether there are additional images located after this image.

FCode Program Functions

If the code type field has a value of 1, the ROM contains an FCode Program that, at a
minimum, identifies the device and its characteristics.

An FCode Program may also include an optional software driver that lets you use the
card as a boot device or a display device during booting. The software driver may also
include diagnostic selftest code.

In addition to designing hardware, the process of developing PCI devices must include
the writing, testing, and installing of an FCode driver for the device if it is to be used
as a boot device in an Open Firmware-based system. These drivers, if present, serve
three functions:

m To exercise the device during development, and to verify its functionality.

m To provide the necessary driver to be used by the system boot ROM during power-
up.

m To provide device configuration information.

In practice, these functions overlap substantially. The same code needed by the system
boot ROM usually serves to significantly test the device as well. The ROM code is used
before and during the boot sequence. After the boot sequence finishes, and while not
using the Open Firmware User Interface, most PCI devices are controlled with
operating system device drivers.

Even if the PCI device is not a boot device, there are still advantages to providing a
simple FCode driver that describes the characteristics of the device. Some operating
systems (e.g. MacOS) are able to use this descriptive information to automatically
attach operating system drivers to the device.

FCode Programs are written in the FCode programming language, which is similar to
ANS Forth. FCode is described in more detail in Chapter 2 “Elements of FCode
Programming”.

2 Writing FCode Programs for PCI

FCode ROM Format

An FCode ROM image is located within the PCI Expansion ROM on a 512 byte
boundary. Its size typically ranges from 60 bytes (for a simple card that identifies itself
but does not need a driver) to 1-4K bytes (for a card with a simple boot driver) to 10K
bytes (for a device with a complex boot driver). It is good practice to make FCode boot
drivers as short as is practical.

An FCode ROM image for PCI is organized as follows:

m Header (26 bytes: consisting of ROM signature and a pointer to the associated PCI
Data Structure)
PCI Data Structure (24 bytes: See the PCI Local Bus Specification for details)
Body (FCode program; 0 or more bytes).
End Token (either endO, a zero byte, or end1, an alternative all 1’s byte).

Interpreting FCode

For each PCI slot containing a card, the following process is followed during boot-up
to find and interpret any FCode programs:

m Scan all slots in numerical order.
For each slot read the header type field.
= If the header field type indicates a multi-function device, perform the following
sequence for each function that is present.
= Otherwise, perform the following sequence for the card’s Function 0.

m Create a number of properties from the information contained in the PCI
configuration registers. (See the PCI Bus Binding to IEEE Standard 1275-1994 for the
details.)

m Determine whether the device contains an expansion ROM and, if so, whether that
ROM contains an image containing an FCode program.

If an FCode program is present, copy the FCode program into RAM and evaluate it

If the function does not have an FCode program;

= Create the "reg" and "name" properties from the information in the PCI
configuration registers.

= If possible, create the "power-consumption” property from the state of the
PRSNT1# and PRSNT2# connector.

m Disable fixed address response by clearing the PCI configuration address header’s
command register.

m Enable Memory Space response by setting Bit 1 in the command register.

Device Identification

An FCode ROM must identify its device. This identification must include, at a
minimum, the device name. Identification information may include additional
characteristics of the device for the benefit of the operating system and the CPU boot
ROM.

The CPU’s FCode interpreter stores each device’s identification information in a device
tree that has a node for each device. Each device node has a property list that identifies
and describes the device. The property list is created as a result of interpreting the
program in the FCode ROM.

PCI Cards and FCode 3

Each property has a name and a value. The name is a string and the value is an array
of bytes, which may encode strings, numbers, and various other data types.

See Chapter 5 “Properties” for more information.

Creating and Executing FCode Definitions

Many FCode programs create executable routines, called methods, that typically read
from and write to device locations to control device functions. These definitions are
also stored in the device tree node for that device.

Once defined, these routines may be executed under any of the following
circumstances:

m Interactively through the Open Firmware User Interface’s ok prompt (for selftest or
other purposes).

m By the Open Firmware Client Interface (for using this boot or display during system
start-up).

= Automatically by the Open Firmware Device Interface during FCode interpretation
(for power-on initialization or other purposes).

4 Writing FCode Programs for PCI

2

Elements of FCode Programming

FCode is a computer programming language defined by IEEE Standard 1275-1994.
FCode is semantically similar to ANS Forth, but is encoded as a sequence of binary
byte codes representing a defined set of Forth definitions.

FCode has these characteristics:

The source format is machine and system independent.

The binary format (FCode) is machine, system, and position independent.
The binary format is compact.

The binary format can be interpreted easily and efficiently.

Programs are easy to develop and debug.

The source format can easily be translated to binary format.

The binary format can be translated back to source format.

Forth commands are called words, and are roughly analogous to procedures in other
languages. Unlike other languages, such as C, which have operators, syntactic
characters and procedures, in Forth every word is a procedure.

A Forth word is named by a sequence of between one to 31 printable characters. A
Forth program is written as a sequence of Forth word names separated from one
another by one or more “whitespace” characters (i.e. spaces, tabs or line terminators).

Forth uses a left-to-right reverse Polish notation, like some scientific calculators. The
basic structure of Forth is: do this, now do that, now do something else, and so on.

New Forth words are defined as sequences of previously existing words. Subsequently,
new words may be used to create still more words.

FCode is a byte-coded translation of a Forth program. Translating Forth source code to
FCode involves replacing the Forth word names (stored as text strings) with their
equivalent FCode numbers. The tokenized FCode takes up less space in ROM than the
text form of the Forth program from which it was derived, and can be interpreted more
easily and rapidly than the text form.

For purposes of this manual, the term FCode indicates both binary-coded FCode and
the Forth programs written as ASCII text files for later conversion to binary-coded
FCode.

Except where a distinction between the two forms is explicitly stated, the use of FCode
in this manual can be assumed to apply equally to both FCode and Forth.

Colon Definitions

Three concepts are critical to understanding FCode (or Forth):

m A colon definition creates a new word with the same behavior of a sequence of
existing words. A colon definition begins with a colon and ends with a semicolon.

m Once a new word has been created it is immediately available, either for direct
execution or for use in future colon definitions.

m Most parameter passing is done through a pushdown, last-in, first-out stack.

Normally, the action associated with an FCode Function is performed when the FCode
Function is encountered. This is called interpret state. However, you can switch from
interpret state to compile state.

In interpret state, FCode Functions are executed as they are encountered. Interpret
state operates until encountering a “:”. The word “:” does the following:

m Allocates an FCode Number and associates it with the name immediately following
the colon.
m Switches to compile state.

In compile state, FCodes are saved for later execution, rather than being executed
immediately. The sequence thus compiled is installed in the action table as a new
word, and can be later used in the same way as if it were a built-in word.

Compile state continues until a “;” is read. The word “;” does the following:

m Compiles an end-of-procedure FCode word
m Switches to interpret state

After compilation, the newly-assigned FCode word can be either interpreted or
compiled as part of yet another new word.

If you define a new word having the same spelling as an existing word, the new
definition supersedes the older one(s), but only for subsequent usages of that word.

Here’s an example of a colon definition, defining a new FCode word dac! :

: dac! (data offset--) dac + rw!;

Stack Operations

Each FCode word is specified by its effect on the stack and any side effects, such as
accessing memory. Most FCode words affect only the stack, by removing arguments
from the stack, performing some operation on them, and putting the result(s) back on
the stack.

To aid understanding, conventional coding style requires that a stack diagram of the
form (--) appear on the first line of every definition of a Forth word. The stack
diagram specifies what the execution of the word does to the stack.

6 Writing FCode Programs for PCI

Entries to the left of -- represent those stack items that the word removes from the
stack and uses during its operation. The rightmost of these items is on top of the stack,
with any preceding items beneath it. In other words, arguments are pushed onto the
stack in left to right order, leaving the most recent one (the rightmost one in the
diagram) on the top.

Entries to the right of -- represent those stack items that the word leaves on the stack
after it finishes execution. Again, the rightmost item is on top of the stack, with any
preceding items beneath it.

In the previous example, the stack comment, beginning with “(” and ending with *) 7,
shows that dac! takes two parameters from the stack, and doesn’t replace them with
anything when it’s done.

You can place stack comments anywhere in a colon definition, and you should include
them wherever they will enhance clarity.

Following the stack comment in the preceding example are a series of words that
describe the behavior of dac! . Executing dac! is the same as executing the list of
words in its colon definition.

Note that FCode words are separated by spaces, tabs, or newlines; “(data ” is not the
same as “(data . Any visible character is part of a word, and not a separator.

Although case is not significant, by convention FCode is written in lower case.

Data Types
The terms shown in Table 1 describe the data types used by Forth.

Table 1 Forth Data Type Definitions

Notation Description
byte An 8-bit value.
cell The implementation-defined fixed size of a cell is specified in address units and the corresponding

number of bits. Data-stack elements, return-stack elements, addresses, execution tokens, flags and
integers are one cell wide.

On Open Firmware systems, a cell consists of at least 32-bits, and is sufficiently large to contain a
virtual address. The cell size may vary between implementations. A “32-bit” implementation has a
cell size of 4. A “64-bit” implementation has a cell size of 8.

doublet A 16-bit value.

octlet A 64-bit value; only defined on 64-bit implementations,

quadlet A 32-bit value.

double-cell A number represented by two cells. In memory, the cell at the lower address holds the more
number significant part of the number, and the address of that cell is used to identify the number. On the
stack, the more significant part of the number is on top of the less significant part.

Additional Information

For more information about Forth programming needed to use available FCode
primitives, refer to the Forth-related books listed in“Related Books and Specifications”
on page xvi.

Elements of FCode Programming 7

Programming Style

Some people have described Forth as a write-only language. While it sometimes ends
up that way (like any badly written computer language), it is possible to write Forth
(and FCode) programs that can be read and understood by more than just the original
programmer. In fact, well-written Forth programs can be very clean and easy to
understand. See Appendix B “Coding Style” for detailed information about the style
used in the existing Open Firmware FCode source base.

Commenting Code

Comment code extravagantly, then consider adding more comments. The comments can
help you and others maintain your code, and they don’t add to the final size of the
resulting FCode ROM.

Typical practice is to use “(') ” for stack comments and “\ ” for other descriptive text
and comments.

In your comments, describe the purpose of your Forth words, their interface
assumptions and requirements, and any unusual aspects of the algorithm you use. Try
to avoid simply translating low-level details of your code into English. Comments like,
“increment the variable” are rarely helpful.

Coding Style

Study the examples in this book to see an indentation and phrasing style that is widely
used in Open Firmware source code. Adoption of that style will make your code more
easily readable by the many FCode programmers who are accustomed to that style. If
you are tempted to chose a different style, consider the following:

Communication among humans is enhanced by adherence to a uniform set of
conventions. No matter how “good” your custom style may be, it is unlikely that
the existing body of Open Firmware source code and FCode Programs will be re-
written in your new style.

Short Definitions

Keep word definitions short. If your definition exceeds half a page, try to break it up into
two or more definitions. If it grows to a page or longer, you should break it up, if only
to make the code easier to support in the future.

A good size for a word definition is one or two lines of code. Keeping definitions short
and of limited functionality improves readability, speeds debugging and increases the
likelihood that the word will be re-usable. Remember: re-use of Forth words is a
principal contributor to compact ROM images.

8 Writing FCode Programs for PCI

Stack Comments

Always include stack comments in word definitions. It can be useful to compare intended
function with what the code really does. Here’s an example of a word definition with
acceptable style.

\ xyz-map establishes a virtual-to-physical mapping for each of the
\ useful addressable regions on the board

0 value status-register
i Xyz-map (--)

\ Base-address Size create-mapping then save virtual address

my-address 4 map-low (virtaddr)
to status-register ()
my-address 10.0000 0 d+ frame-buf-size map-low (virtaddr)

to frame-buffer-adr ()

Stack items are generally written using descriptive hames to help clarify correct usage.
See Table 2 for stack item abbreviations used in this manual.

Table 2 Stack Item Notation

Notation

Description

Alternate groups of stack results are separated by | surrounded with spaces.
(in -- addr len false | result true) means either (in -- addr len false) or (in -- result true).

Individual stack item alternatives are separated by | without surrounding spaces.
(in -- addr len] 0 result) means either (in -- addr len result) or (in -- addr 0 result).

???

Unknown stack item(s).

Unknown stack item(s). If used on both sides of a stack comment, means the same stack
items are present on both sides.

< > <space>

Space delimiter. Leading spaces are ignored.

a-addr Variable-aligned address.

addr Memory address (generally a virtual address).

addr len Address and length for memory region.

byte b xxx 8-bit value (low order byte in a cell).

char 7-bit value (low order byte in a cell, high bit of low order byte unspecified).
cnt len size Count or length.

dxxx Double (extended-precision) numbers. 2 cells, high quadlet on top of stack.
<eol> End-of-line delimiter.

false 0 (false flag).

ihandle Pointer (handle) for an instance of a package.

n nl n2 n3 Normal signed, one-cell values.

nu nul Signed or unsigned one-cell values.

<nothing> Zero stack items.

0 01 02 octl Octlet (64 bit signed value).

oct2

oaddr Octlet (64-bit) aligned address.

octlet An eight-byte quantity.

Elements of FCode Programming

Table 2 Stack Item Notation (Continued)

Notation Description

phandle Pointer (handle) for a package.

phys Physical address (actual hardware address).

phys.lo Lower/upper cell of physical address.

phys.hi

pstr Packed string.

quad g Xxx Quadlet (32-bit value, low order four bytes in a cell).

gaddr Quadlet (32-bit) aligned address.

str Starting address of an unpacked string. Usually used in the form: xyz-str xyz-len

{text} Optional text. Causes default behavior if omitted.

"text< delim>" Input buffer text, parsed when command is executed. Text delimiter is enclosed in <>.

[text< delim>] Text immediately following on the same line as the command, parsed immediately. Text
delimiter is enclosed in <>.

true -1 (true flag).

UXXX Unsigned positive, one-cell values.

ud xxx Unsigned positive double numbers. 2 cells, high quadlet on top of stack.

virt Virtual address (address used by software).

waddr Doublet (16-bit) aligned address.

word w Xxx Doublet (16-bit value, low order two bytes in a cell).

X x1 Arbitrary, one cell stack item.

x.lo x.hi Low/high significant bits of a data item.

xt Execution token.

XXX? Flag. Name indicates usage (e.g. done? ok? error?).

Xy-Str xy- Address and length for unpacked string.

len

Xyz-sys Control-flow stack items, implementation-dependent.

(C:--) Control flow stack diagram. Used to describe the compile time behavior of words with
different behaviors at compile-time and run-time.

(--) Run-time stack diagram.

(E:--) Execution stack diagram. Used with defining words to describe the run-time behavior of a
word defined with that defining word.

(R:--) Return stack diagram.

10 Writing FCode Programs for PCI

A Minimum FCode Program

If a PCI card is not needed during the boot process, a minimal FCode program that
merely declares the name of the device and the location and size of on-board registers
will often suffice. Here is an example of an acceptable minimum program for a PCI
card:

fcode-version2
" OABCDEF,bison" encode-string " name" property

\ Create "reg" property

\ The first entry must be for the configuration space header
my-address my-space encode-phys
0 encode-int encode+ 0 encode-int encode+

\ The next N entries document the active base address registers
my-address my-space 0200.0010 or encode-phys encode+
0 encode-int encode+ 1000 encode-int encode+

\ The next entry describes the Expansion ROM base address register
my-address my-space 0200.0030 or encode-phys encode+
0 encode-int encode+ 8000 encode-int encode+

" reg" property
fcode-end

The following should be noted about the preceding example:

my-address and my-space leave a total of three numbers on the stack
representing the phys.lo phys.mid phys.hi address representation of a PCI node. The
value of "#address-cells" is 3 for PCI which is reflected by this format.

The size argument for "reg" is a double number encoded from two integers (e.g. 0
and 0 for the configuration space entry). This is due to the fact that the value of
"#size-cells" is 2 for PCI which reflects PCI’s 64-bit address space.

The configuration space entry in the "reg” property of a PCI device must have a
size of zero.

The second entry in the "reg" property assumes a device whose base address
register at offset 0x10 in the configuration space header controls a 32-bit memory
resource of size 4 KB. (See PCI Bus Binding to IEEE Standard 1275-1994 for the
encoding details.)

The third entry in the "reg" property assumes a device whose PCI Expansion ROM
is 32 KB in size.

A similar minimum program for an SBus device is:

fcode-version2
" OABCDEF,bison" encode-string " name" property

my-address h# 20.0000 + my-space h# 100 reg

fcode-end

Elements of FCode Programming 11

The following should be noted about this SBus example:

m my-address and my-space each leave only a single number on the stack
representing the phys.lo phys.hi address representation of an SBus node. The value of
"#address-cells " is 2 for SBus which is reflected by this format.

m An offset of 0x200000 is being added to the value returned by my-address

m The size argument of "reg" is a single number since "#size-cells "is 1 for SBus
reflecting SBus’s 32-bit address space.

= Since:

O The value of "#address-cells" is 2 for SBus

O The value of "#size-cells "is 1 for SBus

O The format for an SBus "reg" (as defined in the binding IEEE Draft Standard
P1275.2/D14a Supplement for IEEE 1496 (SBus) Bus) requires only a single entry

the reg method can be used to create the "reg" property.

Note — The reg method is not useful in a PCI environment since reg can only work
with buses whose "#address-cells" value is 2 and whose "#size-cells" value
is 1. PCl is 3 and 2, respectively.

PCI also requires multiple entries within the "reg" property and reg can only encode
a single entry.

If you wanted to add an address offset to a PCI device (as was done in the SBus
example), you’d have to take care to add the offset to the phys.lo portion of the address
while leaving phys.mid unaffected. This can be done most easily using double-precision
addition as shown in the code fragment below:

\ The first entry must be for the configuration space header
my-address h# 20.0000 0 d+ my-space encode-phys
0 encode-int encode+ 0 encode-int encode+

Both of the example programs create a "name" property whose value is
“OABCDEF,bison ” that will be used to identify the device. The "name" property’s
value should always begin with an identification of your company. The preferred form
of this identification is the organizationally unique identifier (OUI), a sequence of six,
uppercase hexadecimal digits which are assigned by the IEEE Registration Authority
Committee. OUI’s are guaranteed to be unique world-wide. (For more information
about obtaining an OUI, please see the glossary entry for "name" in IEEE Standard
1275-1994.)

As an alternative to the OUI, you may use a sequence of from one to five uppercase
letters representing the stock symbol of your company on any stock exchange whose
symbols do not conflict with the symbols of the New York Stock Exchange and the
NASDAQ Exchange. All stock exchanges in the United States satisfy this requirement.
If a non-US company’s stock is traded on US stock exchanges via “depository
equivalents”, those symbols also satisfy this requirement.

For those companies that have neither an OUI or a public stock symbol, an
organizationally unique "name" property value must start with a company name that
contains at least one lower case letter or that is longer than five characters thereby
making it unlike a stock symbol (e.g. FirmWorks)

12

Writing FCode Programs for PCI

These sample programs could be extended by including additional code to declare
additional properties, to create device methods, and/or to initialize the device after
power-on.

FCode Classes

There are four general classes of FCode source words:

m Primitives. These words generally correspond directly to conventional Forth words,
and implement functions such as addition, stack manipulation, and control
structures.

m System. These are extension words implemented in the boot ROMs, and implement
functions such as memory allocation and device property reporting.

m Interface. These are specific to particular types of devices, and implement functions
such as draw-character

m Local. These are private word definitions, implemented and used by devices.

Each FCode primitive is represented in the PCI card’s ROM as a single byte. Other
FCodes are represented in the PClI ROM as two consecutive bytes. The first byte, a
value from 1 to 0x0f, may be thought of as an escape code.

One-byte FCode numbers range in value from 0x10 to Oxfe . Two-byte FCode
numbers begin with a byte in the range 0x01 to Ox0f , and end with a byte in the
range 0x00 to Oxff . The single-byte values 0x00 and Oxff signify “end of program”
(either value will do; conventionally, 0x00 is used):

Currently-defined FCodes are listed in functional groups, in alphabetic order by name
and in numeric order by FCode value in Appendix A, “FCode Reference”.

Primitive FCode Functions

There are more than 300 primitive FCode functions, most of which exactly parallel
ANS Forth words, divided into three groups:

m FCode words that generate a single FCode byte
m tokenizer macros
m tokenizer directives

Primitive FCode functions that have an exact parallel with standard ANS Forth words
are given the same name as the equivalent ANS Forth word. Chapter 12 “Open
Firmware Dictionary”, contains further descriptions of primitive FCodes.

There are about another 70 tokenizer ~ macros, most of which also have direct ANS
Forth equivalents. These are convenient source code words translated by the tokenizer
into short sequences of FCode primitives.

Elements of FCode Programming 13

tokenizer directives are words that generate no FCodes, but are used to control the
tokenization process. tokenizer directives include the words shown in Table 3.

Table 3 FCode Tokenizer Directives

Command Stack Diagram Description

alias (“new-name< >old-nmae< >” --) | Create a new command equivalent to an existing command.

emit-byte (FCodet --) Output specified FCode. Only works in tokenizer escape
mode

tokenizer[(--) Enter tokenizer escape mode, allowing manual FCode
generation.

Jtokenizer (--) Exit tokenizer escape mode, resuming FCode interpretation

external (--) Words defined hereafter will be visible whenever this node is
the current node.

headerless (--) Words defined hereafter will never be visible.

headers (--) Words defined hereafter will be optionally visible as a

function of the setting of the configuration variable
fcode-debug?

decimal (--) When used outside of a colon definition, change the
tokenizer’s numeric conversion base to 10.

When used inside a colon definition, append the phrase d#
10 base ! to the word being defined.

d# number (--n) Interpret number in decimal; base is unchanged.

hex (--) When used outside of a colon definition, change the
tokenizer’s numeric conversion base to 16.

When used inside a colon definition, append the phrase d#
16 base ! to the word being defined.

h# number (-n) Interpret number in hex; base is unchanged.

octal (--) When used outside of a colon definition, change the
tokenizer’s numeric conversion base to 8.

When used inside a colon definition, append the phrase d#
8 base ! to the word being defined.

o# number (-n) Interpret number in octal; base is unchanged.

fload ([filename<cr>] --) Insert the specified file at this point.

System FCode Functions

System FCode functions are used by all classes of FCode drivers for various system-
related functions. System FCode functions can be either service words or configuration
words.

m Service words are available to the device’s FCode driver when needed for functions
such as memory mapping or diagnostic routines.

m Configuration words are included in the driver to document characteristics of the
driver itself. These “properties” are made available for use by the operating system.

14 Writing FCode Programs for PCI

Interface FCode Functions

Interface FCode functions are standard routines used by the workstation’s CPU to
perform the functions of the PCI card’s device. Different classes of devices will each
use only the appropriate set of interface FCodes.

For example, in order to display a character on the screen, Open Firmware calls the
interface FCode draw-character . Previously, the FCode driver for the device
controlling that screen must have assigned a device-specific implementation to
draw-character . It does this as follows:

: my-draw (char --) \"local" word to draw a character.
\ Definition contents.

; \ end of my-draw definition.

> my-install (--) \ local word to install all interfaces.

['1 my-draw to draw-character

When my-install executes, draw-character is assigned the behavior of my-draw .

Local FCode Functions

Local FCode functions are assigned to words defined within the body of an FCode
Program. There are over 2000 FCode byte values allocated for local FCodes. The byte
values are meaningful only within the context of a particular driver. Different drivers
re-use the same set of byte values.

Elements of FCode Programming 15

16

Writing FCode Programs for PCI

3

Testing FCode Programs

FCode Source

An FCode source file is essentially a Forth language source code file. The basic Forth
words available to the programmer are listed in Chapter 12 “Open Firmware
Dictionary”. Typically, Forth source files are named with a .fth suffix. FCode source
files follow the same convention.

FCode programs have the following format:

\ Title comment describing the program that follows
fcode-version2

< body of the FCode program >

fcode-end

fcode-version2 is a macro which directs the tokenizer to:

m Prepare the tokenizer to tokenize the following source text.

s Output the startl FCode.

s Output an FCode header. For a description of the FCode header see “FCode Binary
Format” on page 18.

fcode-end is a macro that tells the tokenizer to:

s Output the end0 FCode that marks the end of an FCode program. (end0 must be at
the end of the program or erroneous results may occur.)

m Stop tokenizing the current FCode program.

m Set the checksum and length fields of the FCode header to the program’s actual
checksum and length.

The comment in the first line is not strictly necessary in many cases, but it is
recommended since it allows some Open Firmware tools to recognize the file as a Forth
source file. Enabling those tools to automatically recognize your file as a Forth source
file may make your debugging easier.

17

Tokenizing FCode Source

The process of converting FCode source to FCode binary is referred to as tokenizing. A
tokenizer program converts FCode source words to their corresponding byte-codes, as
specified in Chapter 12 “Open Firmware Dictionary” and defined by IEEE Standard
1275-1994. A tokenizer program together with instructions describing its use is
available from FirmWorks.

An FCode program’s source can reside in multiple files. The fload tokenizer directive
directs the tokenizer input stream to load another file. fload acts like an #include
statement in C. When fload is encountered, the tokenizer begins processing the file
named by the fload directive. When the named file is completed, tokenizing
continues with the file that issued the fload . fload directives may be nested.

Typically, the tokenizer produces a file in the following format:

m FCode header - 8 bytes
m FCode binary - remainder of file
The header format is system dependent.

You can use such a tokenized file to load either an FCode ROM or system memory for
debugging as described in “Using the User Interface to Test FCode Programs” on
page 26. Consult your tokenizer’s documentation for a description of how to produce
ROMs from the file.

By convention, the file output by the tokenizer has the suffix .fc

FCode Binary Format

The format of FCode binary that is required by the Open Firmware FCode evaluator is as
follows:

Table 4 FCode Binary Format

Element Structure

FCode header

Eight bytes

Body

0 or more bytes

End byte-code

1 byte, the end0 byte-code

The format of the FCode header is:

Table 5 FCode Header Format

Byte(s) Content
0 One of the FCodes: versionl (not used with PCI), start0 , startl , start2 , start4
1 Format

2and 3 16-bit checksum of the FCode body

4 through 7 Count of bytes in the FCode binary image including the header
The above information is presented for completeness. Since the tokenizer automatically
generates this information, you will seldom be concerned about these details.

18 Writing FCode Programs for PCI

PCI Expansion ROM Header

As shown in Figure 1 on page 2, an FCode image that is stored in a PCl Expansion
ROM must have some additional information included with it. This information can be
synthesized by the tokenizer through the use of the tokenizer[, emit-byte , and
Jtokenizer directives as follows:

hex

tokenizer[

55 emit-byte aa emit-byte \ PCI magic number

34 emit-byte 00 emit-byte \ 0x16 Processor architecture unique data
14 0 do O emit-byte loop \ Pad bytes

1c emit-byte 00 emit-byte \ Pointer to start of PCI Data Structure
00 emit-byte 00 emit-byte \ Pad bytes

\ Start of PCI Data Structure (DWORD aligned)

ascii P emit-byte \ 4 Signature string “PCIR”

ascii C emit-byte

ascii | emit-byte

ascii R emit-byte

x1 emit-byte x2 emit-byte \ 2 Vendor ID = config reg 00/01

y1 emit-byte y2 emit-byte \ 2 Device ID = config reg 02/03

w1l emit-byte w2 emit-byte \ 2 Pointer to Vital Product Data

18 emit-byte 00 emit-byte \ 2 PCI Data Structure length

00 emit-byte \ 1 PCI Data Structure revision

z1 emit-byte z2 emit-byte \ 3 Class Code = config reg 09/0a/0b
z3 emit-byte

gl emit-byte g2 emit-byte \ 2 Image Length XXX - Must be fixed up
rl emit-byte r2 emit-byte \ 2 Revision Level of Code/Data

01 emit-byte \ 1 Code Type 00=BIOS 01=OpenFW

80 emit-byte \ 1 Indicator 00=another image 80=last image

00 emit-byte 00 emit-byte \ 2 Reserved

Jtokenizer

fcode-version2
fload mycode.fth

fcode-end

You will have to customize the “vendor ID”, “device ID”, “class code”, “image length”,
“revision level” and “pointer to vital product data” fields appropriately for each FCode
program.

Since this header is only required for your final ROM image, we suggest that you put
your FCode source into one or more files (represented by the filename mycode.fth in
the above example), and then fload the file(s) in a second file containing the PCI
header code as shown above. You can then easily download mycode.fth with dl and
can easily tokenize the same code by tokenizing the second file.

FirmWorks pci-header /pci-header-end Tokenizer Extensions

The FirmWorks tokenizer contains two additional directives named pci-header and
pci-header-end that will create the PCI Expansion ROM header for you. The

Testing FCode Programs 19

directive pci-header takes the “vendor ID”, “device ID” and “class code” field
values from the stack and incorporates them into the header. pci-header puts a
default value of 0 into the “pointer to vital product data” field, puts a default “1” in the
“revision level” field and sets the “indicator” field to a default value of 1 indicating
that this is the last image in the ROM. pci-header-end computes the length in bytes
of the PCI Expansion ROM FCode image, divides that length by 512, rounds the result
up and fills in the “image length” field. The following example creates such a header.

hex

\ pci-header (vendor-id device-id class-code --)
tokenizer[v2vl y2y1 z3z2z1 Jtokenizer pci-header

fcode-version2

fload mycode.fth
fcode-end

\ pci-header-end (--)
pci-header-end

Note - Calling pci-header-end without having first called pci-header will
scramble the tokenizer’s output file since pci-header-end will “fix-up” a non-
existent PCI header.

The FirmWorks tokenizer provides three additional directives for modifying the
default values used by pci-header

m set-rev-level (revision --)
m set-vpd-offset (addr --)
m not-last-image (--)

The following example shows how to set the “revision level”, “pointer to vital product
data” and “indicator” fields to something other than their default values.

hex

tokenizer[r2rl Jtokenizer set-rev-level

tokenizer[w2w1 Jtokenizer set-vpd-offset
not-last-image

tokenizer[v2v1 y2y1 z3z2z1 Jtokenizer pci-header

fcode-version2
fload mycode.fth
fcode-end
pci-header-end

Testing FCode Programs on the Target Machine

Once you have created the FCode binary you can test it using the Open Firmware User
Interface. The User Interface provides facilities to allow you to load your program into
system memory and direct the FCode evaluator to interpret it from there. This allows

20 Writing FCode Programs for PCI

you to debug your FCode without having to create a ROM and attach it to your plug-
in board for each FCode revision during the debug process. See IEEE Standard 1275-
1994 for the complete specification of the User Interface.

The FCode testing process generally involves the following steps:

1. Configuring the target machine. This includes installing the hardware associated
with the FCode program into the target machine and powering-up the machine to
the User Interface.

2. Loading the FCode program into memory from a serial line, a network, a hard disk,
or a floppy disk.

3. Interpreting the FCode program to create a device node(s) on the Open Firmware
device tree.

4. Browsing the device node(s) to verify proper FCode interpretation.

5. Exercising the FCode program’s device driver methods complied into the device
node, if any.

If the FCode program does not include any methods which involve using the actual
hardware (e.g. a driver which only publishes properties) then the program can be
tested without installing the hardware.

Configuring the Target Machine

Setting Appropriate Configuration Parameters

Before powering-down the target machine to install the target hardware, a few
NVRAM configuration variables should be set to appropriate values. You can set them
from the User Interface as follows:

ok setenv auto-boot? false
ok setenv fcode-debug? true

Setting auto-boot? to false tells Open Firmware not to boot the OS upon a
machine reset but rather to enter the User Interface.

The Open Firmware FCode evaluator always saves the names of any words created by
interpreting FCode while the external tokenizer directive is in effect. By setting
fcode-debug? totrue , you tell the FCode evaluator also to save the names of words
created while the headers tokenizer directive is in effect. (Words tokenized while the
headerless directive is in effect are never saved.)

fcode-debug? defaults to false to conserve RAM space in normal machine
operation. With names saved, the debugging methods described in later sections are
easier to use since decompiled FCode will be displayed with names versus execution
tokens.

Testing FCode Programs 21

“The Script” and the Open Firmware Startup Sequence

The configuration variable known as nvramrc is an area of NVRAM that is also
known as the “script”. nvramrc can be used to store user-defined commands that are
executed during start-up.

Typically, nvramrc is used by a device driver to save start-up configuration variables,
to patch device driver code, or to define installation-specific device configuration and
device aliases. It can also be used for bug patches or for user-installed extensions.
Commands are stored in ASCII, just as the user would type them at the User Interface.

If the use-nvramrc? configuration variable is true , the script is evaluated during the
Open Firmware start-up sequence as follows:

Perform power-on self-test (POST) if present (system dependent)
Perform system initialization

Evaluate the script (if use-nvramrc? is true)

Execute probe-all (i.e. evaluate FCode)

Execute install-console

Execute banner

Execute secondary diagnostics

Perform default boot (if auto-boot? is true)

Table 6 shows the top-level words that can be used in the script to control the overall
execution of the start-up sequence.

Table 6 System Start-up Control Primitives

Command

Description

probe-all

Search for plug-in devices on the system-dependent set of expansion buses, creating
device nodes for devices that are located. probe-all ~ should not be executed more than
once. It is normally executed during start-up following evaluation of the script, but this
automatic execution is disabled if the script contains banner or suppress-banner

install-console

Activate the console function and select input and output devices as follows:

a. Activate the console so that subsequent input (e.g. key) and output (e.g. emit) will
use the devices selected by input and output .

b. Execute output with the value returned by output-device

c. Execute input with the value returned by input-device

d. If the preceding fails and if there is a fallback device for console functions, select that
device as the console device.

install-console may take other implementation-dependent actions to ensure the

availability of a console in the event of failure and may display related messages.

banner

Display power-on banner. When included in the script, suppresses the execution of the
sequence probe-all install-console banner in the system start-up sequence.

suppress-banner When included in the script, suppresses the execution of the sequence probe-all

install-console banner in the system start-up sequence.

Patching FCode of a Plug-in Card

It is sometimes desirable to modify the sequence probe-all install-console
banner . For example, commands that modify the characteristics of plug-in display
devices may need to be executed after the plug-in devices have been probed, but

22

Writing FCode Programs for PCI

before the console device has been selected. Such commands would need to be
executed between probe-all and install-console . Commands that display
output on the console would need to be placed after install-console or banner .

Such custom control of the start-up sequence is accomplished by creating a script
which contains either banner or suppress-banner since the sequence probe-all
install-console banner is not executed if either banner or suppress-banner is
executed from the script. This allows the use of probe-all , install-console and
banner inside the script, possibly interspersed with other commands, without having
those commands re-executed after the script finishes.

For example, assume that the plug-in device /pci/framus has an error in its
set-rate method such that it divides by four when it should divide by two. This
error could be patched using the script as follows:

ok nvedit

0: probe-all

1. dev /pci/fframus

2: patch 2 4 set-rate

3: device-end

4: install-console banner

5: Control-C

ok nvstore

ok setenv use-nvramrc? true
ok reset-all

The script shown patches the broken plug-in card’s method by:

First executing probe-all to cause all of the plug-in cards to be probed.
Identifying /pci/fframus as the device to be patched and patching its broken
method.

Ending the use of the /pci/framus device.

Completing the startup sequence and suppressing the re-execution of the
probe-all install-console banner sequence.

For more information about the script, the script editor and the high-level Forth
patching facility, see Open Firmware Command Reference and/or “nvedit” on page 281.
and “patch” on page 291.

Modifying the Expansion Bus Probe Sequence

The start-up sequence in the machine’s Open Firmware implementation normally
examines all expansion buses for the presence of plug-in devices and their on-board
FCode ROM program. It then invokes the FCode evaluator to interpret any such
programs. This process is called probing.

When using the User Interface to load and interpret an FCode program in system
memory, it is better to configure Open Firmware to avoid probing that device
automatically. The probing can then be done manually (as explained later) from the
User Interface.

Configuring an Open Firmware implementation to avoid probing a given slot on a
given expansion bus can be done in various implementation-dependent ways. That is,
they will be different for different systems and different expansion buses.

Testing FCode Programs 23

Many machines with a PCI bus have an NVRAM configuration variable named
pci-probe-list that defines which PCI card slots will be probed during start up
and the order in which they will be probed.

For example, a machine with four PCI slots might have the pci-probe-list
configuration variable set to a default value of 0123. Setting pci-probe-list to 031
directs Open Firmware during start-up to probe first PCI slots 0, then slot 3, and finally
slot 1. This re-arranges the order in which the slots are probed (perhaps to ensure that
a particular graphics card is probed before all others) and leaves PCI slot 2 un-probed,
free for use by the device under development.

Methods to prevent probing a given slot for other types of expansion buses can involve
using the NVRAM script. An NVRAM script could patch an implementation-specific
Open Firmware word that defines the bus’s probe sequence or could modify a
property of the expansion buses device node that describes the sequence.

After the FCode program is debugged and programmed in ROM on the device, you
can do a full system test (including automatic probing of the new device), by restoring
the expansion bus probing configuration to the default.

Getting to the User Interface

After completing the configuration described above, power-down the machine and
install the device. Then power-up the system and it should stop at the ok prompt ready
for User Interface commands.

Using the Command Line Editor of the User Interface

IEEE Standard 1275-1994 describes a required Command Line Editor and an optional
Command Line Editor Extension to the User Interface. All implementations must
support the following command line editing keys:

Table 7 Required Command Line Editor Keystroke Commands

Keystroke Description
Delete Erases previous character.
Backspace Erases previous character.

Return (Enter)

Finishes editing of the line and submits it to the interpreter.

The standard also describes three groups of extensions of these capabilities (which are
included in the FirmWorks implementation). The command line editing extension
group includes the following command line editing keys.

Table 8 Optional Command Line Editor Keystroke Commands

Keystroke Description
Control-B Moves backward one character.
Escape B Moves backward one word.
Control-F Moves forward one character.
Escape F Moves forward one word.
Control-A Moves backward to beginning of line.
Control-E Moves forward to end of line.
24 Writing FCode Programs for PCI

Table 8 Optional Command Line Editor Keystroke Commands

Keystroke Description

Delete Erases previous character.

Backspace Erases previous character.

Control-H Erases previous character.

Escape H Erases from beginning of word to just before the cursor, storing erased characters in a save
buffer.

Control-W Erases from beginning of word to just before the cursor, storing erased characters in a save
buffer.

Control-D Erases next character.

Escape D Erases from cursor to end of the word, storing erased characters in a save buffer.

Control-K Erases from cursor to end of line, storing erased characters in a save buffer.

Control-U Erases entire line, storing erased characters in a save buffer.

Control-R Retypes the line.

Control-Q Quotes next character (allows you to insert control characters).

Control-Y Inserts the contents of the save buffer before the cursor.

Control-P Selects and displays the previous line for subsequent editing.

Control-N Selects and displays the next line for subsequent editing.

Control-L Displays the entire contents of the editing buffer.
The command line history extension enables previously-typed commands to be saved
in an emacs-like command history ring that contains at least 8 entries. Commands may
be recalled by moving either forward or backward around the ring. Once recalled, a
command may be edited and/or re-submitted (by typing the Return key). The
command line history extension keys are:

Table 9 Optional Command Line History Keystroke Commands
Keystroke Description

Control-P Selects and displays the previous command in the command history ring.

Control-N Selects and displays the next command in the command history ring.

Control-L Displays the entire command history ring.

The command completion extension enables the system to complete long Forth word
names by searching the dictionary for one or more matches based upon the already-
typed portion of a word. After a user types in a portion of a word and types the
command completion keystroke, the system behaves as follows:

m If the system finds exactly one matching word, the remainder of the word is
automatically displayed.

m If the system finds several possible matches, the system displays all of the characters
that are common to all of the possibilities.

m If the system cannot find a match for the already-typed characters, the system
deletes characters from the right until there is at least one match for the remaining
characters.

m The system beeps if it cannot determine an unambiguous match.

Testing FCode Programs 25

The command completion extension keys are:

Table 10 Optional Command Completion Keystroke Commands

Keystroke Description
Control-Space Complete the name of the current word.
Control-? Display all possible matches for the current word.
Control-/ Display all possible matches for the current word.

Using the User Interface to Test FCode Programs

A synopsis of standard FCode words for downloading and executing FCode source
files is shown Table 11. FirmWorks/Sun extensions are shown in Table 12

Table 11 File Download/Execute-related User Interface Commands

FCode Stack Notation Function

begin-package (‘arg-addr arg-len reg-addr reg-len path-addr path-len --) Creates a new node in the
device tree in preparation
for receiving FCode from
the User Interface.

end-package (--) Completes a device tree
entry and returns to the
User Interface
environment.

open-dev (path-addr path-len -- ihandle | 0) Opens the specified device
node and all of its parents.

close-dev (‘ihandle --) Closes the specified device
and all of its parents.

device-end (--) Unselect the active
package, leaving none
selected.

set-args (‘arg-addr arg-len reg-addr reg-len --) Sets values returned by

my-args , my-space and
my-address for the
current node.

execute-device-method (... path-addr path-len cmd-addr cmd-len -- ... ok?) Executes the named
command within the
specified device tree node.

Table 12 FirmWorks/Sun File Download/Execute-related User Interface Extensions

FCode Stack Notation Function

select-dev (path-addr path-len --) Opens the specified device node and all of its parents,
and makes the device the current instance.

select device-path (--) Opens the specified device node and all of its parents,
and makes the device the current instance.

begin-select-dev (path-addr path-len --) Opens all of the parents of the specified device node but
does not call the device’s open method.

26 Writing FCode Programs for PCI

Table 12 FirmWorks/Sun File Download/Execute-related User Interface Extensions
FCode Stack Notation Function
begin-select device-path (--) Opens all of the parents of the specified device node but

does not call the device’s open method.

unselect-dev

()

Closes the specified device node and all of its parents,
and unselects the active package and current instance
leaving none selected.

Using dl to Load From a Serial Port

dl can be used to load text files over a serial line connecting a “host” system (i.e. the
system containing your source file) to a “target” system (i.e. the Open Firmware

system on which you are going to test your code). dl loads text into memory until it
receives a Control-D character (i.e. ASCII EOT, hex value 04), and then interprets the

loaded text as Forth source code.

Many different communications programs will work with dI . The following example
shows how to download a file using the Windows[] Terminal terminal emulator

program on an MS-DOS[] system.

1. Connect the target system’s primary serial port to an available COM port, COMn,
on the MS-DOS machine with a 3-wire “null modem” cable (i.e. a cable that
connects Pin 3 to Pin 2, Pin 2 to Pin 3, and Pin 7 to Pin 7). For this example, we will
assume the use of COML1 on the MS-DOS machine and TTYA on the target system.

2. Start Windows and open the Terminal application in the Accessories group.
Check/correct the following menu settings (suggested values shown in italics):

Settings
Terminal Emulation

DEC VT-100 (ANSI)

Terminal Preferences

Terminal modes

Local echo off

CR -> CRILF

Inbound off
Outbound off

Translations

None

Text Transfers

Standard Flow Control

Communications

Baud Rate: 9600
Data Bits: 8

Stop Bits: 1

Parity: None

Flow Control: None
Connector: COM1

Testing FCode Programs

27

3. If you have not yet redirected the standard input and output to the target system’s
serial port, on the target’s keyboard type:

ok ttyaio

4. At the ok prompt in the Terminal window, type:
dl
which will produce the “Ready for download” prompt.

ok dI
Ready for download. Send file then type ~D

5. In the Terminal window, perform the following steps:
a. Select “Send Text File” on the Transfers menu.
b. Select the correct drive, directory and name of the file to be downloaded.

c. In the “Following CR” section of the menu, turn off both “Append LF” and “Strip
LF”.

d. Click “OK”. This begins the transfer whose progress can be monitored in the
status bar at the bottom of the Terminal program’s window. The transfer is
complete when the progress meter disappears. (If the file is short, the meter will
come and go very quickly.)

6. Press Control-D in the Terminal window. After a delay while dl interprets the
downloaded file, the ok prompt will appear in the Terminal window,

Downloading Multiple Files with dl and fload

Since dI merely downloads a text file without performing any interpretation of the text
file until after the transfer is complete, any fload statements contained in a file
downloaded with dl will not be processed correctly since the target system will not be
able to locate the file associated with the fload statement.

A simple technique for solving this problem is to fragment your program into a series
of files which, when concatenated in the proper order, construct your complete
program file. None of these source files may contain any fload statements.

Once you have created such a series of files, the way to use them with dl depends
upon the host’s operating system.

28

Writing FCode Programs for PCI

MS-DOSO

1. Create a batch file that concatenates all of your files into a single file. For example:

rem This batch file concatenates the component files of the Phantom
rem driver.

echo hex > oultfile.fth

echo 00" 3" " /pci" begin-package >> oultfile.fth
echo make-properties >> outfile.fth

copy outfile + header.fth + body.fth + trailer.fth outfile
echo assign-addresses >> outfile.fth

echo end-package >> outfile.fth

2. Use dl as described in the previous section.

Unix

1. Create a “load file” (in this example named loadcoad.fth) which consists of a
series of fload statements that when executed sequentially will construct your
complete program. For example:

\ id: loadcode.fth
\ purpose: Load file for the Phantom driver
\ copyright: Copyright (c) 1995 FirmWorks. All Rights Reserved.

hex
fload /home/code/header.fth

fload /home/code/body.fth
fload /home/code/trailer.fth

2. From this load file, create a “download file” (in this example named dicode) to be
used in the downloading process. To transform your first load file into the second
form:

= On any non-comment line of the file that is not an fload command, prefix a Unix
echo command.

Note — Don’t forget to surround your begin-package = command with single
guotation marks to prevent the shell from removing the double quotation marks in the
arguments.

= Insert a begin-package statement prior to the first fload command. This will
automatically create a new device node into which to place your device methods.

= Insert a make-properties statement immediately after the begin-packages
command. This will automatically create the default PCI properties.

= Insert an assign-addresses command after the last fload command. This will
create the assigned-addresses property for your node, simulating the
behavior of the PCI bus probing process in an Open Firmware system.

= Insert an end-package statement after the assign-addresses command. This
will end the creation of your new device node.

Testing FCode Programs 29

= Insert a Control-D after the end-package statement. This will cause dl to begin
evaluating your FCode as soon as the downloading has been completed.

For example:

\'id: dlcode
\ purpose: Download file for the Phantom driver
\ copyright: Copyright (c) 1996 FirmWorks. All Rights Reserved.

echo hex

echo'0 0" 3" " /pci" begin-package'
echo make-properties

fload /home/code/header.fth
fload /home/code/body.fth
fload /home/codef/trailer.fth

echo assign-addresses
echo end-package
D

Make the download file executable with chmod and rehash .

Note — See the next section for a detailed explanation of the use of begin-package
and end-package

3. Create a shell script named fload with the following contents:

#! /bin/sh
This script enables the downloading of an FCode load file with dI
cat $1

Make this fload shell script executable with chmod and rehash , and store it in
some directory on your search path. You’ll be able to use this same shell script for
all of your FCode development projects.
4. Assuming that you’re using the tip terminal emulator program, type:
dl

which will produce the “Ready for download” prompt.

ok dI
Ready for download. Send file then type "D

5. Type:
~C

30 Writing FCode Programs for PCI

which will produce a “local command” prompt from tip

ok dI
Ready for download. Send file then type ~"D
~C (local command)

Note — The Cis case-sensitive and must be capitalized.

6. At the “local command” prompt, type:
filename

where filename is the name of the download file created in Step 2. Execution of
filename sends all of your files over the serial link. When dI completes the download
and evaluation, the ok prompt will be displayed.

ok dl

Ready for download. Send file then type ~"D
~C (local command) dicode

ok

A nice feature of this technique is that other versions of the load file can be easily
created to accomplish other purposes. For example, to create a load file suitable for
creating an FCode image, modify the load file as follows:

\ id: loadfc.fth

\ purpose: FCode load file for the Phantom driver

\ copyright: Copyright (c) 1995 FirmWorks. All Rights Reserved.
hex

fcode-version2

fload /home/code/header.fth

fload /home/code/body.fth

fload /home/codef/trailer.fth

end0

Or to make an FCode image suitable for inclusion in a PCI expansion ROM, add the
PCI Expansion ROM header as shown in “PCIl Expansion ROM Header” on page 19.

Breaking your source files up into smaller files not only allows you to use these various
downloading/tokenizing techniques, but it also makes it easier for you to re-use code
if you dedicate each of your files to implementing methods that address a single
problem category.

Testing FCode Programs

31

Using the User Interface to Interpret an FCode Program

FCode program interpretation involves creating a device node on the device tree. Device
nodes are also known as packages. Creating a device node from downloaded FCode
involves the following steps:

1. Setting up the environment with begin-package

For example, a begin-package call for creating a device node for a PCI card installed
in PCI Slot 3 looks like:

ok 00" 3""/pci" begin-package

In the example, the string, /pci , indicates that the device node which will be created
by the FCode program is to be a child node of the /pci node in the device tree.

In general, any device node that supports child nodes - called parent nodes - can be
used as this argument to begin-package . The device node defined by the FCode
program will be created as a child of that node. The full device pathname from the root
node must be given.

In the example, the string " 3 " indicates the PCI slot number, 3.

In general, this string is a pair of numbers separated by a comma. The first number
identifies the PCI slot and the second number identifies the function number within
that slot. The form of this physical address depends on the physical address space
defined by the parent node. For children of a PCI node, the form is slot-number,
function-number. Other types of parent nodes define different address spaces.

The physical address pair value is retrieved within the FCode program with both the
my-address and my-space FCodes. The slot ID string is converted to a binary form
consisting of three values. Those values can be retrieved with the FCode Program by
using my-address for the phys.lo and phys.mid components and my-space for the
phys.hi component. See PCI Bus Binding to IEEE Standard 1275-1994 or Appendix C
“PCI Bus Binding to Open Firmware” for a description of those three values.

In the preceding example, the initial 0 0 represents a null argument string passed to
the FCode program. If you wish to pass a non-null argument string to

begin-package , you must define that string in a Forth word and use the execution of
that word to place the string on the stack. This is necessitated by the fact that Open
Firmware systems are only required to provide two temporary buffers for the
assembling of strings from the command line. With a non-null argument string, the
begin-package = command would require three temporary buffers. For example:

ok :testargs " framus";
ok testargs " 3" " /pci" begin-package

This argument string is retrieved within the FCode program with the my-args FCode.
Generally, FCode programs do not take arguments at interpretation time so this will
usually be the null string.

32

Writing FCode Programs for PCI

begin-package is defined as:

: begin-package (arg-str arg-len reg-str reg-len dev-str dev-len --)
select-dev new-device set-args

select-dev (parent-dev-str parent-dev-len --) - Opens the input device node (the
parent node) and makes it the current instance. (See “Packages and Instances” on
page 41 for a detailed description of current instance.)

new-device (--) - Initializes a new device node as a child of the currently active
node and makes it the current instance.

set-args (arg-addr arg-len reg-addr reg-len --) - Sets the values returned by
my-args , my-space , and my-address for the current instance.

2. Create default PCI properties with make-properties

make-properties simulates the behavior of the PCI bus probing process by creating
default properties based upon the information found in the device’s PCI Configuration
Space header.

This is a User Interface word intended by use in the context of begin-package...
end-package prior to the evaluation of the FCode for the node.

3. Interpreting the loaded FCode with byte-load

byte-load is the User Interface command that invokes the FCode evaluator to
compile the FCode program into the current instance.

For FCode programs downloaded with load or difcode use:

ok load-base ' c@ byte-load

load-base is the system default load address. The argument, ' c@ , tells byte-load
to use c@as the access routine for reading the FCode.

4. Assign addresses to this node with assign-addresses

assign-addresses is used from the User Interface in the context of begin-package
... end-package to assign addresses to the current instance based on the current
"reg" property value, and to create an "assigned-addresses" property reflecting
those addresses. (The functionality of assign-addresses is normally automatically
performed as part of the PCI probing process. However, this function must be done
explicitly when a device node is being created manually with begin-package ... end-
package .

5. Closing the environment with end-package

end-package closes the device tree entry started with begin-package

ok end-package

Testing FCode Programs 33

Using the User Interface to Browse a Device Node

The User Interface has many built-in commands to navigate the device tree. Table 13
lists the User Interface commands supporting device node browsing:

Table 13

Commands for Browsing the Device Tree

Command

Description

.properties

Display the names and values of the active package’s properties.

dev device-path

Read device-path from the input stream and make the specified device node the
active package.

dev node-name

Search for a node with the given name in the sub-tree below the active package,
and make the first such node found the active package.

dev Make the parent of the active package the new active package.
dev / Make the root machine node the active package.
device-end Deactivate the active package, leaving no active package.

device-path" find-device

Identical to dev except that device-path is specified as a string on the stack.

get-inherited-property

(name-addr name-len -- true | value-addr value-len false)
Return property value of current instance or its parents

get-my-property

(name-addr name-len -- true | value-addr value-len false)
Return property value of current instance.

Is

Display the names of the active package’s children.

pwd

Display the device path name that names the active package.

see wordname

Decompile the specified word.

show-devs [device-path]

Display all the devices known to the system directly beneath a given level in
the device hierarchy. show-devs used by itself shows the entire device tree.

words Display the names of the active package’s methods.

Once a device node has been created, you can use the User Interface to browse the

node. See IEEE Standard 1275-1994 for a more complete discussion on this. Below is a

brief synopsis of the available commands.

m show-devs displays all known devices in the device tree.

m dev sets the active package to a named node so its contents can be viewed. For
example, to make the ACME company’s PCI device named “ACME,widget” the
active package:

ok dev /pci/ACME,widget

m find-device is essentially identical to dev differing only in the way the input

pathname is passed.
ok " /pci/ACME,widget" find-device

m .properties displays the names and values of all the properties created for the
active package.

m get-my-property returns the value of the specified property from the active
package.

34 Writing FCode Programs for PCI

m get-inherited-property returns the location and length of the property value
array of the specified property from the active package or its parents. dump can then
be used to display the property value array.

m |s displays the names of all child nodes, if any, of the active package.
m see wordname displays the source code (without comments) for wordname.

m device-end undoes the effects of the dev or find-device command by
unselecting the previously-selected device and leaving no device selected.

m pwd displays the device pathname of the active package.

m words displays the names of the active package’s words, if any. If there is no active
package, words displays the names of all globally-visible words.

The particular words displayed by words can be affected by the tokenizer directives
external , headers and headerless , and by the state of the configuration
variable fcode-debug?

If the FCode program was interpreted from text source, the tokenizer directives

have no affect on the words that are displayed. However, if the FCode program is

first tokenized and then evaluated, words displays:

= All words which were created by the FCode evaluator while the tokenizer
directive external was in effect.

= All words created by the FCode evaluator while the tokenizer directive headers
was in effect if the configuration variable fcode-debug? was true when the
FCode was evaluated.

words never displays words created by the FCode evaluator while the headerless
tokenizer directive was in effect.

Using the User Interface to Test a Device Driver

The User Interface provides the capability to test the methods of an FCode program by
allowing the user to execute individual methods from the User Interface prompt.

Device Node Methods

Using select-dev

select-dev initializes an execution environment for the methods of the package
specified by its stack arguments. Although select-dev is not required by IEEE
Standard 1275-1994, it can easily be synthesized if your implementation does not
include it.

: select-dev (dev-str dev-len --)

2dup open-dev (dev-str dev-len ihandle)
dup 0= abort" Can't open device" (dev-str dev-len ihandle)

to my-self (dev-str dev-len)
find-device

Testing FCode Programs 35

After executing select-dev you can execute the device node’s methods directly by
name. For example:

ok " /pci/ACME,widget" select-dev

select-dev performs the following:

m Effectively calls “dev /pci/ACME,widget ” to make the named device the active
package. This makes all the device methods “visible” to the User Interface.

m Establishes a chained set of package instances for each node in the path. In
particular, this makes the package’s instance-specific data items available to its
methods.

m select-dev requires that each device node in the path, including the node under
test, must have an open method.

Once these steps are performed you can execute the methods of the current device
node by typing their name at the prompt. For example:

ok clear-widget-register
ok fetch-widget-register .
0

As is generally true of the Forth language, if execution of a method exposes an error in
the code, the error can be isolated by executing the component words of the method
step-by-step. Use see to decompile the method, and then type the component words
individually until the error is evident. For example:

ok see clear-widget-register
: clear-widget-register
enable-register-write
0 widget-register rl!
disable-register-write

ok enable-register-write
ok 0O widget-register rl!
ok disable-register-write

This process can be performed recursively by decompiling the component words and
then individually executing their component words. This is much easier if most of the
words were defined with the headers directive since see can then display the names
of the component words instead of hexadecimal codes.

This process is also enhanced by executing showstack .showstack causes the stack’s
contents to be displayed prior to every ok prompt. For example:

ok 12

ok showstack
120k .clear34
2

340k

Writing FCode Programs for PCI

If your Open Firmware implementation supports the Forth source level debugger, you
can use it to step through your program and test it. (For more information on the
debugger, see “The Forth Source-level Debugger” on page 120 of Open Firmware
Command Reference.)

Device nodes can also be modified “on-the-fly” with any of the following techniques:

m Entering new methods definitions. These methods are compiled into the device
node like the methods in the FCode program that created the node.

m Redefining a method to include some function neglected in the first definition.
(Words that were previously defined using the original definition of the method are
unaffected.) For example:

ok :open open initialize-widget-register-2 ;

In general, such redefinitions affect only external uses of the named method (i.e.
calls from other packages via $call-method and the like) and interactive use via
the User Interface. Previously compiled calls to the method within the same package
are unaffected unless the method is called by name (e.g. with $call-self).

m Use patch to edit word definitions. Such patches affect all uses of the method, both
internal and external. (See “patch” on page 291 for information on how to use this
command.)

Resetting the machine causes all such corrections to be lost. Consequently, once your
words are debugged you’ll probably want to include any modifications in the FCode
program source.

unselect-dev reverses the effects of select-dev by calling the close method of
each device in the path of the current active node, destroying the package instance of
each node, and returning to the normal User Interface environment. Execute
unselect-dev as follows:

ok unselect-dev

unselect-dev also is not required by IEEE Standard 1275-1994. Its definition is:

:unselect-dev (--) my-self close-dev 0 to my-self device-end ;

Using select

Some Open Firmware implementations provide the command select whose function
is identical to select-dev except that select takes its argument from the command
line rather than from the stack. For example:

ok select /pci/ACME,widget

Testing FCode Programs 37

Using begin-select-dev

Sometimes, select-dev will fail to work because the open method of a newly-
written package does not work correctly. In such a case, begin-select-dev can be
used since it does everything that select-dev ~ does except for opening the last child
node. For example:

ok " /pci/ACME,widget" begin-select-dev

begin-select-dev is not required by IEEE Standard 1275-1994. If your
implementation does not include it, the same affect can be achieved with the following:

ok dev /<full-path-to-device>

ok :real-open open ;\ Create an alias for the original open
ok :open true; \Create a dummy open that can't fail.
ok " /<full-path-to-device>" select-dev

However, begin-select-dev has the advantage that, since it does not attempt to use
the target’s open method, you don’t have to create a null open method which hides
the very open method that you want to debug.

Using begin-select

Some Open Firmware implementations provide the command begin-select whose
function is identical to begin-select-dev except that begin-select takes its
argument from the command line rather than from the stack. For example:

ok begin-select /pci/ACME,widget

Using execute-device-method

execute-device-method executes a method directly from the normal User Interface
environment. That is, it is not necessary to manually make the device node the current
instance before executing the method. For example:

ok " /pci/ACME,widget" " test-it" execute-device-method

execute-device-method returns false if the method could not be executed;
otherwise it returns true on top of whatever results were placed on the stack by the
successful execution of the method.

execute-device-method performs the following steps:

m Establishes a chained set of package instances for each node in the path. In
particular, this makes an instance of all data items of the device node available to its
methods.

m Opens all device nodes in the name device path except the last device node in the
pathname.

m Invokes the named method.

38

Writing FCode Programs for PCI

m Closes all the device nodes in the path (except the last one) destroying their package

instances.

m Restores the current instance to the instance that was current prior to beginning this
process.

m Restores the active package to the package that was active prior to beginning this
process.

= Returns the results.

Note that, in contrast to select-dev , execute-device-method does not call the
open method of the last device node in the path. Consequently, any method invoked in
this manner must be able to stand alone i.e. not requiring any pre-established state
which normally is created by open and not requiring close to be executed later to put
the device back into a quiescent state.

In summary, execute-device-method is provided to allow execution of device
node methods which have been designed to provide their own state initialization and
therefore to execute without previous execution of the open method. A typical
example is a selftest method (which may, in fact, call the open and close methods

itself).
Using apply
apply provides an alternative manner of invoking execute-device-method in that

apply takes its arguments from the input stream instead of from the stack. The above
example would be invoked with apply as follows:

ok apply test-it /pci/ACME,widget

Since apply invokes execute-device-method , all of the restrictions listed above
for execute-device-method must be followed.

Testing FCode Programs in Source Form

The User Interface enables you to skip the tokenizer and download FCode program
source directly. This practice is very useful early in the development of an FCode
program. However, there are some disadvantages:

m It may cause problems in the long run since generally the User Interface recognizes
a larger number of words than does the FCode evaluator. So the FCode program
developer who tests with FCode source may develop and test a program only to
find that some of the words she used are not FCode words and will not be accepted
by the tokenizer and the FCode evaluator. This will require the developer to rewrite
code.

m To load source you should comment out fcode-version2 and endO.

= Since the download commands accept only one file any fload ed files must be put
in-line.

To load an ASCII Forth source file over a serial line, you use the command dl . In
addition to loading the file over the serial line, dl compiles the Forth source while it is
loading without requiring an extra command. See “Using dl to Load From a Serial
Port” on page 27 for details on the use of dl .

Testing FCode Programs 39

Producing an FCode ROM

The output of the tokenizer program is used to make an actual FCode ROM. If your
PROM burning tools do not accept the raw binary format of the tokenizer, you may
need to develop a format conversion utility.

Exercising an Installed FCode ROM

You can either let Open Firmware automatically evaluate the FCode program from the
ROM or you can remove the device from the Open Firmware probing as discussed
earlier in “Configuring the Target Machine” on page 21.

The same process discussed for testing FCode programs that are loaded to system
memory can be used to test FCode programs already loaded into ROM on the device.

If you take the device out of the probing sequence, a device node can be built manually
as in the following example for a device installed in PCI slot 1:

ok 10000 constant rom-size
ok "/pci" select-dev

ok " 1" decode-unit (phys.lo phys.mid phys.hi)
ok rom-size map-in (virt)
ok new-device (virt)
ok """ 1,0"set-args (virt)
ok dup 1 byte-load (virt)
ok finish-device (virt)

ok rom-size map-out
ok unselect-dev

This is essentially the same sequence as outlined for evaluating FCode loaded into
system memory except that the user must map in and map out the FCode ROM by
using the decode-unit , map-in , and map-out methods of the parent device node.
For more information about these methods, see Chapter 11 “Memory-Mapped Buses”.

You can browse the device node and exercise the device methods in the same way as
described earlier. You can also define new methods and patch existing ones. Of course
these modifications will only remain until a system reset.

40

Writing FCode Programs for PCI

A

Packages

A package is the set of methods, data and properties that resides in a device node. In
many cases, the terms “device node” and “package” can be used interchangeably;
conventionally, “package” emphasizes the capabilities of and the interface presented
by the set of methods, while “device node” emphasizes the device’s physical nature or
its presence and location within the device tree.

Many packages implement a standard set of functions that provide a standard
interface. Different packages often implement the same interface. For example, there
might be two display device driver packages, each implementing the standard display
device interface, but for two different display devices.

A support package is a group of functions, or methods, that implements a specific
interface. A support package implements a library of functions that may then be called,
as needed, by FCode programs and/or by other packages.

Support packages, which are provided by the system firmware, are independent of any
particular hardware device, but are often related to a particular class of hardware
device. For example, the disk-label support package provides services that are
generally useful to device drivers for disk devices.

Packages and Instances

A package consists of three classes of information:

= Methods

A set of software procedures that define the package’s behavior. Example: a disk
driver would have a read method whose purpose is to read data from a disk into
memory.

m Properties

An externally visible list of names and associated values that identify the package
and its associated device. Example: each package has a name property whose value
is a text string giving the name of the package.

41

s Data

Package data can be global (i.e. static) or private (i.e. instance-specific), and it can be
initialized or zero-filled. The initial values of the initialized data are stored within
the package definition. Example: A disk driver package might have an initialized,
global variable used to keep track of whether the driver has been previously
opened.

Packages exist regardless of whether or not the package is being used. The active
package is the package whose methods and properties are currently visible (i.e. can be
inspected from the User Interface). dev and find-device can be used to change the
active package. However, being the active package only makes a package’s methods
visible; it does not enable the execution of those methods.

Before a package’s methods may be executed, an instance of the package must be
created. You can think of an instance as being a working copy of the package. Any
number of package instances can be created from the same package.

By analogy, an instance is to a package as a multi-processing operating system process
is to the file containing the process’s executable image. In a multi-processing operating
system, a new process is created each time a user executes a given program. Each such
process contains the dynamically alterable data that is associated with the program. If
the user decides to run the same program N times simultaneously, N processes will be
running simultaneously, each with its own copy of the program’s private data. When
the user terminates a process, that process’s copy of the data is destroyed and the
memory used by that process is returned to the operating system without affecting any
other copies of that same program that are running in separate processes.

Similarly, an instance is created from a package by “opening” that package. The act of
opening a package allocates an instance record (i.e. a block of memory used to store the
instance’s data), sets the contents of the instance record to the initial, instance-specific
values stored in the package, and returns an ihandle that is used to identify the instance
subsequently. An instance record is shown in Figure 2

Back pointer allows re-use by Package
all instances of methods,
properties and static data ?
Word List
phandle (contains methods)

-
ihandle L

Instance

atic Specific
Instance

Data]
Properties
Instance Record *

Figure 2 Relationship of Package to Instance Record

Just like the operating system process, multiple instances may be created from the
same package, and may exist simultaneously. However, it is important to note that
there is only one copy of static data and methods for a given package. All instances of

42

Writing FCode Programs for PCI

the package use that common copy. Consequently, instances can pass information to
each other through static data items. Instance-specific data, on the other hand, is
private to each instance. Changes made to the instance-specific data in one instance
record have no affect on any other instance.

Note — There is one exception to the last statement. A package for a plug-in device is
created by evaluating the FCode of that device during the probing process. Since the
evaluation process can execute device methods as well as define them, changes are
sometimes made to the values of instance-specific data during FCode evaluation. At
the end of the probing of the device, the instance-specific data values that exist at that
time are stored in the package and are used as the initialization values for the instance-
specific data for all subsequent usages of the package. An FCode driver can take
advantage of this behavior to acquire information about a device’s configuration in a
particular system at probe time, and then pass this information to all subsequent
instances.

An instance exists until it is terminated by “closing” it. When it is closed, the instance’s
instance record is freed and its ihandle becomes meaningless.

To use the methods or data of a package, an instance of that package must be (at least
temporarily) the current instance. The current instance is the instance whose ihandle is
stored in the value word my-self . The data and methods of the current instance may
be called directly by nhame. The methods (and subsequently the data) of all other
instances can only be called after identifying their instance with its ihandle (as with
$call-method).

When a package method accesses a data item, it refers either to a static data item in the
package or to the copy of an instance-specific data item that is stored in the current
instance’s instance record. The package method has access to the current instance’s
data; the data of all other instances is inaccessible.

A package to be opened is described by a device path or device alias. The process of
opening the package includes opening each of the nodes in the device path from the
root node to the specified device (i.e. from the top of the chain to the bottom). As each
of these nodes is opened, an instance is created for the node and all of these instances
are linked together in an instance chain as shown in Figure 3. When a method is
accessed using the ihandle of the chain, each node in the chain is able to access the
methods of its parent with $call-parent using the my-parent links provided by the
instance chain. (See “Inter-package Calling Methods” on page 49.)

Instance Chain Device Tree

parent

* my-parent

ihandle

Figure 3 An Instance Chain for /pci/fframus

Packages 43

When the chain is no longer needed, the individual instances of the chain may be
closed by successive calling the close method of each node or the entire chain may be
closed by calling close-dev with the ihandle of the chain. In either case, the chain is
closed from bottom to top to enable a given node’s close method to use parental
methods.

The current instance is a very dynamic entity and is changed in several different ways
under several different circumstances. Specifically:

m When a package is first created, new-device
O Creates a new device node that is a child of the currently active package.
O Makes that new node the active package.
O Makes that new node’s instance the current instance.

This causes any instance data/methods that are subsequently created (prior to the
execution of finish-device) to be added to this node, and enables their later
execution when an instance of this node is made current.

m When open-dev creates an instance chain, the current instance is repeatedly
changed as each node of the instance chain is added to the instance chain (i.e. the
root of the chain is first made current while it is being added to the instance chain,
then the first child node is made current while it is added to the chain, and so on
down to the leaf node). Immediately before terminating, open-dev restores the
value in my-self to the value that my-self contained prior to the execution of
open-dev and open-dev returns the ihandle of the leaf node of the newly-created
instance chain. By manipulating the current instance in this way, open-dev is able
to use instance-specific data as required.

m To execute a method not contained in the current instance, $call-method (or one
of its derivatives) is used. $call-method

O Saves the current value of my-self

O Stores its ihandle argument in my-self (thus changing the current instance).
O Executes the specified method.

O Restores the saved value of my-self

m From the User Interface, the current instance can be changed by the user by setting
the value of my-self directly. This is most useful in a debugging scenario when
testing the methods of an opened package. (The select-dev ~ method discussed in
“Using select-dev” on page 35 resets my-self for just this purpose.)

If a package is in the node /packages , $open-package can be used to create an
instance of the package. Unlike packages opened with open-dev , packages opened
with $open-package are opened by themselves without opening their ancestors. Each
time a package instance is created by $open-package , that instance is attached to the
instance that called $open-package . Figure 4 shows the modified instance chain that
results when the /pci/framus instance opens the obp-tftp ~ support package using
$open-package

Notice that the only additional instance that is created is one for the obp-tftp

package, and that this instance is linked to the /pci/fframus instance. If another
instance of obp-tftp were opened by an instance in another instance chain, the
resulting instance of obp-tftp would have no association with the instance shown in
Figure 4.

44

Writing FCode Programs for PCI

Instance Chain Device Tree

data
+ my-parent
data
* my-parent
ihandle @
———p data [P
ihandle returned by $open-package + * my-parent
data /

Figure 4 An Instance Chain for /pci/fframus with obp-tftp Support

Package Data

Package data is named, read/write RAM storage used by package methods. Individual
data items can be either “initialized” or “zero-filled” and either “static” or “instance-
specific”.

m “Static” data can be accessed at any time, regardless of whether or not the package
has been opened. There is only one copy of each static data item, regardless of the
number of currently-open instances of that package. The process of opening a
package does not in itself alter the values of static data items (although you can, of
course, write code to do so explicitly).

m “Instance-specific” data can only be accessed when a previously-opened instance of
its package is the current instance. The process of opening a package creates copies
of its instance-specific data items and establishes their initial values.

“Zero-filled” data items are set to zero when a package is opened.
“Initialized” data items are set to possibly-non-zero initial values when a package is
opened. The initial values are established during the creation of the package.

Initialized data items are created by the Forth defining words defer , value and
variable . Uninitialized data items are created by buffer. . Preceding the defining
word with the Forth word instance causes the defining word to create an instance-
specific item; otherwise the defining word creates a static data item.

Static data items are used for information that applies equally to all instances of the
associated package. For example, virtual addresses of shared hardware resources,
reference counts and hardware dependent configuration data are often stored as static
data.

Instance-specific data items are used for information that differs between instances of
the same package. For example, a package that provides a driver for a SCSI host
adapter might have several simultaneous instances on behalf of several different target
devices; each instance might need to maintain individual state information (e.g. the
negotiated synchronous transfer rate) for its target.

Packages

45

Static and Instance-specific Methods

There are two kinds of package methods, depending on the environment in which they
are called and their use of static and instance-specific data.

“Static methods” are methods that:

m Do not access instance-specific data either directly or by calling other instance-
specific methods.
= Do not attempt to call methods of their parent.

Static methods can be called when there is no open instance of their package. When
there is no instance, there is also no parent instance (which is the reason for the
prohibition about calling parent methods).

The most important example of static methods is the decode-unit method which is
called by the system during the process of searching the device tree without opening
all of the nodes that are encountered.

“Instance-specific methods” are:

= Permitted to use instance-specific data
m Permitted to call the methods of their parent.

There is no structural difference between static and instance-specific methods. The
concept of “static” methods is just a terse way of saying that some methods have to
obey the restrictions outlined above. Instance-specific methods are the usual case; the
static methods restrictions apply only to a very small set of special-purpose methods
(typically residing in expansion bus device nodes).

Defining Methods, Properties and Data

It is possible to add new methods and new properties to a package definition at any
time, even after the package definition has been completed. To do so, make the
package the active package with dev or find-device and create the new definitions or
properties. When you are finished, use device-end to unselect the active package
leaving no package active. Generally speaking, the commands to do this would be put
into nvramrc . (See ““The Script” and the Open Firmware Startup Sequence” on

page 22.)

However, it is not possible to add new data items to a package definition after the
package definition has been completed. This is due to the way in which package data
is stored versus the way package methods and properties are stored.

Package methods and properties are stored in linked lists like a dictionary entry. They
are linked into the method or property list of the package just like those methods and
properties that were created with the original package.

Package data, on the other hand, is stored in a packed array associated with the
package. This data storage method was chosen to improve the performance of data
accesses.

Writing FCode Programs for PCI

At the time a package is first created, Open Firmware allocates a large, temporary data
space that is used to hold data items during package definition. When the package
definition is completed, Open Firmware collapses this temporary area to the minimum
size necessary to hold the data items actually defined. Consequently, there is no place
to store data items added later.

Note - If you attempt to define a new data item within a package, the Open Firmware
implementation that you are using may appear to have created a new data item for you.
However, you may also discover “incorrect” data behavior (e.g. data declared with
instance behaves like static data). Attempting to add new data items to a package
after the package has been defined will, at best, result in non-portable behavior.

Execution Tokens

A method is identified by its execution token, xt . For words in the package being
defined, the Forth word [] returns an execution token. The execution token is
returned by find-method for other packages. (See the following sections for more
details.)

The execution token is used to execute a method in another package, and also to
schedule a method for automatic, repeated execution by the system clock interrupt. See
the alarm FCode.

Intra-package Calling Methods

A package can call its own methods directly simply by naming the target method in a
Forth colon definition. Such calls require neither a call-time name search nor a change
of the current instance. The binding of name to execution behavior occurs at compile
time so subsequent redefinitions of a name do not affect previously-compiled
references to old versions of that named method.

Infrequently, it may be desirable to call a method in the same package so that the name
search happens at run-time. To do so, use either $call-method or

find-method /call-package with my-self astheihandle argument. (See the next
section for details.)

Accessing Other Packages

Packages often use methods of other previously-defined packages. There are two types
of packages whose methods can be used directly:

m The parent of the package being defined.
m Support packages in the /packages node of the device tree.

Phandles and lhandles

A package definition is identified by its phandle . find-package returns the
phandle of a package in the /packages node. The phandle can then used to open
that support package or to examine its properties. For example:

" deblocker" find-package

Packages

47

returns either false (package not found), or phandle true

Opening a support package with open-package returns an ihandle . This ihandle
is used primarily to call the methods of the support package, and to close the support
package when it is no longer needed.

An instance argument string must be supplied when opening any package (it may be
null). The instance argument string can then be accessed from within the opened
package with the my-args FCode (see below for details). For example (assume that
phandle has already been found):

" 5,3,0" phandle open-package (ihandle)

If the package cannot be opened, an ihandle of 0 is returned.

$open-package includes the functions of find-package = and open-package . In
most cases, it can be used in their place. The primitive functions find-package and
open-package are rarely used directly, although find-package is sometimes used
when it’s necessary to examine a support package’s properties without opening it.

The following FCode functions are used to find and open packages (within the
/packages node):

Table 14 Package Access FCodes

Name

Stack Comment Description

find-package

(name-str name-len -- false | phandle true) Finds the package specified by
the string name-str name-len
within /packages . Returns the
phandle of the package, or false if
not found.

open-package

(‘arg-str arg-len phandle -- ihandle | false) Opens an instance of the package
phandle. Returns ihandle for the
opened package, or false if
unsuccessful. The package is
opened with an instance
argument string specified by
arg-str arg-len.

$open-package

(‘arg-str arg-len name-addr name-len -- ihandle | false) Shortcut word to find and open
the package named name-str
name-len within /packages in
one operation. Returns ihandle for
the opened package, or false if
unsuccessful.

An example of using $open-package follows:

" 5,3,0" " deblocker" $open-package (ihandle | 0)

48

Writing FCode Programs for PCI

Table 15 Manipulating phandles and ihandles

Name Stack Comment Description
my-self (-- thandle) Return the instance handle of the currently-executing package
instance.
my-parent (-- ihandle) Return the instance handle of the parent of the currently-executing

package instance.

ihandle>phandle

(ihandle -- phandle) Convert an instance handle to a package handle.

close-package

(ihandle --) Close an instance of a package.

Don’t confuse phandle with ihandle. Here’s how to use them:
1. Open the package with $open-package which returns an ihandle.
2. Use the ihandle to call the methods of the package.

3. When done calling the methods of the package, use the ihandle to close the instance
of the package with close-package

A package’s phandle is primarily used to access the package’s properties which are
never instance-specific. Use ihandle>phandle to find the phandle of an open
package. my-self and my-parent return ihandles, which can be converted into
phandles with ihandle>phandle

Inter-package Calling Methods

The following FCode functions enable the calling of methods of other packages:

Table 16 Method-Access Words

Name Stack Comment Description

$call-method

(... method-str method-len ihandle -- 7??)) Shortcut word that finds and
executes the method method-str
method-len within the package
instance ihandle.

call-package (... xtihandle -- 7??) Executes the method xt within the
instance ihandle.
$call-parent (... method-str method-len -- ?7??) Executes the method method-str
method-len within the parent’s
package instance. ldentical to
calling my-parent
$call-method
execute-device-method (... dev-str dev-len method-str method-len Executes the method method-str
-- ... false | 7?2 true) method-len in the package named
dev-str dev-len. Returns false if the
method could not be executed.
find-method (method-str method-len phandle Finds the method named method-str
-- false | xt true) method-len within the package

phandle. Returns false if not found.

$call-parent is used most-often, but is the least flexible of the above methods; it is
exactly equivalent to the sequence “my-parent $call-method ”. Most inter-package
method calling involves calling the methods of one’s parent; $call-parent
conveniently encapsulates the process of doing so.

Packages

49

$call-method can call methods of non-parent packages. It is most commonly used
for calling methods of support packages. The ihandle argument of $call-method
identifies the package instance whose method is to be called.

For example:

$call-parent
$open-package $call-method

Both $call-parent and $call-method identify their target method by name. The
method-str method-len arguments denote a text string that $call-parent or
$call-method uses to search for a method of the same name in the target instance’s
list of methods. Obviously, this run-time name search is not as fast as directly
executing a method whose address is already known. However:

a) Most packages have a relatively small number of methods,
b) Systems typically implement a reasonably-efficient name search mechanism, and

c) Inter-package calls tend to occur relatively infrequently.
Consequently, the length of time spent searching is usually not a limiting factor.

A more complete example demonstrates the use of $open-package and
$call-method

: add-offset (x.byte# -- X.byte#')
my-args " disk-label" $open-package (ihandle)
" offset” rot (name-addr name-len ihandle)
$call-method

For those rare cases where method name search time is a limiting factor, use
find-method to perform the name search once and then use call-package
repetitively thereafter. find-method returns, and call-package expects, an
“execution token” by which a method can be called quickly as shown in the following
example that is somewhat faster if called repeatedly:

0 value label-ihandle \ Place to save the other package’s ihandle
0 value offset-method \ Place to save found method’s xt
sinit (--)
my-args " disk-label" $open-package (ihandle) to label-ihandle
" offset" label-ihandle ihandle>phandle (name-adr name-len phndle)
find-method if
(xt) to offset-method
else
." Error: can’t find method"
then

: add-offset (d.byte# -- d.byte#’)
offset-method label-ihandle call-package

Writing FCode Programs for PCI

Because device access time often dominates 1/0 operations, the benefit of this extra
code probably won’t be noticed. It is only justified if the particular method will be
called often.

Another use of find-method is to determine whether or not a package has a method
with a particular name. This allows the addition of new methods to an existing
package interface definition without requiring version numbers to denote which new
or optional methods a particular package implements.

With $call-method and $call-parent , the method name search is performed on
every call. Consequently, if a new method (either one with a new name or with the
same name as a previously-existing name) is created, any subsequent uses of
$call-method or $call-parent naming that method will find the new one. On the
other hand, find-method “binds” a name to an execution token and subsequent
redefinitions of that name do not affect the previous execution token, so subsequent
uses of $call-method continue to call the previous definition. In practice, this
difference is rarely important, since it is quite unusual for new methods to be created
when a package is already open. The one case where methods are routinely redefined
“on the fly” is when a programmer does it explicitly during a debugging session;
doing such redefinitions is a powerful debugging technique.

All of the method calling functions described above change the current instance to the
instance of the callee for the duration of the call, restoring it to the instance of the caller
upon return.

execute-device-method and apply

In addition to the inter- and intra-package method calling techniques just described,
there is another way of calling methods that is rarely used by FCode Programs.
execute-device-method and its variant apply allow a user to invoke a method of
a particular package as a “self-contained” operation without explicitly opening and
closing the package as separate operations. execute-device-method first opens all
the package’s parents, then calls the named method, and then closes all the parents.

apply performs the same functions as execute-device-method , but it takes its
arguments from the command line instead of from the Forth stack. It is consequently
somewhat more convenient to use interactively.

execute-device-method and apply are most often used for methods like
selftest . selftest methods are usually called with the test User Interface
command which is usually implemented with execute-device-method

Methods that are intended to be called with execute-device-method or its ilk must
not assume that the package’s open method has been called, because
execute-device-method does not call the open method of the package containing

the target method even though it opens all of the package’s parents. Consequently, the
target method must explicitly perform whatever initialization actions it requires,
perhaps by calling the open method in the same package, or by executing some sub-
sequence thereof. Before exiting, the target method must perform the corresponding
close actions to undo its initialization actions.

execute-device-method was intentionally designed not to call the target’s open
and close methods automatically since the complete initialization sequence of open is
not always appropriate for methods intended for use with execute-device-method

Packages

51

In particular, an open method usually puts its device in a “fully operational” state,
while methods like selftest often need to perform a partial initialization of selected
device functions.

Although execute-device-method can be used with any *“self-contained”
operation, IEEE Standard 1275-1994 specifies its use with the following methods:

m selftest

m test

= test-all

The FirmWorks implementation uses execute-device-method with the following

additional methods:

abort? (Used in the keyboard driver.)

clear (Used in the keyboard driver.)

eject (Used in the floppy driver.)

show-children (Used by probe-scsi in the SCSI driver.)
watch-net (Used in the Ethernet driver.)

Plug-in Device Drivers

Plug-in device drivers are plug-in packages implementing simple device drivers. The
interfaces to these drivers are designed to provide basic /0 capability.

Plug-in drivers are used for such functions as booting the operating system from a
device or displaying text on a device before the operating system has activated its own
drivers. Plug-in drivers are added to the device tree during the probing phase of the
Open Firmware ROM start-up sequence.

Plug-in drivers must be programmed to handle portability issues, such as hardware
alignment restrictions and byte ordering of external devices. With care, you can write a
driver so that it is portable to all of the systems in which the device could be used.

Plug-in drivers are usually stored in ROM located on the device itself, so that the act of
installing the device automatically makes its plug-in driver available to the Open
Firmware ROM.

For devices with no provision for such a plug-in driver ROM, the plug-in driver can be
located elsewhere, perhaps in ROM located on a different device or in an otherwise
unused portion of the main Open Firmware ROM. However, use of such a strategy
limits such a device to certain systems and/or system configurations.

Common Package Methods

Different packages have different collections of methods depending upon the job(s)
that the packages have to do. Having said that, the following four methods are found
in many device drivers. None of them can be considered to be absolutely “required”,
however, since the nature of a given driver governs the methods that the driver needs.

open and close are found in many drivers, but even they are not universally
required. open and close are needed only if the device will be used with open-dev
or another method that calls open-dev . Any device that has read and/or write
methods needs open and close , as does any parent device whose children could
possibly be opened.

52

Writing FCode Programs for PCI

Another way of looking at this is that open and close are needed for devices that are
used to perform a series of related operations distributed over a period of time, relative
so some other calling package. open initializes the device state that is maintained
during the series of later operations, and close destroys that state after the series is
complete.

To illustrate, a series of write calls generated by another package is such a series.
Conversely, selftest is not such a series; selftest happens “atomically” as an
indivisible self-contained operation.

Basic Methods

open (-- ok?)

close (--)

Prepares a package for subsequent use. open typically allocates resources, maps,
initializes devices, and performs a brief sanity check (making no check at all may be
acceptable). true is returned if successful, false if not. When open is called, the
parent instance chain has already been opened, so this method may call its parent’s
methods.

Restores a package to its “not in use” state. close typically turns off devices, unmaps,
and de-allocates resources. close is executed before the package’s parent is closed, so
the parent’s methods are available to close . It is an error to close a package which is
not open.

Supplemental Methods

reset (--)

The following methods are highly recommended.

Puts a package into a quiescent state. reset is not invoked by any standard Open
Firmware functions, but may be explicitly executed for “problem” devices in a
particular Open Firmware implementation. reset is primarily for packages that do
not automatically assume a quiet state after a hardware reset, such as devices that turn
on with interrupt requests asserted.

selftest (-- error#)

Note — United States Patent No. 4,633,466, "Self Testing Data Processing System with
Processor Independent Test Program”, issued December 30, 1986 may apply to some or
all elements of Open Firmware selftest. Anyone implementing Open Firmware should
take such steps as may be necessary to avoid infringement of that patent and any other
applicable intellectual property rights.

Tests the package. selftest is invoked by the Open Firmware test word. It returns
0 if no error found or a package-specific error number if a failure is detected.

test does not open the package before executing selftest , so selftest is
responsible for establishing any state necessary to perform its function prior to starting
the tests, and for releasing any resources allocated after completing the tests. There
should be no user interaction with selftest , as the word may be called from a
program with no user present.

Packages

53

If the device was already open when selftest is called, a new instance will still be
created and destroyed. A well-written selftest should handle this possibility
correctly, if appropriate.

If the device is already open, but it is not possible to perform a complete selftest
without destroying the state of the device, the integrity of the open device should take
precedence, and the selftest process should test only those aspects of the device that
can be tested without destroying device state. The inability to fully test the device
should not be reported as an error result; an error result should occur only if

selftest actually finds a device fault.

The “device already open” case happens most commonly for display devices, which
are often used as the console output device, and thus remain open for long periods of
time. When testing a display device that is already open, it is not necessary to preserve
text that may already be on the screen, but the device state should be preserved to the
extent that further text output can occur and be visible after selftest exits. Any error
messages that are displayed by the selftest method will be sent to the console output
device, so when testing an already-open display device, such error messages should be
avoided during times when selftest has the device in a state where it is unable to
display text.

selftest is not executed within an open /close pair. Consequently, selftest

should be written to do its own mapping and unmapping. When selftest executes,
a new instance is created (and destroyed). It will have its own set of variables, values,
and so forth. These quantities are not normally shared with an instance opened with
the normal open routine for the package.

Package Data Definitions

The following examples show how to create static data items:

variable bar

5 value grinch

defer stub

createivalx,y, z,

7 buffer: foo

ival foo 7 move \ One way to initialize a buffer

The data areas defined above are shared among all open instances of the package. If a
value is changed, for instance, the new value will persist until it is changed again,
independent of the creation and destruction of package instances.

Any open instance of a package can access and change the value of a static data item,
which changes it for all other instances.

The following examples show how to create instance-specific data items, whose values
are not shared among open instances:

instance variable bar

5 instance value grinch
instance defer stub

7 instance buffer: foo

54 Writing FCode Programs for PCI

Instance-specific data areas are re-initialized every time a package instance is created
(usually by opening the package), so each instance gets its own copy of the data area.
For example, changes to bar in one instance will not affect the contents of bar in another
instance. (Note that create operates across all the instances, and cannot be made
instance-specific.)

The total amount of data space needed for a package’s instance-specific data items is
remembered as part of the package definition when finish-device finishes the
package definition. Also, the contents of all the variable s, value s, and defer s at the
time finish-device executes are stored as part of the package definition.

An instance of the package is created when that package is later opened. Data space is
allocated for that instance (the amount of which was remembered in the package
definition). The portion of that data space created with variable , value , or defer is
initialized from the values stored in the package definition. Data space created with
buffer: is set to zero.

You can add new methods and new properties to a package definition at any time,
even after finish-device has been executed for that package. To do so, select the
package and create definitions or properties.

However, it is not possible to add new data items to a package definition after
finish-device has been executed for that package. finish-device sets the size of
the data space for that package, and subsequently the size is fixed.

Note — If you attempt to define a new data item within a package, the Open Firmware
implementation that you are using may appear to have created a new data item for
you. However, you may also discover “incorrect” data behavior (e.g. data declared
with instance behaves like static data). Attempting to add new data items to a package
after the package has been defined will, at best, result in non-portable behavior.

Instance Arguments and Parameters

An instance argument (my-args) is a string that is passed to a package when it is
opened. The string may contain parameters of any sort, based on the needs of the
package, or may simply be a null-string if no parameters are needed. A null string can
be generated with either " " or 0 0.

The instance argument passed can be accessed from inside the package with the
my-args FCode.

Note — A package is not required to inspect the passed arguments.

If the argument string contains several parameters separated by delimiter characters,
you can pick off the pieces from within the package with left-parse-string . You
can use any character as the delimiter; a comma is commonly used for this.

Note — Avoid using blanks or the / character, since these will confuse the parsing of
pathnames.

Packages 55

A new value for my-args is passed every time a package is opened. This can happen
under a number of circumstances:

1. The my-args string will be null when FCode on a PCI card is interpreted
automatically by the Open Firmware system at power-on.

2. The my-args string is set by a parameter to begin-package , which is used to set
up the device tree when Forth source code is downloaded and interpreted
interactively.

3. The my-args string can be set with set-args before a particular slot is probed, if
PCI probing is being controlled from nvramrc .

The above three instances happen only once, when the package FCode is interpreted
for the first time. If you want to preserve the initial value for my-args , the FCode
program should copy it into a static buffer to preserve the information.

Whenever a package is re-opened, a new value for my-args is supplied at that time.
The method for supplying this new value depends on the method used to open the
package, as described below.

1. The instance argument (my-args) is supplied as a string parameter to the
commands open-package or $open-package

2. User Interface commands, such as open-dev , execute-device-method and
test , supply the entire pathname to the device being opened. This approach lets an
instance argument be included within the pathname. For example, to open the PCI
device “INTL,bwtwo” with the argument string “5,3,0”, enter:

ok " /pci/INTL,bwtwo:5,3,0" open-dev

A more complicated (and fictitious) example is the following:

ok " /pci/AAPL,fremly:test/grumpin@7,32:print/INTL,fht:1034,5"
ok open-dev

Here the string “test” is passed to the AAPL,fremly package as it is opened, the string
“print” is passed to the grumpin package as it is opened, and the string “1034,5” is
passed to the INTL,fht package as it is opened.

Package Addresses

Another piece of information available to a package is its address relative to its parent
package. Again, there are two main ways to pass this address to the package:

m Part of the pathname of the package
m A string parameter given to the probe words

As an example of the first method, suppose the following package is being opened:

ok "/pci/scsi/disk@3,0:b" open-dev

56

Writing FCode Programs for PCI

Then the address of the /disk package relative to the /scsi package is 3,0 . Note that
this address must match the initial value of the "reg" property (if present) of the
/disk package.

The package can find its relative address with my-unit , which returns the address as
a pair of numbers. The first number (high) is the number before the comma in the
example above, and the second number (low) is the number after the comma. Note that
these are numbers, not strings.

As an example of the second method, suppose a test version of an FCode package is
being interpreted:

ok 00" 3,0""/pci" begin-package

Here the my-args parameters for the new FCode are null, the initial address is 3,0
and it will be placed under the /pci node.

The initial address can be obtained through my-address and my-space . Typically,
you use my-space and my-address (plus an offset) to create the package’s "reg"
property, and also to map in needed regions of the device.

Package Mappings

Mappings set up by a package persist across instances unless they are explicitly
unmapped. Passing the mapped addresses between instances is not usually worth the
convolutions involved. It is usually better for each new instance to do its own
mappings, being sure to unmap resources as they are no longer needed.

However, if it is unlikely that a particular package will have several open instances at
the same time, it is usually a good idea to maintain only one mapping for all the open
instances, using a reference counter to keep track of the number of open instances. The
variables that store the reference counter and the mapped address must be static, not
instance-specific. When the last instance is closed, the resources should be unmapped.

Modifying Package Properties

To modify the properties of a package, first make it the active package with dev or
find-device . Then create or modify properties by executing property or one of its
short-hand forms. When you are finished, use device-end to unselect the active
package leaving no package active. Generally speaking, the commands to do this
would be put into nvramrc .

See Chapter 5 “Properties®, for more information about properties.

Standard Support Packages

The /packages node of the device tree is special. It has children, but instead of
describing a physical bus, /packages serves as a parent node for support packages.
The children of /packages are general-purpose software packages not attached to any
particular hardware device. The “physical address space” defined by /packages is a
trivial one: there are no addresses. Its children are distinguished by name alone.

Packages

57

The children of /packages were created to simplify the job of writing FCode drivers
for those device types that have a significant amount of work to do that is common to
all devices of a given type and yet is not closely related to the hardware of any given
device. By segregating this common code into the /packages node, individual FCode
drivers are easier to write, are smaller in size, and are easier to debug since much of
the work they must accomplish has been previously written and debugged.

For example, there is a significant amount of network protocol that must be
implemented by every network device. Rather than make each network driver larger
and more complex, the common functions were placed into the obp-tftp package for
use by all network device drivers.

Like any other package, the children of /packages cannot be used until they are
opened, and they must be closed when they are no longer needed. The FCodes
open-package , $open-package and close-package are specifically provided for
opening and closing the children of /packages ; these FCodes work only with children
of /packages

IEEE Standard 1275-1994 defines three support packages that are children of
/packages

= Obp-tftp
= deblocker
= disk-label

Each of these is described in the following sections.

TFTP Booting Support Package

obp-tftp implements the Internet Trivial File Transfer Protocol (TFTP). obp-tftp
allows users to specify the use of “reverse address resolution protocol” (RARP) or the
BOOTP protocol for use in address resolution. obp-tftp is typically used by a
network device driver for its first stage network boot protocol.

obp-tftp implements three methods, open, close and load as shown in Table 17.

Table 17 TFTP Package Methods

Name Stack diagram Description
open (-- okay?) Prepares the package for subsequent use, returning true if the operation
succeeds and false otherwise.
close (--) Frees all resources that were allocated by open.
load (addr -- size) Reads a client program from the default TFTP server, placing the program at

memory address addr and returning its length size.

open and close are used as with any other package to prepare the package for use
and to return the package to an unused condition when it is no longer needed. The
load method, however, is the most interesting method defined by this package from
the perspective of the FCode driver writer.

58

Writing FCode Programs for PCI

Instead of having to write the load method for a network device, the device’s load
method can be implemented simply by calling the obp-tftp load method using
$call-method as shown in the following code fragment.

-1 instance value obp-tftp
:open (--ok?)

" obp-tftp" find-package if (phandle)
my-args (phandle arg$)
rot (‘arg$ phandle)
open-package (ihandle | 0)

else ()
0 (0)

then (ihandle | 0)

dup O=if (0)

." Can't open obp-tftp package" exit
then (ihandle)

to obp-tftp ()

true (true)

:load (addr--len)
" load" obp-tftp $call-method (len)

To enable the use of the support package’s load method, the driver must provide
read and write methods for use by the support package’s load method. For a more
detailed explanation of the use of obp-tftp , see Chapter 8 “Network Devices”.

Deblocker Support Package

The deblocker support package makes it easy to implement byte-oriented device
methods, using the block-oriented or record-oriented methods defined by devices such
as disks or tapes. It provides a layer of buffering between the high-level byte-oriented
interface and the low-level block-oriented interface.

The deblocker support package implements the following methods:

Table 18 Deblocker Package Methods

Name Stack diagram Description
open (-- okay?) Prepares the package for subsequent use, allocating the buffers used by
the deblocking process based upon the values returned by the parent
instance’s max-transfer and block-size methods. Returns true if
the operation succeeds and false otherwise.
close (--) Frees all resources that were allocated by open.
Packages 59

Table 18 Deblocker Package Methods (Continued)

Name

Stack diagram

Description

read

(‘addr len -- actual)

Reads at most len bytes from the device into the memory buffer
beginning at addr . Returns actual, the number of bytes actually read. If
actual is zero or negative, the read operation failed. Uses the parent’s
read-blocks method as necessary to satisfy the request, buffering any
unused bytes for the next request.

write

(‘addr len -- actual)

Writes at most len bytes from the device into the memory buffer
beginning at addr . Returns actual, the number of bytes actually read. If
actual is less than len, the write operation failed. Uses the parent’s
write-blocks method as necessary to satisfy the request, buffering
any unused bytes for the next request.

seek

(pos.lo pos.hi -- status)

Sets the device position at which the next read or write will take
place. Returns 0 or 1 if the operation succeeds and -1 if it fails.

deblocker (which is often used in combination with disk-label) is used to
implement a block device’s read , write and seek methods as shown in the following

code fragment.

-1 instance value deblocker

:open (--ok?)

my-unit " set-address" $call-parent timed-spin if

false exit
then

block-size to /block init-deblocker 0= if

false exit
then

init-label-package 0= if
deblocker close-package false exit

then true

: init-deblocker (-- ok?)
""" deblocker" $open-package dup to deblocker if

true
else

." Can't open deblocker package" cr false

then

:read (addrlen --#read)
" read" deblocker $call-method

:write (addr len -- #written)
" write" deblocker $call-method

: seek (pos.lo pos.hi -- status)
offset-low offset-high d+ " seek" deblocker $call-method

To enable the deblocker , a device driver must provide the block-size , dma-alloc
dma-free , max-transfer |, read-blocks and write-blocks methods. For a more
detailed explanation of the use of deblocker , see Chapter 7 “Block and Byte Devices”.

60

Writing FCode Programs for PCI

Disk-Label Support Package

Disk (block) devices are random-access, block-oriented storage devices with fixed-
length blocks. Disks may be subdivided into several logical “partitions”, as defined by
a disk label—a special disk block, usually the first one, containing information about the
disk. The disk driver is responsible for appropriately interpreting a disk label. The
driver may use the standard support package disk-label if it does not implement a
specialized label.

disk-label interprets the host system’s standard disk label, reading any
“partitioning” information contained in it. It includes a first stage disk boot protocol
for the standard label. In addition, in some systems (e.g. PowerPC systems)

disk-label understands some set of file systems such that individual files can be
accessed.
The disk-label support package implements the following methods:

Table 19 Disk Label Package Methods

Name Stack diagram Description

open (-- okay?) Prepare this package for subsequent use. Returns true if the operation
succeeds and false otherwise.

close (--) Frees all resources that were allocated by open.

load (addr -- size) Reads a client program from the “standard” disk boot block location for the
partition specified when the package was opened. Places the program at
memory address addr, returning its length size.

offset (d.rel-- d.abs) Returns the 64-bit absolute byte offset d.abs corresponding to the 64-bit

partition-relative byte offset d.rel. In other words, adds the byte location of
the beginning of the selected partition to the number on the stack.

To enable disk-label , @ device driver must provide the read and seek methods.
Since deblocker is often used to implement those methods for a driver, disk-label
and deblocker are often both used by a block device. For a more detailed
explanation of the use of disk-label , see Chapter 7 “Block and Byte Devices”.

disk-label is used to implement a block device’s load and offset methods as
shown in the following code fragment.

-1 instance value disk-label
: init-label-package
0 to offset-high 0 to offset-low my-args " disk-label" $open-package
dup to disk-label if
0 0 " offset" disk-label $call-method
to offset-high to offset-low true
else
." Can't open disk label package" cr false
then

:load (addr--len) "load" disk-label $call-method ;

Packages

61

62

Writing FCode Programs for PCI

5

Properties

Properties describe characteristics of hardware devices, software and user choices.
Properties are associated with the device node in which they are created and are
accessible both by Open Firmware routines and by client programs. Properties can be
inspected and, in some cases, modified.

Each property has a property name and a property value.

m Property names are human-readable strings consisting of one to 31 printable, lower-
case letters and symbols not including “/”, “\”, “:”, “[*, “]” or “@”. Property names
beginning with “+” are reserved for future use by IEEE Standard 1275-1994

m Property values specify the contents, or value, of a particular property. The value is
an array of bytes that may be used to encode integer numbers, text strings, or other
forms of information.

Properties are accessed by name. Given a property’s name, it is possible to determine
whether that property has been defined and, if so, what its value is.

Property values are encoded as arrays of zero or more bytes for portability across
machine architectures. The encoding and decoding procedures are defined by IEEE
Standard 1275-1994. The encoding format is independent of hardware byte order and
alignment characteristics. The encoded byte order is big-endian and the bytes are
stored in successive memory locations without any padding.

The format of the property value array associated with a given property name is
specific to that property name. There are five basic types of property value array
formats:
m flag
Since property value arrays may be of zero length, properties may convey “true” or
“false” information by their presence or absence.
m byte

An array of 1 or more bytes is stored in a property value array as a series of
sequential bytes in the property value array.

63

m 32-bit integer

A 32-bit integer is stored in a property value array in four successive bytes with the
most significant byte of the integer in the next available address in the property
value array followed by the high middle, low middle and least significant bytes of
the integer (i.e. in big-endian format).

m text string

A text string of n printable characters is stored in a property value array in n+1
successive locations by storing the string in the first n locations followed by a byte
of zero value (i.e. a null terminated string).

m composite

A composite value is made up of the concatenation of encoded bytes, encoded 32-bit
integers and/or encoded strings. Each such primitive is stored immediately after the
preceding primitive with no intervening space (i.e. the items are “packed”). Some
examples of composite values are:

= physical address range. Encoded as 4 integers: phys.lo phys.mid phys.hi size
= array. The concatenation of n items of some type.

= structure. The concatenation of an arbitrary collection of other types with no
padding or internal alignment.

The standard defines a number of standard properties with specified names and value
formats. If a package uses one of these standard properties then the value format of the
property must be as defined by the standard. Packages may define other properties
whose names do not conflict with the list of standard properties. Such newly defined
properties may have any value format.

Properties may be created by FCode programs. The CPU’s Open Firmware
understands certain property names that tell it such things as the type of a device (e.g.
disk, tape, network, display, etc.). The firmware system uses this information to
determine how to use the device (if at all) during the boot process.

Some operating systems understand other property names that give information used
for configuring the operating system automatically. These properties include the driver
name, the addresses and sizes of the device’s registers, and interrupt levels and
interrupt vectors used by the device.

Other properties may be used by individual operating system device drivers. The
names of such properties and the interpretation of their values is subject to agreement
between the writers of the FCode programs and the operating system driver, but may
otherwise be arbitrarily chosen. For example, a display device might declare width,
height, and depth properties to allow a single operating system driver to automatically
configure itself for one of several similar but different devices.

A package’s properties identify the characteristics of the package and its associated
physical device, if any. You can create a property either with the property FCode, or
with the name, reg , model , and device-type FCodes, described below.

For example, a framebuffer package might export its register addresses, interrupt
levels, and framebuffer size. Every package has an associated property list, which is
arbitrarily extensible. The user interface command .properties displays the names
and values of the current node’s properties.

64

Writing FCode Programs for PCI

For example, if a property named foo is created in a device node which already has a
property named foo, the new property supersedes the old one.

New properties can be added during the lifetime of a product. For backward
compatibility, an FCode or device driver program that needs the value of a particular
property should determine whether or not the property exists and, if not, the program
should supply its own default value.

Standard FCode Properties

IEEE Standard 1275-1994 defines the following standard properties. A package should
never create any property using any of the following names, unless the defined
meanings and structures are used.

Standard Property Names

This group of properties applies to all device nodes regardless of type. The "name"
property is required in all packages. The remaining properties are optional.

= "name”

Defines the name of the package.
= "reg”

Defines the package’s address space(s).
= "device_type"

Defines the characteristics that the device is expected to have.
= “"model"

Defines the manufacturer’s model number.
= "interrupts”

Defines the interrupts used by the device.
= “address”

Specifies the virtual addresses of one or more memory-mapped regions of the
device.

= "compatible"

Specifies a list of devices with which this device is compatible.
= "status"

Indicates the operational status of the device.

Display Device Properties

Display devices include bit-mapped frame buffers, graphics displays and character-
mapped displays. Display devices are typically used for console output. The following
properties are specific to display devices:

m "big-endian-aperture"”
Specifies the big endian aperture of the frame buffer.

Properties

65

"character-set"
Specifies the character set (e.g. 1ISO8859-1).

= "depth”
Specifies the number of bits in each pixel of the display.
= "height"
Specifies the number of pixels in the “y” direction of the display.
= "linebytes"
Specifies the number of pixels between consecutive scan lines of the display.
m little-endian-aperture”
Specifies the little endian aperture of the frame buffer.
"width"
Specifies the number of pixels in the “x” direction of the display.

Network Device Properties

Network devices are packet-oriented devices capable of sending and receiving
Ethernet packets. Network devices are typically used for booting.

m "local-mac-address"
Specifies the pre-assigned network address.

= "mac-address"
Specifies the last used network address.

= "address-bits"

Specifies the number of address bits needed to address this device on the physical
layer.

= "max-frame-size"
Specifies the maximum packet size that the device can transmit at one time.

Memory Device Properties

Memory devices are traditional random-access memory, suitable for temporary storage
of data.

m Teg

Specifies the physical addresses actually installed in the system.

= "available"

Specifies the regions of physical addresses that are currently unallocated by Open
Firmware.

MMU Properties

A memory management unit (MMU) is a device that performs address translation
between a CPU'’s virtual addresses and the physical addresses of some bus, typically
the bus represented by the root node.

66 Writing FCode Programs for PCI

"available"

Specifies the regions of physical addresses that are currently unallocated by Open
Firmware.

"existing"
Specifies all of the regions physical addresses actually installed in the system.
"page-size"

Specifies the number of bytes in the smallest mappable region of virtual address
space.

"translations”
Describes the address translations currently in use by Open Firmware.

General Properties For Parent Nodes

"#address-cells"

Defines a device node’s address format.

"#size-cells"

Specifies the number of cells that are used to encode the size field of a child’s "reg"
property.

"ranges”

Defines the relationship between the physical address spaces of the parent and child
nodes.

Properties For PCI Parent Nodes

"#address-cells"
The value of this property for a PCI bus node is 3.

"#size-cells"

The value of this property for a PCI bus node is 2, reflecting the 64-bit address space
of PCI.

"device_type"

The value of this property for a PCI bus node is “pci”.

reg

For nodes representing PCI-to-PCl bridges, the value denotes the Configuration
Space address of the bridges’s configuration registers. The format is the same as that
for PCI child nodes.

For nodes representing bridges from some other bus to PCI, the format is as defined
for the other bus.

"bus-range"
Specifies the range of bus numbers controlled by this PCI bus.

"slot-names"

Describes the external labeling of add-in slots.

Properties

67

Properties for PCI Child Nodes

The following definitions are specified by the PCI Bus Binding to IEEE Standard 1275-
1994,

m Teg

This standard property is mandatory for PCI Child nodes.

= "interrupts”

The presence of this property indicates that the function represented by this node is
connected to a PCI expansion connector’s interrupt line.

= “alternate-reg"
Defines alternate access paths for addressable regions.

= "has-fcode"

The presence of this property indicates that this node was created by the evaluation
of an FCode program.

m "assigned-addresses"
Defines the Configuration Space’s base address and size.

m "power-consumption”

Describes the device’s maximum power consumption categorized by the various
power rails and the device’s power-management state.

Each of the following PCI child node properties is created during the probing process,
after the device node has been created, and before evaluating the device’s FCode (if
any). The property values are those found in the standard PCI configuration registers.

Unless otherwise specified, each of the following properties has a property value
created by encoding the value contained in the associated hardware register with
encode-int

"vendor-id"
"device-id"
"revision-id"
"class-code”
"interrupts”

This property is present only if the Interrupt Pin register is non-zero.

"min-grant”
"max-latency"”
"devsel-speed"
"fast-back-to-back"

This property is present only if the “fast-back-to-back” bit (Bit 7) of the function’s
Status Register is set.

Writing FCode Programs for PCI

Detailed Descriptions of Standard Properties

"#address-cells"

"#size-cells"

"address"

"address-bits"

This property applies only to bus nodes. It specifies the number of cells that are used to
represent a physical address with a bus’ address space. The value for PCI bus nodes is
3.

This property applies only to bus nodes. It specifies the number of cells used to
represent the length of a physical address range (i.e. the “size” field of a child’s "reg"
property. The value for PCI bus nodes is 2.

This property declares currently-mapped device virtual addresses. It is generally used
to declare large regions of existing mappings, in order to enable the operating system
device driver to re-use those mappings, thus conserving system resources. This
property should be created after virtual addresses have been assigned by mapping
operations, and should be deleted when the corresponding virtual addresses are
unmapped.

The property value is an arbitrary number of virtual addresses. The correspondence
between declared addresses and the set of mappable regions of a particular device is
device-dependent.

-1 value my-buffers

-1 value my-dma-addr

: map-me (--)
my-address my-space 1.0000 " map-in" $call-parent (virtl)
to my-buffers
2000 " dma-alloc" $call-parent (virt2) to my-dma-addr
my-buffers encode-int my-dma-addr encode-int encode+
" address" property

:unmap-me (--)
my-dma-addr 2000 " dma-free" $call-parent
my-buffers 1.0000 " map-out" $call-parent
" address" delete-property

See also: free-virtual, property

This property, when declared in “network ” devices, indicates the number of address
bits needed to address this device on its network. Used as:

d# 48 encode-int " address-bits" property

See also: property and Chapter 8 “Network Devices”.

Properties

69

"alternate-reg"

This property describes alternative access paths for the addressable regions described
by the "reg" property. Typically, an alternative access path exists when a particular
part of a device can be accessed either in memory space or in 1/0 space, with a
separate base address register for each of the two access paths. The primary access
paths are described by the "reg" property and the secondary access paths, if any, are
described by the "alternate-reg" property.

If no alternative paths exist, the "alternate-reg" property should not be defined. If
the device has alternative access paths, each entry (i.e. each phys-addr size pair) of its
value represents the secondary access path for the addressable region whose primary
access path is in the corresponding entry of the "reg" property value. If the number of
"alternate-reg" entries exceeds the number of "reg” property entries, the
additional entries denote addressable regions that are not represented by "reg"
property entries, and are thus not intended to be used in normal operation; such
regions might, for example, be used for diagnostic functions. If the number of

"alternate-reg" entries is less than the number of "reg" entries, the regions
described by the extra "reg" entries do not have alternative access paths. An
"alternate-reg" entry whose phys.hi component is zero indicates that the

corresponding region does not have an alternative access path; such an entry can be
used as a “place holder” to preserve the positions of later entries relative to the
corresponding "reg" entries. The first "alternate-reg" entry, corresponding to the
"reg" entry describing the function’s Configuration Space registers, has a phys.hi
component of zero.

The property value is an arbitrary number of (phys-addr, size) pairs where:
m phys-addr is (phys.lo phys.mid phys.hi), encoded with encode-phys

m Size is a pair of integers, each encoded with encode-int . The first integer denotes
the most-significant 32 bits of the 64-bit region size and the second integer denotes
the least-significant 32 bits thereof.

"assigned-addresses”

This property describes the location and size of regions of physical address space that
are specified in the device’s Configuration Space base address registers.

The property value is zero to six (phys-addr, size) pairs where:
m phys-addr is (phys.lo phys.mid phys.hi), encoded with encode-phys

m Size is a pair of integers, each encoded with encode-int . The first integer denotes
the most-significant 32 bits of the 64-bit region size and the second integer denotes
the least-significant 32 bits thereof.

Each entry [i.e. (phys-addr, size) pair] in this property value corresponds to one (or two
in the case of 64-bit-address Memory Space) of the function’s Configuration Space base
address registers. The entry indicates the physical address that has been assigned to
that base address register, and the size in bytes of the assigned region. The size is a
power of two (since the structure of PCI Base Address registers forces the decoding
granularity to powers of two). Please see the glossary entry for this property for a
complete description of the formatting details.

70

Writing FCode Programs for PCI

"available"

Note: There is no implied correspondence between the order of entries in the "reg"
property value and order of entries in the "assigned-addresses" property value.
The correspondence between the "reg" entries and "assigned-addresses" entries
is determined by matching the fields denoting the Base Address register.

This property defines the resources that are managed by this package (i.e. /memory or
/mmu) that are currently available for use by a client program.

The property value is an arbitrary number of (phys-addr, length) pairs where:
m phys-addr is a phys.lo phys.mid phys.hi list of integers encoded with encode-int

m length (whose format depends on the package) is one or more integers, each encoded
with encode-int

"big-endian-aperture"

"bus-range"

"character-set"

"class-code"

This property is associated with "display” devices. Encoded identically to "reg" for
the corresponding bus, the property value contains the address of the big endian
“aperture” of the frame buffer (i.e. the address range through which the frame buffer
can be addressed in big endian mode).

This property specifies the range of bus numbers controlled by this PCI bus.

The property value is two integers, each encoded with encode-int . The first integer
represents the bus number of the PCI bus implemented by the bus controller
represented by this node. The second integer represents the largest bus number of any
PCI bus in the portion of the PCI domain that is subordinate to this node.

This property, when declared in “display ” devices, indicates the recognized character
set for the device. The property value is a text string.

A typical value is “1SO8859-1 . 8859-1 is the number of the ISO specification for that
particular character set, which essentially covers the full range of western European
languages. To get a list of possible values, consult the X registry for which there is an
address in the X11R5 documentation.

Used as:

"1S08859-1" encode-string " character-set" property

See also: property , Chapter 10 “Display Devices”

This property contains the value of the “Class Code” register from the Configuration
Space header. That register identifies the generic function of the device and (in some
cases) a specific register-level programming interface.

The property value is the register’s value encoded with encode-int

See also: PCI Local Bus Specification

Properties

71

"compatible”

"depth"

"device-id"

"device_type"

This property specifies a list of devices with which this device is compatible. The
property is typically used by client programs to determine the correct driver to use
with the device in those cases where the client program does not have a driver which
matches the "name" property.

The property value is the concatenation (with encode+) of an arbitrary number of text
strings (encoded with encode-string) wherein each text string follows the
formatting conventions as described for the "name" property.

Note — At the time of this writing, the Open Firmware Working Group is considering
the adoption of a new “recommended practice” on the topic “Generic Names”. Once
this recommended practice is adopted, you are strongly encouraged to follow its
recommendations which affect the usage of the name and compatible properties.
Recommended practice documents can be obtained as described in “Related Books and
Specifications” on page xvi.

See also: "name"

This property is associated with "display” devices. Encoded with encode-int |, the
property value specifies the number of bits in each pixel of the display.

This property contains the value of the “Device ID” register from the Configuration
Space header. That register identifies the particular device. The encoding of the register
is determined by the device vendor.

The property value is the register’s value encoded with encode-int

See also: PCI Local Bus Specification

This property declares the type of this plug-in device. The type need not be declared,
unless this device is intended to be usable for booting. If this property is declared,
using one of the following key values, the FCode program must follow the required
conventions for that particular type of device, by implementing a specified set of
properties and procedures (methods). Used as:

" display" encode-string " device_type" property

Defined values for this property are:

Table 20 Standard Device Types

Device Type

Device Characteristics

block

byte

Randome-access, block-oriented device, such as a disk drive, usable as a boot file source. See
Chapter 7 “Block and Byte Devices” for the requirements of this type of device.

Random-access, byte-oriented device, such as a tape drive, usable as a boot file source. See
Chapter 7 “Block and Byte Devices” for the requirements of this type of device.

72

Writing FCode Programs for PCI

Table20 Standard Device Types (Continued)

Device Type Device Characteristics

display Framebuffer or other similar display device, usable for message display during booting. See
Chapter 10 “Display Devices” for the requirements of this type of device.

memory Random-access memory device. See IEEE Standard 1275-1994 for the requirements of this type
of device.

network Packet-oriented network device, such as Ethernet, usable as a boot file source. See Chapter 8
“Network Devices” for the requirements of this type of device.

pci A PCI bus node to which PCI plug-in devices can be attached. See Chapter 11
“Memory-Mapped Buses” for the requirements of this type of device.

serial Byte-oriented device, such as a serial port, usable for console input and/or console output. See

Chapter 9 “Serial Devices” for the requirements of this type of device.

"devsel-speed”

See also: device-type , property

This property contains the value of the “DEVSEL timing” field (Bits 9-10) of the
“Status” register from the Configuration Space header. That field describes the timing
of the DEVSEL# output of the device.

The property value is the register’s value encoded with encode-int . A value of 0
indicates “fast”, 1 indicates “medium” and 2 indicates “slow” timing.

See also: PCI Local Bus Specification
m "existing"
Specifies all of the regions physical addresses actually installed in the system.

"fast-back-to-back"

"has-fcode"

"height"

"interrupts"

This property should be present only if the “Fast Back-to-Back Capable” field (Bit 7) is
set in the “Status” register from the Configuration Space header. That field indicates
whether the device is capable of accepting fast back-to-back transactions when the
transactions are not to the same agent.

See also: PCI Local Bus Specification

This property should be present only if the creation of this device node involved the
evaluation of an FCode program as opposed to completely automatic creation from
information in configuration registers.

This property is associated with "display" devices. Encoded with encode-int , the

property value specifies the number of displayable pixels in the “y” direction of the
display.

For PCI devices, this property should be present only if the function represented by
this node is connected to a PCI expansion connector’s interrupt line. The value of this
property is determined from the contents of the “Interrupt Pin” register from the
Configuration Space header.

Properties

73

"linebytes"

The property value is the register’s value encoded with encode-int . The defined
values are:

Table 21 “interrupts" Property Value Encoding

Value Description

1 The device uses the INTA# interrupt line

The device uses the INTB# interrupt line

2
3 The device uses the INTC# interrupt line
4 The device uses the INTD# interrupt line

The "interrupts” property is used to report the interrupt pin that the card uses,
strictly within the domain of interrupts defined by the PCI specification.

It is the responsibility of the operating system’s PCI bus driver code to translate the
interrupts reported by its children into the interrupt domain of its parent.

This makes it possible to write portable, system-independent FCode drivers, because
the FCode driver does not need to know system-specific information about the way
that the system handles interrupts. The system-specific information is known by the
code that handles the system component that actually performs the hardware mapping
from PCI interrupt pins to whatever interrupt facitilies exist on the system.

In some cases, the mapping may even be hierarchical. For example, a NuBus-to-PCIBus
bridge might translate PCI interrupt pins into NuBus interrupt vectors, then a
VMEBus-to-NuBus bridge might translate NuBus interrupt vectors into VME levels,
then a host-to-VMEBuUs bridge might translate VME levels into IRQs.

See also: PCI Local Bus Specification

This property is associated with "display" devices. Encoded with encode-int , the
property value specifies the number of pixels between consecutive scan lines of the
display.

"little-endian-aperture"

This property is associated with "display” devices. Encoded identically to "reg" for
the corresponding bus, the property value contains the address of the little endian
“aperture” of the frame buffer (i.e. the address range through which the frame buffer
can be addressed in little endian mode).

"local-mac-address"

This property, used with devices whose "device_type" is “network ”, should be
present only if the device has a built-in, 48-bit, IEEE 802.3-style Media Access Control
(MAC) address. The system may or may not use this address in order to access this
device.

Used as:

" "(08,04,fe,23,46,9¢e)" encode-bytes " local-mac-address" property

See also: mac-address , "mac-address" , property , and Chapter 8 “Network

74

Writing FCode Programs for PCI

"mac-address"

Devices”.

This property must be created by the open method of “network ” devices to indicate
the Media Access Control (MAC) address that this device is currently using. This value
may or may not be the same as the "local-mac-address" property, if any. This
property is typically used by client programs that need to determine which network
address was used by the network interface from which the client program was loaded.

The property value is the six byte MAC address encoded with encode-byte
Here’s how it all fits together.

1. If a plug-in device has an assigned MAC address from the factory, this address is
published as the value for "local-mac-address"

2. The system (based on various factors such as presence or absence of
"local-mac-address” and/or the value of the NVRAM parameter
"local-mac-address?") decides which address it prefers the plug-in device to
use. The value returned by the mac-address FCode is set to this address.

3. The plug-in device then reports the address which it is actually using by publishing
the "mac-address” property.

The following are code examples for three typical situations.

For a well-behaved plug-in “network device (which has a factory-unique MAC
address but can use another system-supplied MAC address if desired by the system),
the FCode would appear as:

" "(08,04,fe,23,46,9e)" encode-bytes " local-mac-address" property
mac-address encode-bytes " mac-address" property
('plus code to "assign™ the correct mac-address value into registers)

For a plug-in “network™ device that has a factory-unique MAC address and is unable
to alter its behavior to a different address, the FCode would appear as:

" "(08,04,fe,23,46,9¢e)" encode-bytes " local-mac-address" property
" "(08,04,fe,23,46,9¢e)" encode-bytes " mac-address" property

For a plug-in “network ” device which does not have any built-in MAC address, the
FCode would appear as:

mac-address encode-bytes " mac-address" property
(plus code to "assign™ the correct mac-address value into registers)

See also: mac-address , "local-mac-address" , property and Chapter 8
“Network Devices”.

Properties

75

"max-frame-size"

"max-latency”

"min-grant”

"model"

This property, when declared in “network * devices, indicates the maximum packet
size (in bytes) that the physical layer of the device can transmit. This property is can be
used by client programs to allocate buffers of the appropriate length.

Used as:

4000 encode-int " max-frame-size" property

See also: property and Chapter 8 “Network Devices”.

This property contains the value of the “Max_Lat” register from the Configuration
Space header. That register specifies how frequently the device needs to gain access to
the PCI bus. The value is given in units of 250 nanoseconds. A value of zero indicates
that the device has no major requirements for the setting of the Latency Timers.

The property value is the register’s value encoded with encode-int

See also: PCI Local Bus Specification

This property contains the value of the “Min_Gnt” register from the Configuration
Space header. That register specifies how long a burst period the device needs
assuming a clock frequency of 33 MHz. The value is given in units of 250 nanoseconds.
A value of zero indicates that the device has no major requirements for the setting of
the Latency Timers.

The property value is the register’s value encoded with encode-int

See also: PCI Local Bus Specification

This property identifies the model name and number (including revision) for a device,
for manufacturing and field-service purposes.

The "model" property is useful to identify the specific piece of hardware (the plug-in
card), as opposed to the "name" property (since several different but functionally-
equivalent cards would have the same "name" property, thus calling the same device
driver). Although the "model" property is good to have in general, it generally does
not have any other specific purpose.

The property value format is arbitrary, but conventional usage is to begin the string
with the manufacturer’s name (as with the "name" property) and to end the string
with the revision level.

Used as:

"INTL,501-1415-1" encode-string " model" property

See also: "name" , model , property

76

Writing FCode Programs for PCI

"name"

This property specifies the manufacturer’s name and device name of the device. All
device nodes must publish this property. The "name" property can be used to match a
particular operating system device driver with the device.

The property value is an arbitrary string consisting of one to 31, case-sensitive letters,
numbers and/or characters from the set {, . _ + - }. The string may contain at most one
comma. Embedded spaces are not allowed.

IEEE Standard 1275-1994 specifies three different formats for the manufacturer’s name
portion of the property value.

For United States companies that have publicly listed stock, the most practical form of
name is to use the company’s stock symbol (e.g. INTL for Intel Corporation). This
option is also available to any company anywhere in the world provided that there is
no duplication of the company’s stock symbol on either the New York Stock Exchange
or the NASDAQ exchange. If a non-U.S. company’s stock is traded as an American
Depository Receipt (ADR), the ADR symbol satisfies this requirement. A prime
advantage of this form of manufacturer’s name is that such stock symbols are very
human-readable.

An alternative is to obtain an organizationally unique identifier (OUI) from the IEEE
Registration Authority Committee. This is a 24-bit number that is guaranteed to be
unique world-wide. Companies that have obtained an OUI would use a sequence of
hexadecimal digits of the form “ONNNNNN” for the manufacturer’s name portion of
the property. This form of name has the disadvantage that the manufacturer is not
easily recognizable.

For those companies that neither have stock that trades publically on a U. S. stock
exchange nor have an OUI, a name may be constructed that contains at least one lower
case letter or is longer than five characters thereby making it unlike a stock symbol
(e.g. Fujitsu).

Each manufacturer may devise its own format for the device name portion of the
property value.

An example usage is:

" INTL,bison-printer" encode-string " name" property

The device-name method may also be used to create this property.

Note — At the time of this writing, the Open Firmware Working Group is considering
the adoption of a new “recommended practice” on the topic “Generic Names”. Once
this recommended practice is adopted, you are strongly encouraged to follow its
recommendations which affect the usage of the name and compatible properties.
Recommended practice documents can be obtained as described in “Related Books and
Specifications” on page Xxvi.

See also: device-name , property , compatible

Properties

77

"page-size"”

This property specifies the number of bytes in the smallest mappable region of virtual
address space managed by the /mmu package.

"power-consumption”

This property describes the device’s maximum power consumption (in microwatts)
categorized by the various power rails and the device’s power-management state
(standby or fully-on).

The property value is a list of up to ten integers encoded with encode-int in the
following order:

unspecified standby
unspecified full-on
+5V standby

+5V full-on

+3.3V standby
+3.3V full-on

170 power standby
1/0 power full-on
reserved standby
reserved full-on

The “unspecified” entries indicate that it is unknown how the power is divided among
the various rails. The “unspecified” entries must be zero if any of the other entries are
non-zero. The “unspecified” entries are provided so that the "power-consumption”
property can be created for devices without FCode, from the information on the
PRSNT1# and PRSNT2# connector pins.

If the number of integers in the encoded property value is less than ten, the power
consumption is zero for the cases corresponding to the missing entries. For example, if
there are four integers, they correspond to the two “unspecified” and the two “+5”
guantities, and the others are zero.

The following code would create a "power-consumption” property for a device with
+5V standby consumption of 100 mA and +5V full-on consumption of 2.5A:

0 encode-int 0 encode-int encode+ \ Set unspecified values to zero

500000 encode-int encode+ \ 100 mMA@5V = 500,000 uW standby
12500000 encode-int encode+ \ 2.5A@5V = 12,500,000 uW full-on

" power-consumption" property

"ranges"

The "ranges" property is a list of child-to-parent bus-specific address translations
required for most bus node devices.

“ranges" is a property for those bus devices whose children can be accessed with
CPU load and store operations (as opposed to buses like SCSI, whose children are
accessed with a command protocol).

78 Writing FCode Programs for PCI

The "ranges" property value describes the bus-specific address translation that
defines the correspondence between the part of the physical address space of the bus
node’s parent available for use by the bus node (the parent address space), and the
physical address space defined by the bus node for its children (the child address
space).

The "ranges" property value is a sequence of (child-phys, parent-phys, size)
specifications where:

m child-phys is a starting address in the child physical address space defined by the bus
node.

m parent-phys is a starting address in the physical address space of the parent of the
bus node.

m size is the length in bytes of the child’s address range.

The specification means that there is a one-to-one correspondence between the child
addresses and the parent addresses within that range. The parent addresses given are
always relative to the parent’s address space.

child-phys is an address in the child address space encoded with encode-phys . For
PCI, this means an address specification of the form phys.hi phys.mid phys.lo.

parent-phys is an address in the parent address space encoded with encode-phys

The number of integers in each size entry is determined by the value of the
#size-cells property of the node in which the ranges property appears. In the case
of PCI, size is a list of two integers. The integers of the size entry are encoded with
encode-int

For a PCI node in a PowerPC Reference Platform (PPCRP) compliant machine, the total
size of each such specification is six 32-bit numbers (one for the parent address space,
three for the child address space, and two for the size). Successive specifications are
encoded sequentially. A space with length 2**(number of bits in a machine word) is
represented with a size of 0.

It is recommended (and not required) that the specifications be sorted in ascending
order of child-phys. The address ranges thus described need not be contiguous in either
the child space or the parent space. Also, the entire child space must be described in
terms of parent addresses, but not all of the parent address space available to the bus
device need be used for child addresses (the bus device might reserve some addresses
for its own purposes, for instance).

In the PPCRP machine example, consider a 4-slot 32-bit PCI bus attached to a machine
whose physical address space consists of a 32-bit “memory” space (Bit 31 = 0) and a 32-
bit “1/0” space (Bit 31 = 1).

m ISA 1/0 space appears in the parent’s “I/0” space at 0x8000.0000 and has a size of
0x1.0000.

m A reserved block of addresses begins at 0x8001.0000 and has a size of 0x7f.0000.
PCI configuration space begins at 0x8080.0000 and has a size of 0x80.0000. The
configuration registers of the individual PCI slots appear at addresses 0x8080.1000,
0x8080.2000, 0x8080.4000, and 0x8080.8000.

PCI 1/0 space begins at 0x8100.0000 and has a size of 3e80.0000.
Parity/interrupt vectors begin at 0xbf80.0000 and have a size of 0x80.0000.
PCI memory space begins at 0xc000.0000 and has a size of 3f00.0000.

Properties

79

The PCI device defines:

m Configuration spaces for Devices 1 through 4 that each begin at 0x0000.0000 and
have a size of 0x100 bytes.

m ISA 1/0 space that begins at 0x0000.0000 and has a size of 0x1.0000.

m PCI 1/0 space that begins at 0x0100.0000 and has a size of 0x3e80.0000.

= A 32-bit, PCl memory space that begins at 0x0000.0000 and has a size of 0x3f00.0000.

The "ranges" property for the PCI device would contain the encoded form of the
following sequence of numbers:

Table 22 Child-Parent Address Relationships for a PCI Node in a PPCRP Machine

] Child Address Parent Size
Function
phys.hi | phys.mid | physlo | Address size.hi size.lo

SIO 0000.0000 | 0000.0000 | 0000.0000 | 8080.0800 | 0000.0000 | 0000.0800
SCSI 0000.0800 | 0000.0000 | 0000.0000 |8080.1000 | 0000.0000 | 0000.0800
Slot A 0000.1000 | 0000.0000 | 0000.0000 | 8080.2000 | 0000.0000 | 0000.0800
Slot B 0000.1800 | 0000.0000 | 0000.0000 | 8080.4000 | 0000.0000 | 0000.0800
Slot C 0000.2000 | 0000.0000 | 0000.0000 | 8080.8000 | 0000.0000 | 0000.0800
ISA 1/0 space 0100.0000 | 0000.0000 | 0000.0000 |8000.0000 | 0000.0000 |0001.0000
PCI 1/0 space 0100.0000 | 0000.0000 |0100.0000 |8100.0000 | 0000.0000 | 3e80.0000
PCI Memory space | 0200.0000 | 0000.0000 | 0000.0000 | c000.0000 | 0000.0000 | 3f00.0000

Here the phys.hi component of the child address represents the type of address space
and the PCI device numbers, and Bit 31 of the parent address represents “I/O space.”
(Please see the PCI Bus Binding to IEEE Standard 1275-1994 for a detailed description of
the encoding of the phys.hi field.)

The code to create this "ranges” property is:

\ SIO Configuration Space

0000.0000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8080.0800 encode-int encode+

0 encode-int encode+ 800 encode-int encode+

\ SCSI Configuration Space

0000.0800 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8080.1000 encode-int encode+

0 encode-int encode+ 800 encode-int encode+

\ Slot A Configuration Space

0000.1000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8080.2000 encode-int encode+

0 encode-int encode+ 800 encode-int encode+

\ Slot B Configuration Space

0000.1800 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8080.4000 encode-int encode+

0 encode-int encode+ 800 encode-int encode+

Writing FCode Programs for PCI

reg

\ Slot C Configuration Space

0000.2000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8080.8000 encode-int encode+

0 encode-int encode+ 800 encode-int encode+

\ ISA I/O space

0100.0000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
8000.0000 encode-int encode+

0 encode-int encode+ 1.0000 encode-int encode+

\ PCI I/O space

0100.0000 encode-int encode+ 0 encode-int encode+ 100.0000 encode-int
encode+

8100.0000 encode-int encode+

0 encode-int encode+ 3e80.0000 encode-int encode+

\ PCI Memory space

0200.0000 encode-int encode+ 0 encode-int encode+ 0 encode-int encode+
¢000.0000 encode-int encode+

0 encode-int encode+ 3f00.0000 encode-int encode+

" ranges" property

If "ranges" exists but its value is of 0 length, the bus’s child address space is identical
to its parent address space.

If the "ranges” property for a particular bus device node is nonexistent, code using
that device should use an appropriate default interpretation. Some examples include
the following:

m Root node: The root node has no parent. Therefore the correspondence between its
child and parent address spaces is meaningless, and there is no need for "ranges"

m SCSI host adapter node: The child address space is not directly addressable, thus
"ranges” would be meaningless.

m For memory-mapped bus devices where a "ranges" property would be
meaningful, the absence of a "ranges" property is conventionally interpreted to
mean that the parent and child address spaces are identical.

The distinction between "reg" and "ranges” is as follows:

m "reg" represents the actual device registers in the parent address space. For a bus
adapter, this would be such as configuration/mode/initialization registers.

m ranges” represents the correspondence between a bus adapter’s child and parent
address spaces.

Most packages do not need to be concerned with "ranges" . This property is mainly
used for bus bridges. The firmware system does not itself use the "ranges" property.
"ranges” is mainly used by operating systems that wish to auto-configure
themselves.

See also: Chapter 11 “Memory-Mapped Buses”.

This property defines the device’s addressable regions in its parent’s address space.

Properties

81

This property is mandatory for PCI Child Nodes, as defined by IEEE Standard 1275-
1994. The property value consists of a sequence of (phys-addr, size) pairs. In the first
such pair, the phys-addr component is the Configuration Space address of the beginning
of the function’s set of configuration registers and the size component is zero. Each
additional (phys-addr, size) pair specifies the address and characteristics of an
addressable region of Memory Space or I/0 Space associated with the function
including the PCI Expansion ROM.

For a PCI device, the order of the pairs should be:

m An entry describing the Configuration Space for the device.

m An entry for each active base address register (BAR), in Configuration Space order,
describing the entire space mapped by that BAR.

= An entry describing the Expansion ROM BAR, if the device has an Expansion ROM.

= An entry for each non-relocatable addressable resource.

In the event that a function has an addressable region that can be accessed relative to
more than one Base Address Register (for example, in Memory Space relative to one
Base Register, and in 1/0 Space relative to another), only the primary access path
(typically, the one in Memory Space) is listed in the "reg" property, and the secondary
access path is listed in the "alternate-reg" property.

The property value consists of one or more (phys-addr size) pairs. For PCI, phys-addr is
(phys.lo phys.mid phys.hi), encoded with encode-phys , and size is a pair of integers,
each encoded with encode-int . The first integer denotes the most-significant 32 bits
of the 64-bit region size, and the second integer denotes the least-significant 32 bits
thereof.

For example, to declare a PCI device with:

m A register field of size 0x100 in 32-bit memory space that is controlled by the first
32-bit base address register.

m A register field of size 0x380 in 1/0 space that is controlled by the second 32-bit base
address register. The register field of interest is offset from the base address register
by 0x20.0000.

m A 128Kbyte PCI Expansion ROM.
= A non-relocatable field at O-fff in 1/0 space.

use the following:

hex

my-address my-space encode-phys \ Config space regs
0 encode-int encode+ 0 encode-int encode+

0 0 my-space 0200.0010 or encode-phys encode+ \ Memory space

0 encode-int encode+ 100 encode-int encode+ \ BAR at 0x10
20.0000 0 my-space 0100.0014 or encode-phys \ I/O space
encode+ \ BAR at 0x14

0 encode-int encode+ 380 encode-int encode+

0 0 my-space 0200.0030 or encode-phys encode+ \ PCI Expansion ROM
0 encode-int encode+ 2.0000 encode-int encode+ \ memory space

0 0 my-space 8100.0000 or encode-phys encode+ \ Non-relocatable

0 encode-int encode+ 1000 encode-int encode+ \ memory space

" reg" property

82

Writing FCode Programs for PCI

"revision-id"

"slot-names"

"status"

In some non-PCl cases, the reg command may also be used to create this property.
However, reg may only be used on buses for which #size-cells is one and only
when a single "reg" property component is required. Consequently, reg is never used
with PCI devices which require at least three "reg" property component (i.e. one
component for the card’s Configuration Space registers, at least one for the device’s
functional registers and one for the PCI Expansion ROM).

Note — The contents of the "reg" property are used by Open Firmware to determine
how large a portion of the system’s virtual address space to reserve for use by the card.
It is important that the size arguments be as large as the actual available addressable
resource. If the size argument for a region were to be declared smaller than that
actually available, and if the driver or a user were to later add a legitimate offset that
was larger than size to the base address of the region, the resulting virtual address
might be within the virtual address space of another card.

See the PCI Bus Binding to IEEE Standard 1275-1994 for the encoding details.

See also: reg , property

This property contains the value of the “Revision ID” register from the Configuration
Space header. That register specifies a device-specific revision identifier that is chosen
by the vendor. Zero is an acceptable value.

The property value is the register’s value encoded with encode-int

See also: PCI Local Bus Specification

This property describes the external labeling of plug-in slots.

The property value is an integer, encoded with encode-int |, followed by a list of
strings, each encoded with encode-string

The integer portion of the property value is a bit mask of available slots; for each add-
in slot on the bus, the bit corresponding to that slot’s Device Number is set. The least-
significant bit corresponds to Device Number 0, the next bit corresponds to Device
Number 1, etc. The number of following strings is the same as the number of slots; the
first string gives the label that is printed on the chassis for the slot with the smallest
Device Number, and so on.

This optional property indicates the operational status of the device.

Absence of this property means that the operational status of the device is unknown or
okay.

If this property is present, the value is a string indicating the status of the device, as
follows:

Table 23 "status" Property Values

Status Value

Meaning

"okay"

The device is believed to be operational.

Properties

83

Table 23 "status" Property Values (Continued)

Status Value

Meaning

"disabled"

“fail"

"fail-xxx"

The device represented by this node is not operational, but it might become operational in the
future (e.g. an external switch is turned off, or something isn’t plugged in).

The device represented by this node is not operational because a fault has been detected, and
it is unlikely that the device will become operational without repair. No additional failure
details are available.

The device represented by this node is not operational because a fault has been detected, and
it is unlikely that the device will become operational without repair. “xxx” is additional
human-readable information about the particular fault condition that was detected.

"translations"

"vendor-id"

"width"

Used as:

" disabled" encode-string " status" property

See also: property

This property contains an array of (phys-addr, virt-addr, size) entries describing the
address translations currently in use by Open Firmware. Those OSs desiring to use
Open Firmware services while taking over the memory management function must
create all of the translations described by this property’s value.

This property contains the value of the “Vendor ID” register from the Configuration
Space header. That register identifies the manufacturer of the device. Vendor identifiers
are assigned by the PCI SIG to ensure uniqueness. Oxffff is an invalid value for vendor-
id.

The property value is the register’s value encoded with encode-int

See also: PCI Local Bus Specification

This property is associated with "display” devices. Encoded with encode-int |, the
property value specifies the number of displayable pixels in the “x” direction of the
display.

Manipulating Properties

Property Creation and Modification

The FCode Function property is the most general means for creating new properties
or modifying the values of existing properties.

There are some special property publishing FCodes, designed for use in common
situations:

m device-name is a short-hand way to create the "name" property.
m model is a short-hand way to create the "model " property.

84

Writing FCode Programs for PCI

m reg is ashort-hand way to create a "reg " property that describes where the
package’s physical resources are located.

Note — The reg method is not useful in a PCI environment since the "reg" property
for a PCI device will contain information about configuration space, 1/0 and/or
memory space, and the PCI Expansion ROM.

m delete-property completely removes a property.

Property Values

Various kinds of information can be stored in a property value byte array by using
property encoding and decoding methods. The encoding format is machine-
independent; the representation of the property values is independent of the byte
organization and word alignment characteristics of any particular processor.

The data type of any particular property must be implicitly known by any software
that wishes to use it. In other words, property value data types are not self-identifying.
Furthermore, the presence or absence of a property with a particular name can encode
a true/false flag; such a property may have a zero-length property value.

Property Encoding

There are three FCodes for encoding a basic piece of data into a property value and one
FCode for concatenating the basic pieces for a property that has multiple values.

m encode-int encodes a number
m encode-string encodes a string
m encode-bytes encodes a sequence of bytes

m encode+ is used to concatenate two previously encoded, basic pieces of data.

m encode-phys is an FCode that encodes a physical address (hiding all the relative
addressing information). encode-phys is derived from encode-int and
encode+ .

Property Retrieval

There are three property value retrieving words, get-my-property ,
get-inherited-property , and get-package-property

m Use get-my-property if the property desired already exists for the package being
defined.

m Use get-package-property if the property exists in some other package. In this
case, you must first find the phandle of the other package, perhaps by using
find-package

m Use get-inherited-property if the property in question is one that exists
somewhere in the chain of parent instances between the package being defined and
the root node of the machine. (Using get-inherited-property is usually a bad
idea because you don’t know who supplied the data.)

Properties

85

FCode Programs do not often need to retrieve property values. Such programs usually
know the values of their own properties implicitly, and often interact with their
parents by calling well-known parent methods.

For an example, suppose a particular PCl FCode package wants to use DVMA to
transfer some data between a device and memory.

It could use my-parent ihandle>phandle get-package-property to find the
value of a property named slave-only . slave-only will be a property of the parent
node of the package being defined, if it exists.

The value of the property is a bit mask of the PCI slots that do not support DVMA.
Then the package would look at my-unit or my-space to get its slot number. The two
pieces of information will tell the package whether or not it can use DVMA.

Property Decoding

Once a package has found the value of a property of interest, it must decode the value
to forms it can understand. If the value is the representation of an integer, use
decode-int to generate the actual number as a binary number on the stack. If the
value of interest is the representation of a string, use decode-string . Both of these
FCodes act as parsers — they will also return the unused portion of the value for
further decoding.

Other kinds of values can be decoded by left-parse-string or package-specific
decoders. Note that the package must know how to decode the value of a property it
wishes to use.

There is no decode-bytes function, but it is easy to synthesize if you need it.

: decode-bytes (addrl lenl #bytes -- addr len2 addrl #bytes)

tuck - (addrl #bytes len2)
>r2dup + (addrl #bytes addr2) (R: len2)
r> 2swap

86

Writing FCode Programs for PCI

Property-Specific FCodes

Following is a summary of property-specific FCodes. See the individual dictionary
entries in Chapter 12 “Open Firmware Dictionary” for more information.

Table 24 Property-specific FCodes

Name

Stack Comment

Description

Property Creation/Destruction

property

(prop-addr prop-len name-addr name-len --)

Create a property named name-addr
name-len with the value prop-addr
prop-len.

device-type

(‘addr len --)

Shorthand word to create the
"device_type" property with the
value addr len.

model

(‘addr len --)

Shorthand word to create the
"model" property with the value
addr len.

device-name

(‘addr len --)

Shorthand macro to create the
"name" property with the value
addr len.

reg

(' phys.lo ... phys.hi size --)

Shorthand word to create the
"reg" property.

delete-property

(name-addr name-len --)

Delete the specified property.

Property Encoding

encode-int

(' n -- prop-addr prop-len)

Converts an integer to a
prop-encoded-array.

encode-phys

(phys.lo ... phys.hi -- prop-addr prop-len)

Converts a physical unit pair to a
prop-encoded-array.

encode-string

(‘addr len -- prop-addr prop-len)

Converts a text string to a
prop-encoded-array.

encode+

(prop-addrl prop-lenl prop-addr2 prop-len2
-- prop-addr prop-len1+2)

Concatenate two prop-encoded-
array structures. They must have
been created sequentially.

encode-bytes

(‘addr len -- prop-addr prop-len)

Converts a byte array to a
prop-encoded-array. Similar to
encode-string , except no trailing
null is appended.

Properties

87

Table 24 Property-specific FCodes (Continued)

Name ‘

Stack Comment

Description

Property Decoding

decode-bytes

(prop-addr prop-len data-len
-- prop-addr2 prop-len2 data-addr data-len)

Decodes data-len bytes from the
start of a prop-encoded-array
returning the byte array and the
rest of the prop-encoded-array.

decode-int

(prop-addr prop-len -- prop-addr2 prop-len2 n)

Decodes an integer from the start
of a prop-encoded-array returning
the integer and the remainder of
the prop-encoded-array.

decode-phys

(prop-addr prop-len
-- prop-addr2 prop-len2 phys.lo ... phys.hi)

Decodes a unit address from the
start of a prop-encoded-array
returning the address and the rest
of the prop-encoded-array.

decode-string

(prop-addr prop-len -- prop-addr2 prop-len2 str len)

Decodes a string from the start of a
prop-encoded-array returning the
string and the remainder of the
prop-encoded-array.

Property Retrieval

get-my-property

(name-addr name-len -- true | prop-addr prop-len false)

Returns the prop-encoded-array
contents for the property addr len
within the current instance, or true
if not found.

get-package-
property

(‘addr len phandle -- true | prop-addr prop-len false)

Returns the prop-encoded-array
contents for the property addr len
within the package phandle, or true
if not found.

get-inherited-
property

(‘addr len -- true | prop-addr prop-len false)

Returns the prop-encoded-array
contents for the property addr len,
or true if not found. The current
package instance is searched first. If
not found, the parent is searched
next, then the parent’s parent, and
so on.

88

Writing FCode Programs for PCI

FCode Basic Concepts

This chapter contains information about a number of FCode concepts that apply to
FCode drivers in general. Before reading the chapter(s) devoted to the specific device
type(s) of interest to you, please review the information in this chapter. It provides a
context for understanding the basic structure and function of an FCode driver.

Parent-Relative Addressing

One of the most powerful concepts of Open Firmware is that of parent-relative
addressing. This concept simply means that any given device in the system is only
required to understand addresses in terms of its own parent’s address space. (And the
parent is only required to understand the address space of his parent, and so on.) This
concept is a key to FCode portability across systems having vastly different bus
topologies.

To support this concept, Open Firmware makes the following provisions:

m A device can only know its address within a system by asking its parent.

The methods my-address and my-space are provided for this purpose. The
phrase my-address my-space always returns phys.lo ... phys.hi where the total
number of cells returned is specified by the value of the device’s parent’s
#address-cells property. my-space always returns the phys.hi cell of a physical
address. my-address always returns the remaining cells phys.lo

For any given bus, the detailed description of a physical address is given in the
Open Firmware bus binding document. For the PCI bus, #address-cells is 3, and
a physical address consists of phys.lo phys.mid phys.hi. (See PCI Bus Binding to IEEE
Standard 1275-1994 for more details.)

m A device must ask its parent to translate a physical address known to the device
into a virtual address that can be used by the CPU for accessing device resources.

As will be seen in “Open Firmware Memory Types” on page 93, a number of
mapping methods are provided by a parent that enable a child device to request
that such a translation be performed on behalf of the device.

m A device must be able to identify its parent by ihandle and must be able to invoke
parental methods.

89

A device’s instance record contains a value named my-parent which contains the
ihandle of the device’s parent.

A child may invoke a parental method with the phrase my-parent $call-method
To simplify this process, the method $call-parent is provided which is
equivalent to the phrase my-parent $call-method

PCI Configuration Space

PCI Configuration Space is a 256 byte region on each PCI device that is used primarily
during device initialization. Configuration space must be accessed with special
“configuration read” and “configuration write” bus cycles. A more complete
description can be found in PCI Local Bus Specification, Revision 2.1 (or later).

The PCI Bus Binding to IEEE Standard 1275-1994 requires that a /pci bus node provide
the following family of access methods for configuration space.

m config-b@ (config-addr -- byte)
m config-w@ (config-addr -- word)
m config-l@ (config-addr -- long)
m config-b! (byte config-addr --)

= config-w! (word config-addr --)
m config-lI! (long config-addr --)

The config-addr argument represents the address in configuration space of the desired

memory location. The address of the first location of a device’s configuration space is

the value returned by my-space (i.e. phys.hi). The addresses of the remaining locations
are calculated by adding offsets to the value returned by my-space .

Since these are methods of /pci , $call-parent is typically used in a device driver
to invoke these methods as shown in the following code fragment.

\ Enable PCI I/O space accesses.
4 constant cmd-reg-offset
1 constant io-space-enable

my-space cmd-reg-offset + dup (cmd-addr cmd-addr)
" config-w@" $call-parent (cmd-addr cmd-val)
io-space-enable or (cmd-addr cmd-val’)

swap " config-w!" $call-parent ()

90 Writing FCode Programs for PCI

PCI Configuration Space Header

Figure 5 shows the layout of the configuration space header used by PCI peripheral

devices.

Device ID

Vendor ID

Status

Command

Class Code

Revision ID

BIST

Header Type Latency Timer

Cache Line Size

Base Address Registers

Cardbus CIS Pointer

Subsystem ID

Subsystem Vendor ID

Expansion ROM Base Address

Reserved

Reserved

Max_Lat

Min_Gnt

Interrupt Pin

Interrupt Line

Figure 5 PCI Configuration Space Header Type 00h

Device ID / Vendor ID

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

The Open Firmware FCode probing process for the PCI bus uses the values returned
for the “device ID” and “vendor ID” fields to differentiate empty and non-empty slots.

m A returned value of OXFFFFFFFF indicates an empty slot.

m All other values indicate a card present.

On PR*P and CHRP machines, the PCI configuration space header for Slot N is located
at Address N*0x800. The following code scans the 32 possible PCI slot numbers on

FCode Basic Concepts

91

such a machine and prints a formatted listing of the device ID/vendor ID for each slot.

hex
dev /pci
200do
i 3u.r i 800 * config-l@ 9 u.r
loop
device-end

Command Register

In an FCode driver context, the “command” register is primarily used to
enable/disable accesses to the card’s various address spaces and to control whether the
device is enabled to act as a bus master.

Bit Description

0 When set, enables card’s response to 1/0 space accesses. State after PCI bus reset is 0.

When set, enables card’s response to memory space accesses. State after PCI bus reset is 0.

2 When set, enables card’s ability to act as a PCI bus master. State after PCI bus reset is 0.

The following code fragment enables memory space accesses.

\ Enable PCI memory space accesses.
4 constant cmd-reg-offset
2 constant memory-space-enable

my-space cmd-reg-offset + dup (. cmd-addr cmd-addr)
" config-w@" $call-parent (cmd-addr cmd-val)
memory-space-enable or (cmd-addr cmd-val’)
swap " config-w!" $call-parent ()

Base Address Registers

The “base address” registers enable the relocation of a card’s addressable resources. Bit
0 is read-only and indicates whether a given base address register maps a memory
space resource or an 1/0 space resource.

m The value 0 indicates a memory space resource.
m The value 1 indicates an 1/0 space resource.

For memory space, the base address register (BAR) bits have the following meanings:

Bit Description
0 |0

00 - Locate anywhere in 32-bit memory space
01 - Locate below 1 MB

10 - Locate anywhere in 64-bit memory space
11 - Reserved

3 Set to 1 if region is prefetchable

4 - 31 | Base address

92

Writing FCode Programs for PCI

For 1/0 space, the bits of a base address register have the following meanings:

Bit Description

0 1

1 Reserved. Must return 0.

2 - 31 | Base address

The size of the addressable resource associated with a given BAR can be determined by
writing OXFFFFFFFF to the BAR, reading back the result and interpreting the returned
value. In an FCode/Open Firmware context, the system firmware is responsible for
determining the size of the associated region and for making the virtual address
assignments.

The FCode driver is not involved in the assignment of virtual addresses to the base
address registers. In fact, drivers should not ever explicitly access the address values in
the base address registers or cache them for later use. Doing so can cause malfunctions
of the device driver since there is no guarantee that the value of the base address
register will be constant over a given power-cycle of the host machine.

FCode drivers should only deal with the values in the base address registers through
the various mapping methods provided by Open Firmware. (These methods and their
use in a PCI context will be discussed in detail in “Open Firmware Memory Types.) In
a PCI context, the arguments of these methods need:

m The register number of the associated BAR (passed in phys.hi)
m The offset, if any, of the region of interest from the base address of the space (passed
in phys.lo phys.mid).

At probe time, the base address register has not been set to its permanent value. A
mapping request performed at probe time results in the base address register being
loaded with a temporary value for use at probe time. Final base address register
assignments are almost guaranteed to be different from any probe time assignments
that may have been made.

Open Firmware Memory Types

From the perspective of an FCode programmer, Open Firmware-based systems have
four different types of memory. The following sections describe each of these types and
how they are used.

For the purposes of the following discussions, please refer to Figure 6 which shows a
generalized system including an expansion bus and a plug-in peripheral card.

System Memory

The term “system memory” refers to the host system’s CPU memory irrespective of

whether there is a memory cache involved. System memory is generally obtained with
the data structure creation methods constant , value , variable or buffer: . Accesses to
system memory have no “side effects” (i.e. no other system state changes as a result).

FCode programs access this memory with the @and ! families of methods (i.e. @ c@
w@l@ and x@and !, c! ,w!, I' and x!). These methods are not required to be atomic

FCode Basic Concepts 93

/ CPU Board \ / Peripheral Board \

Device Device
Memory Registers

CPU Cache RAM

DMA
Engine

_ AN)

MMU

Standard Bus
Figure 6 Hypothetical System with Plug-in Peripheral Card

(e.g. an Open Firmware implementation can choose to do multi-byte fetches and stores
as a series of byte fetches and stores).

Scratch Buffer

The term “scratch buffer” refers to a region of system memory that is acquired for use
with alloc-mem and is returned after use with free-mem .

As with “system memory”, accesses to a scratch buffer has no side effects, and FCode
programs access this memory with the @and ! families of methods.
For example:

50 constant buf-len

-1 value buf-addr \ Conventionally set to -1 when invalid

buf-len alloc-mem \ Obtain memory buffer and virtual address
\ of first location in buffer

to buf-addr \ Store virtual address

h# 1234 buf-addr 2+ w! \ Write 1234 to second word in buffer

buf-addr buf-len free-mem \ Free buffer and return virtual address

DMA Memory

The term “DMA memory” refers to regions of system memory that can be accessed
both by the system’s CPU and by a DMA engine on a peripheral card (i.e. a “bus
master” card) on an expansion bus.

From the perspective of the FCode driver, this memory appears in the memory space
of the device’s parent. Thus, DMA memory is directly accessible by the device’s DMA
engine and is usually directly accessible by the CPU.

It is very important to note that, in the general case, the addresses used by the DMA
engine and by the CPU are not necessarily the same address. The DMA address is the

Writing FCode Programs for PCI

address that appears on the bus to which the bus master device is directly connected.
In general, the bridges between that DMA bus and the system’s memory bus may
perform some address translation. The address translation through those bridges in the
direction from CPU to memory is not necessarily the same as the translation in the
direction from bus master device to memory. One source of confusion is the fact that,
in some systems and for some buses, the translation may just happen to be the same in
some pairs of cases. If you get used to writing drivers for systems where this is the
case, it often comes as a surprise when you must make the distinction.

Two methods are used to obtain DMA memory and to create the appropriate address
translations for the use of that memory by the CPU and the bus master device.

m dma-alloc allocates a region of physical memory suitable for use with DMA and
returns a virtual address for the CPU'’s use.

m dma-map-in converts that CPU virtual address into a DMA physical address
suitable for use by the device’s DMA engine.

Since some systems include a memory cache as shown in Figure 6, the information
stored in the DMA memory and in the cache may not be identical until the cache is
flushed. The dma-sync method is provided for this purpose and should always be
included in an FCode driver. On those systems that do not include a cache, dma-sync
will be a no-op and so will cause no problems. Failure to include dma-sync will cause
a driver to fail if it is ever used in a system that includes a cache.

Memory obtained with dma-alloc must be freed with dma-free . In addition, DMA
mappings created with dma-map-in are destroyed with dma-map-out.

An FCode driver will normally use the various DMA memory management methods
of its parent. For example:

50 constant dma-buf-len
-1 value cpu-addr
-1 value dev-addr

dma-buf-len " dma-alloc" $call-parent to cpu-addr
cpu-addr dma-buf-len true " dma-map-in" $call-parent to dev-addr

cpu-addr dev-addr dma-buf-len " dma-sync" $call-parent

cpu-addr dev-addr dma-buf-len " dma-map-out" $call-parent
cpu-addr dma-buf-len " dma-free" $call-parent

In summary, the general algorithm for using DMA memory is:

m The required DMA-accessible memory is obtained with dma-alloc which allocates
the requested memory and returns the virtual address used by the CPU.

m dma-map-in is used to translate the CPU virtual address into a physical address for
use by the bus master device.

= In the case of moving data to the device:

O The data is written into the DMA memory by the CPU using its virtual address
and dma-sync is invoked to flush any cache that might be present.

0 The DMA engine controller is set up using the address returned by dma-map-in
and the DMA process is started.

FCode Basic Concepts 95

= In the case of moving data from the device:

O The DMA engine controller is set up and started. When the DMA process
completes, dma-sync is invoked to flush any cache that might be present.

O The data is read from the memory by the CPU.

m When all of the DMA operations are complete, dma-map-out is invoked to return
the DMA physical address. dma-free is invoked to free the allocated DMA
memory and to return the CPU virtual address.

Device Memory

The term “device memory” refers to memory and/or registers located on a peripheral
card. Since the address of this memory is known to the driver in terms of a physical
address in the device’s parent’s address space, the map-in method is used to convert
such a physical address into a virtual address suitable for use by the CPU. map-out is
used to return the virtual address when the address is no longer needed.

Accesses to device memory may have “side effects”. For example, the reading of an
interrupt status register may affect the contents of that register. Consequently, there are
special families of @and ! methods for accessing device memory. These methods, rb@,
rw@ rl@ and rx@, and rb! , rw! ,rl! and rx! , are guaranteed to be atomic (e.g. Open
Firmware ensures that the access resulting from the use of one of these methods is
complete before any other method is allowed to be executed).

PCI Device Register Mapping and Use

The following examples shown how to map several different styles of device memory
on a PCI device. Refer to PCI Bus Binding to IEEE Standard 1275-1994 for a detailed
explanation of the various bits in the phys.lo ... phys.hi arguments.

The first example shows how to map relocatable memory in 32-bit memory space. The
example assumes that the region of interest is 8 bytes in size and is associated with the
base address register located at offset 0x10 in the PCI Configuration Space header.

8 constant /mem-regs \ Device has 8 byte-wide registers
-1 value reg-mem-addr \ Storage to hold virtual address

my-address my-space (phys.lo phys.mid phys.hi)
\ Modify phys.hi to indicate relocatable 32-bit memory space using the
\ BAR @ offset h# 10

0200.0010 or (phys.lo phys.mid phys.hi’)
/mem-regs (' phys.lo phys.mid phys.hi’ size)
" map-in" $call-parent (virt)

to reg-mem-addr ()

33 reg-mem-addr 5 + rb! \ Stores 33 to sixth byte in mapped region

reg-mem-addr /mem-regs (virt size)
" map-out" $call-parent ()

The next example shows how to map relocatable memory in 1/0 space. The example
assumes that the region of interest is 16 bytes in size and is offset by 32 bytes from the

Writing FCode Programs for PCI

start of the region associated with the base address register located at offset 0x14 in the
PCI Configuration Space header.

10 constant /io-regs \ Device has 16 byte-wide registers
20 constant reg-io-offset \ Offset from start of region described by BAR
-1 value reg-io-addr \ Storage to hold virtual address

my-address reg-io-offset 0 d+ (phys.lo’ phys.mid)

my-space (phys.lo’ phys.mid phys.hi)

\ Modify phys.hi to indicate relocatable 1/O space using the BAR @
\ offset h# 14

0100.0014 or (' phys.lo’ phys.mid phys.hi’)
fio-regs (' phys.lo’ phys.mid phys.hi’ size)
" map-in" $call-parent (virt)

to reg-io-addr ()

1234reg-io-addre+rw! \Stores 1234 tolastwordin mapped region

reg-io-addr /io-regs (virt size)
" map-out" $call-parent ()

The last example shows how to map non-relocatable memory in 1/0 space. The
example assumes that the region of interest is located at absolute address 0OxABCD and
is 256 bytes in size. There is no associated base address register since this is non-
relocatable space.

100 constant /io-regs \ Device has 256 byte-wide registers
-1 value reg-io-addr \ Storage to hold virtual address

abcd 0 my-space (phys.lo phys.mid phys.hi)
\ Modify phys.hi to indicate non-relocatable 1/0 space
8100.0000 or (phys.lo phys.mid phys.hi")
lio-regs (phys.lo phys.mid phys.hi’ size)
" map-in" $call-parent (virt)

to reg-io-addr (

\ Stores 12345678 to first long word in mapped region
12345678 reg-io-addr rl!

reg-io-addr /io-regs (virt size)
" map-out" $call-parent ()

All of the examples above are written using the virtual address pointer directly to
calculate the address in which to store data. However, experienced Forth/FCode
programmers would “factor” this operation (i.e. create another word which does the
address calculation internally). A very common “factoring” in this situation would be
to create a family of access words that take an offset as an argument and either fetch or
store data to that offset.

For example, if the non-relocatable region mapped in the last example were always
accessed as long words, the following two methods would be an appropriate factoring
of the code.

:iol! (data offset --)
reg-io-addr + rl!

FCode Basic Concepts

97

siol@ (offset -- data)
reg-io-addr + rl@

Factoring your code will make it easier to write, test and debug. It will also make your
FCode image smaller. Most importantly, it takes advantage of the inexpensive context
switches made possible by the Forth language and uses them to their best effect.

After you have mapped PCI device memory, you must also enable memory and/or
1/0 space accesses before your mapping(s) will work correctly. Before your device can
act as a bus master, bus mastering must also be enabled. The enable bits for all of these
functions are contained in the “command” register of the PCI Configuration Space
header. See “Command Register” on page 92 for more details and for a code example
of enabling memory space.

When a driver no longer needs access to an address space, it should disable accesses to
that space. The following code fragment disables memory space accesses.

\ Disable PCI memory space accesses.
4 constant cmd-reg-offset
2 constant memory-space-enable

my-space cmd-reg-offset + dup (. cmd-addr cmd-addr)
" config-w@" $call-parent (cmd-addr cmd-val)
memory-space-enable not and (cmd-addr cmd-val’)
swap " config-w!" $call-parent ()

98

Writing FCode Programs for PCI

7

Block and Byte Devices

Block Devices

Block devices are nonvolatile mass storage devices whose information can be accessed
in any order. Examples of block devices include hard disks, floppy disks, and
CD-ROMs. Open Firmware typically uses block devices for booting.

This device type generally applies to disk devices, but as far as Open Firmware is
concerned, it simply means that the device “looks like a disk™ at the Open Firmware
software interface level.

The block device’s FCode must declare the block device type, and must implement
the methods open and close , as well as the methods described below in “Required
Methods” on page 100.

Although packages of the block device type present a byte-oriented interface to the
rest of the system, the associated hardware devices are usually block-oriented i.e. the
device reads and writes data in “blocks” (groups of, for example, 512 or 2048 bytes).
The standard /deblocker support package assists in the presentation of a byte-
oriented interface “on top of” an underlying block-oriented interface, implementing a
layer of buffering that “hides” the underlying “block” length.

Block devices are often subdivided into several logical “partitions”, as defined by a
disk label - a special block, usually the first one on the device, which contains
information about the device. The driver is responsible for appropriately interpreting a

disk label. The driver may use the standard disk-label support package if the device
does not implement a specialized label. The disk-label support package interprets

one or more system-dependent label formats. Since the disk booting protocol usually

depends upon the label format, the standard disk-label support package also

implements a load method for the corresponding boot protocol.

Byte Devices

Byte devices are sequential-access mass storage devices, for example tape devices.
Open Firmware typically uses byte devices for booting.

99

The byte device’s FCode program must declare the byte device type, and must
implement the open and close methods in addition to those described in “Required
Methods”.

Although packages of the byte device type present a byte-oriented interface to the rest
of the system, the associated hardware devices are usually record-oriented; the device
reads and writes data in records containing more than one byte. The records may be
fixed length or variable length. The standard deblocker support package assists in
presenting a byte-oriented interface on top of an underlying record-oriented interface,
implementing a layer of buffering that hides the underlying record structure.

Required Methods

block-size (-- block-len)
Return the record size block-len (in bytes) of all data transfers to or from the device. The
most common value for block-len is 512.

This method is only required if the deblocker support package is used.

dma-alloc (size -- virt)
Allocates size bytes of memory, contiguous within the direct-memory-access address
space of the device’s bus, suitable for DMA. Returns the virtual address virt.

This method is only required if the deblocker support package is used.

dma-free (virt size --)
Frees size bytes of memory at virtual address virt that were previously allocated with
dma-alloc

This method is only required if the deblocker support package is used.

load (addr -- size)
load works a bit differently for block and byte devices:

With block devices, it loads a stand-alone program from the device into memory at
addr. size is the size in bytes of the program loaded. If the device can contain several
such programs, the instance arguments returned by my-args can be used to select the
specific program desired. open is executed before load is invoked.

With byte devices, load reads a stand-alone program from the tape file specified by
the value of the argument string given by my-args . That value is the string
representation of a decimal integer. If the argument string is null, tape file 0 is used.
load places the program in memory at addr, returning the size of the read-in program
in bytes.

max-transfer (-- max-len)
Return the size in bytes of the largest single transfer that the device can perform.
max-transfer is expected to be a multiple of block-size

This method is only required if the deblocker support package is used.

read (addr len -- actual)
Read at most len bytes from the device into memory at addr. actual is the number of
bytes actually read. If the number of bytes read is 0 or negative, the read failed. Note
that len need not be a multiple of the device’s normal block size.

100 Writing FCode Programs for PCI

read-blocks (addr block# #blocks -- #read)
Read #blocks records of length block-size bytes each from the device, starting at

device block block#, into memory at address addr. #read is the number of blocks actually
read.

This method is only required if the deblocker support package is used.

seek (pos.lo pos.hi -- status) for block; (offset file# -- error?) for byte
seek works a bit differently depending on whether it’s being used with a block or byte
device.

For block devices, seek sets the device position for the next read or write. The position
is the byte offset from the beginning of the device specified by the 64-bit number which
is the concatenation of poshigh and poslow. status is -1 if the seek fails, and 0 or 1 if it
succeeds.

For byte devices, it seeks to the byte offset within file file#. If offset and file# are both 0,
rewind the tape. error? is -1 if seek fails, and 0 if seek succeeds.

write (‘addr len -- actual)
Write len bytes from memory at addr to the device. actual is the number of bytes
actually written. If actual is less than len, the write did not succeed. len need not be a
multiple of the device’s normal block size.

write-blocks (addr block# #blocks -- #written)
Write #blocks records of length block-size bytes each to the device, starting at block
block#, from memory at addr. #written is the number of blocks actually written.

If the device is not capable of random access (e.g. a sequential access tape device),
block# is ignored.

This method is only required if the deblocker support package is used.

Required Properties

Table 25 Required Properties of Block and Byte Devices

Property Name Sample Value
name " FirmWorks,googly"
reg list of registers (device-dependent)
device_type " block" or " byte"

Block and Byte Devices 101

Device Driver Examples

The structure of the device tree for the sample card supported by the sample device
drivers in this chapter is as follows:

|
pci

FirmWorks,my-scsi

Figure 7 Sample Device Tree

Simple Block Device Driver

Code Example 7-1 Simple Block Device Driver

\ This is at a stage where each leaf node can be used only as a non-bootable device.
\ It only creates nodes and publishes necessary properties to identify the device.

fcode-version2
hex
: copyright (--)
." Copyright (c) 1994-1996 FirmWorks. All Rights Reserved." cr

" FirmWorks,my-scsi" encode-string " name" property

h# 20.0000 constant scsi-offset
h# 40 constant /scsi

\ Define "reg" property
\ PCI Configuration Space
my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+

\ Memory Space Base Address Register 10
my-address scsi-offset 0 d+ my-space 0200.0010 or encode-phys encode+
0 encode-int encode+ /scsi encode-int encode+

\ PCI Expansion ROM

my-address my-space h# 200.0030 or encode-phys encode+
0 encode-int encode+ h# 10.0000 encode-int encode+

" reg" property

new-device \ missing "reg" indicates a SCSI "wild-card" node
"sd" encode-string " name" property
finish-device

102 Writing FCode Programs for PCI

Code Example 7-1 Simple Block Device Driver (Continued)

new-device \ missing "reg” indicates a SCSI "wild-card” node
"st" encode-string " name" property

finish-device

fcode-end

Block and Byte Devices 103

Extended Block Device Driver

Code Example 7-2 Sample Driver for "my-scsi" Device

\ sample driver for "my-scsi” device

\ It is still a non-bootable device. The purpose is to show how an intermediate stage

\ of driver can be used to debug board during development. In addition to publishing
\ the properties, this sample driver shows methods to access, test and control

\ "FirmWorks,my-scsi" device.

\ The following main methods are provided for "FirmWorks,my-scsi" device.
\ open (-- okay?)

\ close (--)

\ reset (--)

\ selftest (-- error?)

fcode-version2
hex
headers
: copyright (--)
." Copyright (c) 1994-1996 FirmWorks. All Rights Reserved." cr

h# 20.0000 constant scsi-offset

h# 40 constant /scsi

d# 25.000.000 constant clock-frequency
" FirmWorks,my-scsi" device-name

\ Define "reg" property
\ PCI Configuration Space
my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+

\ Memory Space Base Address Register 10
my-address scsi-offset 0 d+ my-space 0200.0010 or encode-phys encode+
0 encode-int encode+ /scsi encode-int encode+

\ PCI Expansion ROM
my-address my-space h# 200.0030 or encode-phys encode+
0 encode-int encode+ h# 10.0000 encode-int encode+

" reg" property

\ Configuration register access words
: my-w@ (offset -- w) my-space + " config-w@" $call-parent ;
: my-w! (w offset --) my-space + " config-w!" $call-parent ;

h# 10.0000 constant dma-offset
h# 10 constant /dma
-1 instance value dma-chip

\ Methods to access/control DMA registers during development
: dmaaddress (-- addr) dma-chip 4 + ;

: dmacount (-- addr) dma-chip 8 + ;

:dmaaddr@ (--n) dmaaddressri@ ;

:dmaaddr! (n--) dmaaddressrtl! ;

:dmacount@ (--n) dmacountrl@ ;

: dmacount! (n--) dmacountrl! ;

104 Writing FCode Programs for PCI

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued)

:dma-chip@ (--n) dma-chiprl@ ;

: dma-chip! (n--) dma-chiprl! ;

: dma-btest (mask -- flag) dma-chip@ and ;

: dma-bset (mask--) dma-chip@ or dma-chip! ;
: dma-breset (mask --) not dma-btest dma-chip! ;

external

\ Methods to allocate, map, unmap, free DMA buffers

: decode-unit (addr len -- low high) decode-2int ;
: dma-alloc (size -- vaddr) " dma-alloc” $call-parent ;
: dma-free (vaddr size --) " dma-free” $call-parent ;

\ Since the PCI bus uses physical addressing, devaddr returned by dma-map-in is the
\ physical address associated with vaddr.

: dma-map-in (vaddr size cache? -- devaddr) " dma-map-in" $call-parent ;

: dma-map-out (vaddr devaddr size --) " dma-map-out” $call-parent ;

\ dma-sync could be a dummy routine if the parent device doesn't support.
: dma-sync (virt-addr dev-addr size --)
" dma-sync" my-parent ['] $call-method catch if
2drop 2drop 2drop
then

:map-in (addr space size -- virt) " map-in" $call-parent ;
: map-out (virt size --) " map-out" $call-parent ;

\ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The
\ bug causes phys.lo and phys.mid to be treated as absolute addresses rather than
\ offsets even when working with relocatable addresses.

\ To overcome this bug, the Open Firmware Working Group in conjunction with Apple has
\adopted a workaround that is keyed to the presence or absence of the add-range method
\'in the PCI node. If the add-range method is present in an Apple ROM, the map-in

\ method is broken. If the add-range property is absent, the map-in method behaves

\ correctly.

\ The following methods allow the FCode driver to accomodate both broken and working
\ map-in methods.

: map-in-broken? (--flag)
\ Look for the method that is present when the bug is present
" add-range" my-parent ihandle>phandle (adrlen phandle)
find-method dup if nip then (flag) \ Discard xt if present

\ Return phys.lo and phys.mid of the address assigned to the PCI base address
\ register indicated by phys.hi .
. get-base-address (phys.hi -- phys.lo phys.mid phys.hi)
" assigned-addresses" get-my-property if (phys.hi)
." No address property found!" cr
0 Orot exit \ Error exit
then (phys.hi adrlen)

Block and Byte Devices

105

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued)

rot >r (adrlen) (r:phys.hi)
\ Found assigned-addresses, get address
begin dup while (‘adrlen") \ Loop over entries
decode-phys (‘adr len' phys.lo phys.mid phys.hi)
h# ff and r@ h# ffand = if (adr len' phys.lo phys.mid) \ This one?
2swap 2drop (phys.lo phys.mid) \ This is the one

r> exit (phys.lo phys.mid phys.hi)
else (‘adr len' phys.lo phys.mid) \ Not this one
2drop (adrlen")
then (adrlen’)
decode-int drop decode-int drop \ Discard boring fields
repeat
2drop O
." Base address not assigned!" cr
00r> (00 phys.hi)
headers

: dma-open (--)
my-address dma-offset 0 d+ my-space /dma map-in to dma-chip

: dma-close (--) dma-chip /dma map-out -1 to dma-chip ;

-1 instance value scsi-init-id
-1 instance value scsi-chip

h# 20 constant /mbuf
-1 instance value mbuf
-1 instance value mbuf-dma

d# 6 constant /sense
-1 instance value sense-command
-1 instance value sense-cmd-dma

d# 8 constant #sense-bytes

-1 instance value sense-buf

-1 instance value sense-buf-dma
-1 instance value mbuf0

d# 12 constant /cmdbuf

-1 instance value cmdbuf

-1 instance value cmdbuf-dma
-1 instance value scsi-statbuf

\ Mapping and allocation routines for SCSI.
: map-scsi-chip (--)
map-in-broken? if
my-space h# 8200.0010 or get-base-address (phys.lo phys.mid phys.hi)
else
my-address my-space h# 200.0010 or (phys.lo phys.mid phys.hi)
then (phys.lo phys.mid phys.hi)

106

Writing FCode Programs for PCI

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued)

/scsi map-in to scsi-chip

4 dup my-w@ 6 or swap my-w! \ Enable memory space and bus mastering
scsi-chip encode-int " address" property

: unmap-scsi-chip (--)
4 dup my-w@ 6 invert and swap my-w! \ Disable memory space and bus mastering
scsi-chip /scsi map-out -1 to scsi-chip
" address" delete-property

\ After any changes to sense-command by CPU or any changes to sense-cmd-dma by
\ device, synchronize changes by issuing " sense-command sense-cmd-dma /sense
\ dma-sync " Similarly after any changes to sense-buf, sense-buf-dma, mbuf,
\ mbuf-dma, cmdbuf or cmdbuf-dma, synchronize changes by appropriately issuing
\ dma-sync map scsi chip and allocate buffers for "sense" command and status
: map-scsi (--)

map-scsi-chip

/sense dma-alloc to sense-command

sense-command /sense false dma-map-in to sense-cmd-dma

#sense-bytes dma-alloc to sense-buf

sense-buf #sense-bytes false dma-map-in to sense-buf-dma

2 alloc-mem to scsi-statbuf

\ free buffers for "sense” command and status and unmap scsi chip
:unmap-scsi (--)
scsi-statbuf 2 free-mem
sense-buf sense-buf-dma #sense-bytes dma-sync \ redundant
sense-buf sense-buf-dma #sense-bytes dma-map-out
sense-buf #sense-bytes dma-free
sense-command sense-cmd-dma /sense dma-sync \ redundant
sense-command sense-cmd-dma /sense dma-map-out
sense-command /sense dma-free
-1 to sense-command
-1 to sense-cmd-dma
-1 to sense-buf
-1 to scsi-statbuf
-1 to sense-buf-dma
unmap-scsi-chip

\ constants related to scsi commands
h# 0 constant nop

h# 1 constant flush-fifo

h# 2 constant reset-chip

h# 3 constant reset-scsi

h# 80 constant dma-nop

\ Methods to get SCSI register addresses.

\ Each chip register is one byte, aligned on a 4-byte boundary.
. scsi+ (offset -- addr) scsi-chip + ;

: transfer-count-lo (-- addr) h# O scsi+ ;

: transfer-count-hi (-- addr) h# 4 scsi+ ;

: fifo (--addr) h# 8 scsi+ ;

: command (--addr) h# cscsit ;

Block and Byte Devices

107

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued)

. configuration (--addr) h# 20 scsi+ ;
. scsi-test-reg (--addr) h# 28 scsi+ ;
\ Read only registers:

. scsi-status (--addr) h# 10 scsi+ ;

s interrupt-status ~ (-- addr) h# 14 scsi+ ;

: sequence-step (--addr) h# 18 scsi+ ;
. fifo-flags (--addr) h# 1c scsi+ ;

\ Write only registers:

: select/reconnect-bus-id (-- addr) h# 10 scsi+ ;
: select/reconnect-timeout (-- addr) h# 14 scsi+ ;
: sync-period (--addr) h# 18 scsi+ ;

: sync-offset (--addr) h#1c scsi+ ;

: clock-conversion-factor (-- addr) h# 24 scsi+ ;

\ Methods to read from/store to SCSI registers.

Jcnt@ (--w) transfer-count-lo rb@ transfer-count-hi rb@ bwjoin ;
(fifo@ (--c) fiforb@ ;

:cmd@ (--c) command rb@ ;

cstat@ (--c) scsi-status rb@ ;

Jistat@ (-- ¢) interrupt-status rb@ ;

: fifo-cnt (-- ¢) fifo-flags rb@ h# 1f and ;

:data@ (--c) begin fifo-cnt until fifo@ ;

:seq@ (--c) sequence-step rb@ h# 7 and ;

fifol (c--) fiforb! ;

:cmd! (c--) command rb! ;

centt (w--) whbsplit transfer-count-hi rb! transfer-count-lo rb! ;
:targ! (c--) select/reconnect-bus-id rb! ;

:data! (c--) begin fifo-cnt d# 16 <> until fifo! ;

\ SCSI chip NOOP and initialization
:scsi-nop (--) nopcmd! ;
:init-scsi (--) reset-chip cmd! scsi-nop ;

. wait-istat-clear (-- error?)
d# 1000
begin
1 ms1- (count)
dup 0= (count expired?)
istat@ (count expired? istat)
O=or (countclear?)
until (count)
0= if
istat@ 0<> if
cr." Can't clear ESP interrupts: "
." Check SCSI Term. Power Fuse." cr
true exit
then
then
false

: clk-conv-factor (--n) clock-frequency d# 5.000.000/7 and ;

\ Initialize SCSI chip, tune time amount, set async operation mode, and set scsi
\ bus id
: reset-my-scsi (-- error?)

init-scsi

h# 93 select/reconnect-timeout rb!

108 Writing FCode Programs for PCI

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued)

0 sync-offset rb!

clk-conv-factor clock-conversion-factor rb!
h# 4 scsi-init-id 7 and or configuration rb!
wait-istat-clear

: reset-bus (-- error?)
reset-scsi cmd! wait-istat-clear

: init-n-test (-- ok?) reset-my-scsi 0= ;

. get-buffers (--)
h# 8000 dma-alloc to mbuf0
/cmdbuf dma-alloc to cmdbuf
cmdbuf /cmdbuf false dma-map-in to cmdbuf-dma

: give-buffers (--)
mbuf0 h# 8000 dma-free -1 to mbufO
cmdbuf cmdbuf-dma /cmdbuf dma-sync \ redundant
cmdbuf cmdbuf-dma /cmdbuf dma-map-out
cmdbuf /cmdbuf dma-free
-1 to cmdbuf -1 to cmdbuf-dma

: scsi-selftest (-- fail?) reset-my-scsi ;

\ dma-alloc and dma-map-in mbuf-dma
: mbuf-alloc (--)
/mbuf dma-alloc to mbuf
mbuf /mbuf false dma-map-in to mbuf-dma

\ dma-map-out and dma-free mbuf-dma
: mbuf-free (--)
mbuf mbuf-dma /mbuf dma-sync \ redundant
mbuf mbuf-dma /mbuf dma-map-out
mbuf /mbuf dma-free
-1 to mbuf
-1 to mbuf-dma

external

\ If any routine were using buffers allocated by dma-alloc, and were using dma mapped
\ by dma-map-in, it would have to dma-sync those buffers after making any changes to

\ them.
:open (-- success?)
dma-open

" scsi-initiator-id" get-inherited-property 0= if
decode-int to scsi-init-id

Block and Byte Devices

109

Code Example 7-2 Sample Driver for "my-scsi" Device (Continued)

2drop
map-scsi
init-n-test (ok?)
dup if (true)
get-buffers (true)
else
unmap-scsi dma-close (false)
then ('success?)
else
." Missing initiator id" cr false
dma-close
then ('success?)
: close (--)

give-buffers unmap-scsi dma-close

ireset (--)
dma-open map-scsi
h# 80 dma-breset
reset-my-scsi drop reset-bus drop
unmap-scsi dma-close

\ If scsi-selftest were actually using buffers allocated by mbuf-alloc, it would
\ have to do dma-sync after any changes to mbuf or mbuf-dma.
: selftest (--fail?)

map-scsi

mbuf-alloc

scsi-selftest

mbuf-free

unmap-scsi

new-device \ missing "reg" indicates a SCSI "wild-card" node
"sd" encode-string " name" property
finish-device

new-device \ missing "reg" indicates a SCSI "wild-card" node
"st" encode-string " name" property

finish-device

fcode-end

110 Writing FCode Programs for PCI

Complete Block and Byte Device Driver

Code Example 7-3 Sample Driver for Bootable Devices

\ Sample bootable block and byte device driver
\ This driver supports "block™ and "byte" type bootable devices, by using standard
\ "deblocker"and "disk-label" packages.

\ The following main methods are provided for "FirmWorks,my-scsi" device.
\ open (-- okay?)

\ close (--)

\ reset (--)

\ selftest (--error?)

fcode-version2
hex
headers
: copyright (--)
." Copyright (c) 1994-1996 FirmWorks. All Rights Reserved." cr

h# 20.0000 constant scsi-offset

h# 40 constant /scsi

d# 25.000.000 constant clock-frequency
h# 10.0000 constant dma-offset

h# 10 constant /dma

-1 instance value dma-chip

" FirmWorks,my-scsi" device-name
" scsi* device-type

\ Define "reg" property
\ PCI Configuration Space
my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+

\ Memory Space Base Address Register 10
my-address scsi-offset 0 d+ my-space 0200.0010 or encode-phys encode+
0 encode-int encode+ /scsi encode-int encode+

\ PCI Expansion ROM

my-address my-space h# 200.0030 or encode-phys encode+
0 encode-int encode+ h# 10.0000 encode-int encode+

" reg" property

\ Configuration register access words
: my-w@ (offset -- w) my-space + " config-w@" $call-parent ;
: my-w! (w offset --) my-space + " config-w!" $call-parent ;

external

\ Methods to allocate, map, unmap, free DMA buffers

: decode-unit (addr len -- low high) decode-2int ;
: dma-alloc (size -- vaddr) " dma-alloc" $call-parent ;
: dma-free (vaddr size --) " dma-free" $call-parent ;

\ Since the PCI bus uses physical addressing, devaddr returned by dma-map-in is the
\ physical address associated with vaddr.

: dma-map-in (vaddr size cache? -- devaddr) " dma-map-in" $call-parent ;

: dma-map-out (vaddr devaddr size --) " dma-map-out" $call-parent ;

Block and Byte Devices

111

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

\ dma-sync could be dummy routine if parent device doesn't support.
: dma-sync (virt-addr dev-addr size --)
" dma-sync" my-parent [] $call-method catch if
2drop 2drop 2drop
then
:map-in (addr space size -- virt) " map-in" $call-parent ;
: map-out (virt size --) " map-out" $call-parent ;

\ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The
\ bug causes phys.lo and phys.mid to be treated as absolute addresses rather than

\ offsets even when working with relocatable addresses.

\ To overcome this bug, the Open Firmware Working Group in conjunction with Apple has
\adopted aworkaround that is keyed to the presence or absence of the add-range method
\'in the PCI node. If the add-range method is present in an Apple ROM, the map-in

\ method is broken. If the add-range property is absent, the map-in method behaves

\ correctly.

\ The following methods allow the FCode driver to accomodate both broken and working

\ map-in methods.

: map-in-broken? (--flag)
\ Look for the method that is present when the bug is present
"add-range" my-parent ihandle>phandle (adrlen phandle)
find-method dup if nip then (flag) \ Discard xt if present

\ Return phys.lo and phys.mid of the address assigned to the PCI base address

\ register indicated by phys.hi .
: get-base-address (phys.hi -- phys.lo phys.mid phys.hi)
" assigned-addresses" get-my-property if (phys.hi)
." No address property found!" cr

0 Orot exit \ Error exit

then (phys.hi adr len)

rot >r (adrlen) (r:phys.hi)

\ Found assigned-addresses, get address

begin dup while (adrlen') \ Loop over entries
decode-phys (‘adr len' phys.lo phys.mid phys.hi)

h# ffand r@ h# ff and = if (adr len' phys.lo phys.mid) \ This one?
2swap 2drop (phys.lo phys.mid) \ This is the one

r> exit (phys.lo phys.mid phys.hi)

else (‘adr len' phys.lo phys.mid) \ Not this one
2drop (adrlen’)

then (adrlen’)

decode-int drop decode-int drop \ Discard boring fields
repeat
2drop O
." Base address not assigned!" cr

00r> (00 phys.hi)
headers

\ variables/values for sending commands, mapping, etc.
-1 instance value scsi-init-id

112

Writing FCode Programs for PCI

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

-1 instance value scsi-chip

h# 20 constant /mbuf

-1 instance value mbuf

-1 instance value mbuf-dma

d# 6 constant /sense

-1 instance value sense-command
-1 instance value sense-cmd-dma
d# 8 constant #sense-bytes

-1 instance value sense-buf

-1 instance value sense-buf-dma
-1 instance value mbuf0

d# 12 constant /cmdbuf

-1 instance value cmdbuf

-1 instance value cmdbuf-dma

-1 instance value scsi-statbuf

\ Mapping and allocation routines for SCSI
: map-scsi-chip (--)
map-in-broken? if
my-space h# 8200.0010 or get-base-address (phys.lo phys.mid phys.hi)
else
my-address my-space h# 200.0010 or (phys.lo phys.mid phys.hi)
then (phys.lo phys.mid phys.hi)

/scsi map-in to scsi-chip

4 dup my-w@ 6 or swap my-w! \ Enable memory space and bus mastering
scsi-chip encode-int " address"” property

: unmap-scsi-chip (--)
4 dup my-w@ 6 invert and swap my-w! \ Disable memory space and bus mastering
scsi-chip /scsi map-out -1 to scsi-chip
" address" delete-property

> map-scsi (--)

map-scsi-chip
\ allocate buffers etc. for "sense" command and status

:unmap-scsi (--)
\ free buffers etc. for "sense" command and status
unmap-scsi-chip

\ words related to scsi commands and register access.

: reset-my-scsi (-- error?) ... ;

: reset-bus (--error?) ... ;

s init-n-test (-- ok?) ... ;

. get-buffers (--) ... ;

. give-buffers (--) ... ;
: scsi-selftest (--fail?) ... ;

d# 512 constant ublock

Block and Byte Devices

113

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

0 instance value /block
0 instance value /tapeblock
instance variable fixed-len?

external
. set-timeout (n--) ... ;

: send-diagnostic (-- error?)
\ run diagnostics and return any error.

: device-present? (lun target -- present?) ... ;
: mode-sense (-- true | block-size false) ... ;
: read-capacity (-- true | block-size false) ... ;

\ Spin up a SCSI disk, coping with a possible wedged SCSI bus
: timed-spin (targetlun--) ... ;

: disk-r/w-blocks (addr block# #blocks direction? -- #xfered)
(#xfered)

\ Execute "mode-sense" command. If failed, execute read-capacity command.
\ If this also failed, return d# 512 as the block size.
: disk-block-size (--n)

mode-sense if read-capacity if d# 512 then then

dup to /block

: tape-block-size (--n) ... ;

. fixed-or-variable (-- max-block fixed?) ... ;

: tape-r/w-some (addr block# #blks read? -- actual# error?) ... ;

headers

: dma-open (--) my-address dma-offset 0 d+ my-space /dma map-in to dma-chip ;
: dma-close (--) dma-chip /dma map-out -1 to dma-chip ;

\ After any changes to mbuf by CPU or any changes to mbuf-dma by device, synchronize
\ changes by issuing " mbuf mbuf-dma /mbuf dma-sync "
: mbuf-alloc (--)

/mbuf dma-alloc to mbuf

mbuf /mbuf false dma-map-in to mbuf-dma

\ dma-map-out and dma-free mbuf-dma

: mbuf-free (--)
mbuf mbuf-dma /mbuf dma-sync \ redundant
mbuf mbuf-dma /mbuf dma-map-out
mbuf /mbuf dma-free

114 Writing FCode Programs for PCI

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

-1 to mbuf
-1 to mbuf-dma

external

\ If any routine were using buffers allocated by dma-alloc, and were using DMA mapped

\ by dma-map-in, it would have to dma-sync those buffers after making any changes to
\ them.

:open (-- success?)
dma-open
" scsi-initiator-id" get-inherited-property 0= if
decode-int to scsi-init-id

2drop
map-scsi
init-n-test (ok?)
dup if (true)
get-buffers (true)
else
unmap-scsi dma-close (false)
then ('success?)
else
" Missing initiator id" cr false
dma-close
then ('success?)

: close (--) give-buffers unmap-scsi dma-close ;

creset (--)
dma-open map-scsi

reset-my-scsi drop reset-bus drop
unmap-scsi dma-close

\ If scsi-selftest were actually using buffers allocated by mbuf-alloc, it would
\ have to do dma-sync after any changes to mbuf or mbuf-dma.
: selftest (-- fail?)

map-scsi

mbuf-alloc

scsi-selftest

mbuf-free

unmap-scsi

headers

new-device \ Start of child block device
\ Missing "reg" property indicates this is a SCSI "wild-card" node
" sd" device-name
" block" device-type

0 instance value offset-low
0 instance value offset-high
0 instance value label-package

Block and Byte Devices

115

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

0 instance value deblocker

\ The "disk-label" package interprets any partition information contained in
\ the disk label. The "load" method of the "block" device uses the load method
\ provided by "disk-label"
: init-label-package (-- okay?)
0 to offset-high 0 to offset-low
my-args " disk-label" $open-package to label-package
label-package if
0 0 " offset" label-package $call-method
to offset-high to offset-low
true
else
." Can't open disk label package" cr false
then

. init-deblocker (-- okay?)
"" " deblocker" $open-package to deblocker
deblocker if
true
else
" Can't open deblocker package" cr false
then

: device-present? (lun target -- present?)
" device-present?" $call-parent

)

\ The following methods are needed for "block" device:

\ open, close, selftest, reset, read, write, load, seek, block-size,

\ max-transfer,read-blocks, write-blocks.

\ Carefully notice the relationship between the methods for the "block" device
\ and the methods pre-defined for "disk-label" and "deblocker"

external \ external methods for "block" device ("sd" node)
2 spin-up (--) my-unit " timed-spin" $call-parent ;

:open (--ok?)
my-unit device-present? 0= if false exit then
spin-up \ Start the disk if necessary

init-deblocker 0= if false exit then
init-label-package 0= if

deblocker close-package false exit
then
true

:close (--)
label-package close-package O to label-package

116 Writing FCode Programs for PCI

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

deblocker close-package O to deblocker

: selftest (-- fail?)
my-unit device-present? if
" send-diagnostic" $call-parent (fail?)
else
true (error)
then

;reset (-) ..

\ The "deblocker" package assists in the implementation of byte-oriented read and
\ write methods for disks and tapes. The deblocker provides a layer of buffering
\ to implement a high level byte-oriented interface "on top of" a low-level

\ block-oriented interface.

\ The "seek", "read" and "write" methods of this block device use corresponding
\ methods provided by "deblocker"

\ In order to be able to use the "deblocker" package this device has to define the
\ following six methods, which the deblocker uses as its low-level interface

\ to the device:
\ 1) block-size, 2) max-transfer, 3) read-blocks, 4) write-blocks 5) dma-alloc and

\ 6) dma-free

: block-size (-- n) " disk-block-size" $call-parent ;
: max-transfer (-- n) block-size h# 40 * ;

: read-blocks (‘addr block# #blocks -- #read)
true " disk-r/w-blocks" $call-parent

: write-blocks (addr block# #blocks -- #written)

false " disk-r/w-blocks" $call-parent
: dma-alloc (#bytes -- vadr) " dma-alloc" $call-parent ;
: dma-free (vadr #bytes --) " dma-free" $call-parent ;

: seek (offset.low offset.high -- okay?)
offset-low offset-high x+ " seek" deblocker $call-method

:read (addr len -- actual-len) "read" deblocker $call-method ;
: write (addr len -- actual-len) " write" deblocker $call-method ;
:load (addr -- size) "load" label-package $call-method ;

finish-device \ finishing "block" device "sd"
headers
new-device \ start of child byte device
\ missing "reg" indicates this is a SCSI "wild-card" node

" st" device-name
" byte" device-type

Block and Byte Devices

117

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

false instance value write-eof-mark?

instance variable file-mark?

true instance value scsi-tape-first-install

: scsi-tape-rewind (- [[xstatbuf] f-hw] error?) ... ;

: write-eof (-- [[xstatbuf] f-hw] error?) ... ;
0 instance value deblocker
: init-deblocker (-- okay?)
"" " deblocker" $open-package to deblocker
deblocker if
true
else
" Can't open deblocker package" cr false
then

: flush-deblocker (--)
deblocker close-package init-deblocker drop

: fixed-or-variable (-- max-block fixed?)
" fixed-or-variable" $call-parent

: device-present? (lun target -- present?)
" device-present?" $call-parent

\ The following methods are needed for "byte" devices:

\ open, close, selftest, reset, read, write, load, seek, block-size,

\ max-transfer, read-blocks, write-blocks. Carefully notice the relationship

\ between the methods for "byte" devices and the methods pre-defined for the
\ standard deblocker package.

external \ external methods for "byte" device ("st" node)

\ The "deblocker" package assists in the implementation of byte-oriented read
\ and write methods for disks and tapes. The deblocker provides a layer of

\ buffering to implement a high level byte-oriented interface "on top of" a

\ low-level block-oriented interface.

\ The "read" and "write" methods of this "byte" device use the corresponding
\ methods provided by the "deblocker"

\'In order to be able to use the "deblocker" package this device has to define the
\ following six methods which the deblocker uses as its low-level interface to

\ the device: 1) block-size, 2) max-transfer, 3) read-blocks, 4) write-blocks

\ 5) dma-alloc and 6) dma-free

: block-size (--n) "tape-block-size" $call-parent ;

: max-transfer (--n)
fixed-or-variable (max-block fixed?)
if
h# fe00 over /* \ Use the largest multiple of /tapeblock that is <= h# fe00
then

: read-blocks (addr block# #blocks -- #read)

118 Writing FCode Programs for PCI

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

file-mark? @ 0= if

true " tape-r/w-some" $call-parent file-mark? ! (#read)
else

3drop O
then

- write-blocks (addr block# #blocks -- #written)
false " tape-r/w-some" $call-parent file-mark? !

: dma-alloc (#bytes -- vaddr) " dma-alloc" $call-parent ;

: dma-free (vaddr #bytes --) " dma-free" $call-parent ;

:open (-- okay?) \open for tape
my-unit device-present? 0= if false exit then
scsi-tape-first-install if

scsi-tape-rewind if
" Can't rewind tape" cr
0= if drop then
false exit
then
false to scsi-tape-first-install
then
\ Set fixed-len? and /tapeblock
fixed-or-variable 2drop
init-deblocker 0= if false exit then
true

’

: close (--)
deblocker close-package 0 to deblocker
write-eof-mark? if
write-eof if
" Can't write EOF Marker."
0= if drop then
then
then

creset () ... ;

: selftest (-- fail?)
my-unit device-present? if
" send-diagnostic” $call-parent (fail?)
else
true (error)
then

:read (addrlen -- actual-len) "read" deblocker $call-method ;

: write (addr len -- actual-len)
true to write-eof-mark?
" write" deblocker $call-method

Block and Byte Devices 119

Code Example 7-3 Sample Driver for Bootable Devices (Continued)

:load (addr -- size)

\ use my-args to get tape file-no
... (‘addr file#)

\ position at requested file

dup begin (start-addr next-addr)
dup max-transfer read (start-addr next-addr #read)
dup 0> (start-addr next-addr #read got-some?)
while (start-addr next-addr #read)
+ (start-addr next-addr')
repeat (start-addr end-addr 0)
drop swap - (size)

: seek (byte# file# -- error?)

\ position at requested file
(byte#)

flush-deblocker (byte#)
begin dup 0> while (#remaining)
" mbuf0" $call-parent
over ublock min read (#remaining #read)

dup 0= if (#remaining 0)
2drop true
exit (error)
then (#remaining #read)
- (#remaining')
repeat (0)
drop false (no-error)

finish-device \ finishing "byte" device "st"

fcode-end

120

Writing FCode Programs for PCI

Network Devices

Network devices are packet-oriented devices capable of sending and receiving packets
addressed according to IEEE 802.3 (Ethernet). Open Firmware firmware typically uses
network devices for diskless booting. The standard obp-tftp support package assists
in the implementation of the load method for this device type.

This chapter describes how to implement network device drivers. The example is
based upon a hypothetical network device that is similar to existing devices. This
hypothetical device was used to reduce the number of details that might otherwise
obscure the design of the driver. A driver for a real-world device is likely to be more
complex in that state of the art Ethernet chip sets tend to have somewhat more
elaborate schemes for managing transmit and receive buffers.

Required Methods

The network device FCode must set the value of its device_type property to
network and must implement the following methods:

open (-- ok?)
Prepare the device for use by performing those hardware-dependent actions required
to allocate resources and start the device. Create a "mac-address” property with the
value returned by mac-address . Return true if the open method succeeds; false

otherwise.

close (--)
Return the device to its “not-in-use” state by performing those hardware-dependent

actions required to stop the device and de-allocate resources.

read (addr len -- actual)
Receive a network packet, placing at most the first len bytes in memory at addr. Return

the actual number of bytes received (not the number copied), or -2 if no packet is
currently available. Packets with hardware-detected errors are discarded as though
they were not received. Do not wait for a packet (non-blocking).

The received packet format is shown in Figure 8.

121

write (addr len -- actual)
Transmit the network packet of size len bytes starting at memory address addr. The
format of the buffer at addr is shown in Figure 8. Return the number of bytes actually
transmitted. The packet must be complete with all addressing information, including
source hardware address, as shown in Figure 9.

load (addr -- len)
Read the default stand-alone program into memory starting at addr using the default
network booting protocol. len is the size in bytes of the program read in.

A suitable definition of load is:

Code Example 8-1

:load (addr -- len)
my-args " obp-tftp" $open-package >r (addr) (r: ihandle)
r@ O= abort" Can’t open TFTP package" (addr) (r: ihandle)
>r " load" r@ $call-method (len) (r:ihandle)
r> close-package

Required Device Properties
The required properties for a network device are:

Table 26 Required Network Device Properties

Name Typical Value
name " INTL,my-net"
reg list of registers {device-dependent}
device_type " network"
mac-address 8 0 0x20 0x0c Oxea 0x41 {the MAC address currently being used.}

Optional Device Properties
Several other properties may be declared for network devices:

Table 27 Optional Network Device Properties

Property Name Typical Property Value
max-frame-size 0x4000
address-bits 48
local-mac-address 8 0 0x20 0x0c Oxea 0x41 {the built-in Media Access Control address.}

network Device Driver Issues

write Buffer Format

The write method of a network device driver receives a buffer whose contents are
shown in Figure 8. It should be noted that the driver is not intended to interpret the
“length/Ethernet type” field since it may contain either a length or an Ethernet type. It

122 Writing FCode Programs for PCI

is the responsibility of whoever is calling the write
appropriately.

addr

Figure 8 write

-

Destination Address
6 bytes

Source Address
6 bytes

Length/Ethernet Type
2 bytes

LLC Data

Method Input Buffer Format

method to fill in that field

The driver is responsible for ensuring that the packet that is sent on the network has
the form shown in Figure 9. In reality, the hardware will almost certainly automatically

supply the “preamble

7, “start frame delimiter” and “frame check sequence”. Hardware

will often provide the “pad” in those cases where the “data” is shorter than the
minimum required 64 bytes. However, the driver must supply any of this information
that the hardware does not.

Start Frame Delimiter
1 byte

Preamble
7 bytes

Destination Address
6 bytes

Source Address
6 bytes

Length/Ethernet Type
2 bytes

LLC Data

Pad
(if required)

Frame Check Sequence
4 bytes

Figure 9 Network Packet Format

Network Devices

123

read Buffer Format

Because of the ambiguity of the “length/Ethernet type” field as shown in Figure 8, a
network driver is not expected to and should not try to remove any “pad” bytes that
may be passed to it by the hardware. The driver should simply pass the data supplied
to it by the hardware (subject to the limitations of its len argument).

Use of DMA

The obp-tftp package is not required by IEEE Standard 1275-1994 to provide packets
in buffers that are suitable for DMA. To use DMA, a network driver must:

Provide its own DMA-accessible packet buffers with dma-alloc and dma-map-in .
Flush any caches with dma-sync and copy received data from a DMA buffer into a
buffer provided as an argument to the read method.

s Copy data to be transmitted from a buffer supplied as an argument to the write
method into a DMA buffer and flush any caches with dma-sync .

m Return its DMA buffers with dma-free and dma-map-out .

selftest

Note — United States Patent No. 4,633,466, "Self Testing Data Processing System with
Processor Independent Test Program”, issued December 30, 1986 may apply to some or
all elements of Open Firmware selftest. Anyone implementing Open Firmware should
take such steps as may be necessary to avoid infringement of that patent and any other
applicable intellectual property rights.

The example below shows a bootable network driver. It implements the selftest

method callable by Open Firmware test and test-all commands and the
watch-net method callable by Open Firmware watch-net and watch-net-all
commands.

Since the inclusion of a selftest method on a plug-in card may infringe the patent
mentioned above, writers of drivers for network plug-in cards may wish to omit the
selftest method. However, writers of drivers for network devices that are built onto
a system motherboard are encouraged to include the selftest method.

Device Driver Examples

Simple Bootable Network Device Example
The example below shows a complete version of a simple bootable network driver.

Code Example 8-2 Simple Bootable Ethernet Driver

\ This driver assumes a hypothetical Ethernet adapter as described below.

\ While it would be possible to design an Ethernet adapter similar to this

\ (and, in fact, many early Ethernet adapters were reminiscent of this design),
\ in practice modern Ethernet adapters are somewhat more complicated.

\

\ This hypothetical adapter is deficient in at least the following ways:

\ @) The need to copy packets in and out through a single byte-wide

124 Writing FCode Programs for PCI

Code Example 8-2 Simple Bootable Ethernet Driver (Continued)

\ register is a performance bottleneck. Most modern Ethernet adapters use DMA.
\ b) The single transmit buffer prevents the adapter from sending

\ consecutive packets with the mininum Ethernet interpacket gap.

\ ¢) There is no provision for interrupts. This does not affect FCode

\ drivers, which assume a single-task polled environment, but it would

\ be a problem for a real system.

\

\ The hypothetical adapter has a control register with six bits:

\ 01 \Reset chip

\ 02 \ Enable reception

\ 04 \ Release receive buffer

\ 08 \ Start transmission

\ 10 \ Enable promiscuous reception

\ 20 \ Enable internal loopback

\ Writing a one to a control register bit causes it to perform the indicated action.

\ There is a single transmit buffer. When the xmit-status register is not zero, the

\ hardware is ready to send a packet. To send the packet, the host gives the packet
\ to the adapter by writing it to the xmit-fifo register one byte at a time. Then

\ the host writes the number of bytes to transmit to the xmit-len register. Finally,

\ the host writes "8" to the control register to begin the transmission. The adapter

\ responds by setting the xmit-status register to zero and initiating transmission.

\ When transmission is complete, the adapter sets the xmit-status register to one if
\ the transmission was successful, or to some value other than zero or one to indicate
\an error. If the value written to the xmit-len register is greater than the number

\ of bytes that were written to the xmit-fifo register, the adapter transmits zeroes

\ after transmitting the bytes that were written to the FIFO.

\There are numerous receive buffers organized as a queue. When a packetis received,
\ the adapter sets the rcv-rdy register to the number of currently-available packets

\ and sets the rcv-len register to the length of the first available packet. If that

\ packet is defective, the adapter also sets the 0x8000 bit of the rcv-len register.

\ The host accepts the packet by copying one byte at a time from the rcv-fifo register.

\ When the host has copied all the bytes of that packet that it wants, the host writes

\ "4" to the control register, which causes the adapter to make that packet buffer

\ available for other incoming packets, to decrement the rcv-rdy buffer available for

\ other incoming packets, to decrement the rcv-rdy register, and to update the rcv-len

\ register to reflect the next available packet.

\ The adapter reports the 6-byte Ethernet address that its manufacturer assigned to it

\ via six registers beginning with the "local-addr" register. The adapter compares

\ incoming packets to the 6 registers beginning with the "unicast-addr" register,

\ receiving those whose destination address matches and discarding others (except for
\ broadcast packets, which it always receives). The host must set this unicast

\ address before enabling reception. The host software decides whether to use the

\ manufacturer-assigned Ethernet address or some other Ethernet address for this

\ purpose.

fcode-version2
hex
headers
: copyright (--)
." Copyright (c) 1995-1996 FirmWorks. All Rights Reserved." cr

\ Register offsets from the adapter’s base address

0 constant control ~ \ 1 byte W/O - writing one bits causes things to happen

Network Devices 125

Code Example 8-2 Simple Bootable Ethernet Driver (Continued)

2 constant unicast-addr \ 6 bytes R/W - Ethernet address for reception

8 constant xmit-status \ 1 byte - 0 => busy 1 => okay else => error
9 constant xmit-fifo \ 1 byte - write repetitively to setup packet
a constant xmit-len \ 16 bits - length of packet to send

c constant rcv-rdy \ 1 byte - count of waiting packets
d constant rcv-fifo \ 1 byte - read repetitively to remove first packet
e constant rcv-len \ 16 bits

10 constant local-addr \ 6 bytes R/O - Factory-assigned Ethernet address
16 constant /regs \ Total size of adapter’s register bank

: map-in (addr space size -- virt) " map-in" $call-parent ;
: map-out (virt size --) " map-out" $call-parent ;

: my-w@ (offset -- w) my-space + " config-w@" $call-parent ;
: my-w! (w offset --) my-space + " config-w!" $call-parent ;

" FirmWorks,ethernet" device-name
" network" device-type
" FirmWorks,54321" model

\ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The
\ bug causes phys.lo and phys.mid to be treated as absolute addresses rather than
\ offsets even when working with relocatable addresses.

\ To overcome this bug, the Open Firmware Working Group in conjunction with Apple has
\adopted a workaround thatis keyed to the presence or absence of the add-range method
\'in the PCI node. If the add-range method is present in an Apple ROM, the map-in

\ method is broken. If the add-range property is absent, the map-in method behaves

\ correctly.

\ The following methods allow the FCode driver to accomodate both broken and working
\ map-in methods.

: map-in-broken? (--flag)
\ Look for the method that is present when the bug is present
" add-range” my-parent ihandle>phandle (adrlen phandle)
find-method dup if nip then (flag) \ Discard xt if present

\ Return phys.lo and phys.mid of the address assigned to the PCI base address
\ register indicated by phys.hi .
: get-base-address (phys.hi -- phys.lo phys.mid phys.hi)
" assigned-addresses" get-my-property if (phys.hi)
." No address property found!" cr

00 rot exit \ Error exit

then (' phys.hi adr len)

rot >r (adrlen) (r:phys.hi)

\ Found assigned-addresses, get address

begin dup while (adrlen') \ Loop over entries
decode-phys (‘adr len' phys.lo phys.mid phys.hi)

h# ff and r@ h# ffand = if (adrlen' phys.lo phys.mid) \ This one?
2swap 2drop (phys.lo phys.mid) \ This is the one

126 Writing FCode Programs for PCI

Code Example 8-2 Simple Bootable Ethernet Driver (Continued)

r> exit ('phys.lo phys.mid phys.hi)
else (‘adr len' phys.lo phys.mid) \ Not this one
2drop (adrlen")
then (adrlen")
decode-int drop decode-int drop \ Discard boring fields
repeat
2drop @)

." Base address not assigned!" cr

00r> (00 phys.hi)

\ String comparision

: $= (adr0 len0 adrl lenl -- equal?)
2 pick <> if 3drop false exit then (adrO len0 adrl)
swap comp 0=

\ Define "reg" property
\ PCI Configuration Space
my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+

\ Memory Space Base Address Register 10
my-address my-space 0200.0010 or encode-phys encode+
0 encode-int encode+ /regs encode-int encode+

\ PCI Expansion ROM

my-address my-space h# 200.0030 or encode-phys encode+
0 encode-int encode+ h# 10.0000 encode-int encode+

" reg" property

-1 instance value chipbase
: map-regs (--)

map-in-broken? if
my-space h# 8200.0010 or get-base-address (phys.lo phys.mid phys.hi)

else
my-address my-space h# 200.0010 or (phys.lo phys.mid phys.hi)
then (phys.lo phys.mid phys.hi)

/regs map-in to chipbase

4 dup my-w@ 4 or swap my-w! \ Enable memory space
chipbase encode-int " address" property

:unmap-regs (--)
4 dup my-w@ 4 invert and swap my-w! \ Disable memory space
chipbase /regs map-out -1 to chipbase
" address" delete-property

:e@ (register-- byte) chipbase + rb@ ;
el (byteregister--) chipbase +rb! ;
tew@ (register -- 16-bits) chipbase + rw@ ;

Network Devices 127

Code Example 8-2 Simple Bootable Ethernet Driver (Continued)

: ew! (16-bits register --) chipbase + rw! ;

: control-on (control-bit --) control e@ or control e! ;

: control-off (control-bit --) invert control e@ and control e! ;
: reset-chip (--) 1 control e!;

: receive-on (--) 2 control-on ;

: return-buffer (--) 4 control-on ;

: start-xmit (--) 8 control-on ;

: promiscuous (--) 10 control-on ;

: loopback-on (--) 20 control-on ;

: loopback-off (--) 20 control-off ;

: receive-ready? (-- #pkts-waiting) rcv-rdy e@ ;
: wait-for-packet (--) begin key? receive-ready? or until ;

\ Create local-mac-address property from the information in the chip
map-regs
6 alloc-mem (mem-addr)
6 0 do local-addri+rb@ overi+c! loop (mem-addr)
6 2dup encode-string " local-mac-address" property (mem-addr 6)
free-mem
unmap-regs
s initchip (--)
reset-chip

\ Ask the host system for the station address and give it to the adapter

mac-address 0 do (addr)
dup i+c@ unicast-addri+e! (addr)
loop drop

receive-on \ Enable reception
: net-init (-- succeeded?)
loopback-on loopback-test loopback-off if init-chip true else false then

\ Check for incoming Ethernet packets while using promiscuous mode.
: watch-test (--)
." Looking for Ethernet packets." cr
."'"is a good packet. 'X'is a bad packet." cr
." Press any key to stop." cr
Begin
wait-for-packet
receive-ready? if
rcv-len ew@ 8000 and 0= if ."." else ." X" then
return-buffer
then
key? dup if key drop then
until
. (watch-net) (--)
map-regs
promiscuous
net-init if watch-test reset-chip then
unmap-regs

. le-selftest (-- passed?)
net-init

128 Writing FCode Programs for PCI

Code Example 8-2 Simple Bootable Ethernet Driver (Continued)

dup if net-off then

external

:read (addr requested-len -- actual-len)
\ Exit if packet not yet available
receive-ready? 0= if 2drop -2 exit then

rcv-len ew@ dup 8000 and = if (‘addr requested-len packet-len)
3drop return-buffer \ Discard bad packet
-1 exit

then (addr requested-len packet-len)

\ Truncate to fit into the supplied buffer
min (‘addr actual-len)

\ Note: For a DMA-based adapter, the driver would have to synchronize caches (e.g.

\ with "dma-sync") and copy the packet from the DMA buffer into the result buffer.

tuck bounds ?do mem-portic! loop (actual-len)
return-buffer (‘actual-len)

: close (--) reset-chip unmap-regs ;

:open (--ok?)
map-regs
mac-address encode-string " mac-address" property
initchip
my-args " promiscuous” $= if promiscuous then

\ Note: For a DMA-based adapter, the driver would have to allocate DMA memory for

\ packet buffers, construct buffer descriptor data structures, and possibly
\ synchronize caches (e.g. with "dma-sync").

true

: write (addr len -- actual)
begin xmit-status e@ 0<> until

\ Note: For a DMA-based adapter, the driver would have to copy the
\ packet into the DMA buffer and synchronize caches (e.g. with "dma-sync").

\ Copy packet into chip
tuck bounds ?do ic@ xmit-fifo e! loop

\ Set length register
dup h# 64 max xmit-len ew!

start-xmit

‘load (addr--len)
" obp-tftp" find-package if (addr phandle)
my-args rot open-package (addrihandle|0)

else (‘addr)
0 (addr0)
then (addr ihandle|0)

Network Devices

129

Code Example 8-2 Simple Bootable Ethernet Driver (Continued)

dup 0= abort" Can’t open obp-tftp support package" (addr ihandle)

>r
" load" r@ $call-method (len)
r> close-package

: selftest (-- failed?)
map-regs
le-selftest 0=
unmap-regs

: watch-net (--)
selftest 0= if (watch-net) then

fcode-end

130 Writing FCode Programs for PCI

Serial Devices

Serial devices are byte-oriented, sequentially-accessed devices such as asynchronous
communication lines (often attached to a “dumb” terminal).

Required Methods

The serial device driver must declare the serial device type, and must implement
the methods open and close , as well as the following:

install-abort (--)
Instruct the driver to begin periodic polling for a keyboard abort sequence.
install-abort is executed when the device is selected as the console input device.

read (addr len -- actual)
Read len bytes of data from the device into memory starting at addr. Return the number
of bytes actually read, actual, or -2 if no bytes are currently available from the device. -1
is returned if other errors occur.

remove-abort (--)
Instruct the driver to cease periodic polling for a keyboard abort sequence.
remove-abort is executed when the console input device is changed from this device
to another.

write (addr len -- actual)
Write len bytes of data to the device from memory starting at addr. Return the number
of bytes actually written, actual.

Required Properties
The standard properties of a serial driver are:

Table 28 Serial Driver Required Properties

Property Name Value
name " INTL,thingy"
reg list of registers { device-dependent}
device_type " serial"

131

Device Driver Examples

The examples that follow are serial device drivers for the Zilog 8530 SCC (UART) chip.

m The first sample is a short driver which simply creates a device node and declare the
properties for the device.

m The second sample shows the complete serial device driver. The open method
accepts an argument of the form [p][,s] where:

O p is an optional argument indicating which port of the device is to be used. Valid
values are a and b. If p is not specified, Port A is used.

O s is an optional argument specifying the speed to which the port should be set in
decimal. Valid values are 4800, 9600, 19200 and 38400. If s is not specified, 9600 is
used.

Simple Serial FCode Program

Code Example 9-1 Simple Serial Device Driver

\ This driver creates a device node and publishes the minimum required set of
\ properties.
fcode-version2

hex
"INTL,zs" device-name
" serial" device-type

\ Define "reg" property
\ PCI Configuration Space
my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+

\ Memory Aperture
my-address my-space 0200.0010 or encode-phys encode+
0 encode-int encode+ 8 encode-int encode+

\ PCI Expansion ROM

my-address my-space h# 200.0030 or encode-phys encode+
0 encode-int encode+ h# 10.0000 encode-int encode+

"reg" property

fcode-end

Complete Serial FCode Program

Code Example 9-2 Complete Serial FCode Program

\ Complete Serial driver.

\ In addition to publishing properties, this sample driver provides methods to
\ initialize, test, access and control the serial ports.

\

\ The following main methods are provided:

\-usea (--)

\ Selects serial port A. All subsequent operations will be directed to port A.
\-useb (--)

\ Selects serial port B. All subsequent operations will be directed to port B.
\ - uemit (char--)

\ Emits a given character to the selected serial port.

132 Writing FCode Programs for PCI

Code Example 9-2 Complete Serial FCode Program (Continued)

\ - ukey (--char)

\ Retrieves a character from the selected serial port.

\-read (addrlen -- #read)

\ Reads "len" number of characters from the selected port, and stores them at "addr".
\ Returns the actual number read.

\

\

\ - write (addr len -- #written)

\ Writes "len" number of characters from the buffer located at "addr" to the selected
\" port. Returns the actual number written.

\ - inituarts (--)

\ Initializes both serial ports A and B.

\ - open (-- okay?)

\ Maps in the uart chip. Selects port A on default, then checks my-args. If port B
\ was specified, then selects port B instead.

\-close (--)

\ Unmap the uart chip.

\ - selftest (--)

\ Performs selftest on both Port A and B.

\ - install-abort (--)

\ Sets up alarm to do poll-tty every 10 milliseconds.

\ - remove-abort (--)

\ Removes the poll-tty alarm.

fcode-version2
hex
headers

: copyright (--)
." Copyright (c) 1995-1996 FirmWorks. All Rights Reserved." cr

" INTL,zs" device-name
" serial" device-type

8 constant /regs \ Total size of adapter’s register bank

\ Define "reg" property
\ PCI Configuration Space
my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+

\ Memory Aperture
my-address my-space 0200.0010 or encode-phys encode+
0 encode-int encode+ /regs encode-int encode+

\ PCI Expansion ROM
my-address my-space h# 0200.0030 or encode-phys encode+
0 encode-int encode+ h# 10.0000 encode-int encode+

" reg" property

: map-in (phys.lo phys.mid phys.hi size -- virt) " map-in" $call-parent ;
: map-out (virt size --) " map-out" $call-parent ;

: my-w@ (offset -- w) my-space + " config-w@" $call-parent ;
: my-w! (w offset --) my-space + " config-w!" $call-parent ;

Serial Devices 133

Code Example 9-2 Complete Serial FCode Program (Continued)

:Istring (addrlenn -- addr+nlen-n) tuck - -rot + swap ;
headerless

\ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The
\ bug causes phys.lo and phys.mid to be treated as absolute addresses rather than

\ offsets even when working with relocatable addresses.

\ To overcome this bug, the Open Firmware Working Group in conjunction with Apple has
\adopted aworkaround thatis keyed to the presence or absence of the add-range method
\'in the PCI node. If the add-range method is present in an Apple ROM, the map-in

\ method is broken. If the add-range property is absent, the map-in method behaves

\ correctly.

\ The following methods allow the FCode driver to accomodate both broken and working
\ map-in methods.

: map-in-broken? (-- flag)
\ Look for the method that is present when the bug is present
" add-range" my-parent ihandle>phandle (adrlen phandle)
find-method dup if nip then (flag) \ Discard xt if present

\ Return phys.lo and phys.mid of the address assigned to the PCI base address
\ register indicated by phys.hi .
: get-base-address (phys.hi -- phys.lo phys.mid phys.hi)
" assigned-addresses" get-my-property if (phys.hi)
." No address property found!" cr

00 rot exit \ Error exit

then (' phys.hi adr len))

rot >r (adrlen) (r:phys.hi)

\ Found assigned-addresses, get address

begin dup while (adrlen') \ Loop over entries
decode-phys (‘adr len' phys.lo phys.mid phys.hi)

h# ff and r@ h# ffand = if (adrlen' phys.lo phys.mid) \ This one?
2swap 2drop (phys.lo phys.mid) \ This is the one

r> exit (phys.lo phys.mid phys.hi)
else (‘adr len' phys.lo phys.mid) \ Not this one
2drop (adrlen")
then (adrlen")
decode-int drop decode-int drop \ Discard boring fields
repeat
2drop @)
." Base address not assigned!" cr
00r> (00 phys.hi)
headers

-1 instance value uartbase

0 instance value uart \ define uart as an "per-instance" value.
h# ff instance value mask-#data \ mask for #data bits

6 instance value tc \ Baud rate time constant. Init'd to value for 9600
true instance value usea? \ Which port did user specify?

134 Writing FCode Programs for PCI

Code Example 9-2 Complete Serial FCode Program (Continued)

\ The following line assumes that A2 selects the channel within the chip
:usea (--) uartbase 4 +touart ;

;useb (--) wuartbasetouart ;

suctl! (c--) uart rb! ;

suctl@ (--c) uart rb@ ;

\ The following line assumes that A1 chooses the command vs. data port
;udata! (c--) uvart 2+rb! ;
sudata@ (--c) uart 2+rb@ ;

\ Write the initialization sequence to both UARTS
sinituart (--)
\Reg Value Description
9uctll 2uctll \Don'trespond to intack cycles (02)
4 uctl! 44 uctl! \ No parity (00), 1 stop bit (04), x16 clock (40)
3uctl! cOuctl! \receive 8 bit characters (c0)
5uctl! 60 uctl! \transmit 8 bits (60)
e uctll 82 uctl! \ Processor clock is baud rate source (02)
b uctl! 55 uctl! \TRxC = xmit clk (01), enable TRxC (04), Tx clk is baud (10),
\ Rx clk is baud (40)
cuctl! tcuctl! \ Time constant low
ductl! Ouctll! \Time constant high
3uctl! cluctl! \receive 8 bit characters (c0), enable (01)
5 uctl! 68 uctl! \transmit 8 bits (60), enable (08)
e uctl! 83 uctll \Processor clock is baud rate source (02), Tx enable (01)
O uctl! 10 uctl! \ Reset status bit latches

s inituarts (--) usea inituart useb inituart ;
inituarts

\ Test for "break" character received.
:ubreak? (-- break?) 10 uctl! uctl@ h# 80 and 0<> ;

: clear-break (--) \ Clear the break flag
begin ubreak? 0= until \ Let break finish

udata@ drop \ Eat the null character

30 uctl! \ Reset errors
1 constant RXREADY \ received character available
4 constant TXREADY \ transmit buffer empty

:uemit? (-- emit?) uctl@ TXREADY and 0<> ;
:uemit (char --) begin uemit? until udata! ;

: ukey? (-- key?) uctl@ RXREADY and 0<> ;
s ukey (--key) begin ukey? until udata@ ;

: poll-tty (--)
ubreak? if clear-break user-abort then

Serial Devices

135

Code Example 9-2 Complete Serial FCode Program (Continued)

: which-port? (‘arg-str arg-len -- speed-str speed-len)
ascii, left-parse-string if (speed-str speed-len port-str)
c@ Icc case (speed-str speed-len)
ascii a of true endof (speed-str speed-len flag)
ascii b of false endof (speed-str speed-len)
1 throw \ Throw an error on an unrecognized port letter

endcase (speed-str speed-len flag)
else (speed-str speed-len port-str)

drop true (speed-str speed-len flag)
then (speed-str speed-len flag)
to usea? (speed-str speed-len)

. set-baud-rate (speed-str speed-len --)
dup if
base @ decimal (base) \ Change to decimal at run-time and save old base
$number if (base | base baud-rate)
base ! 2 throw \ Throw an error on a non-decimal speed specification
then (base baud-rate)
case (base baud-rate)
d# 9600 of 6 endof
d# 38400 of 0 endof
d# 19200 of 2 endof
d# 4800 of e endof
drop base ! 3 throw \ Throw an error on an invalid speed specification

endcase (base time-constant)
swap base! (time-constant)
else (' speed-str 0)
2drop 6 (6) \ Time constant for 9600 (default)
then (time-constant)
totc ()
external

:open (-- okay?)
map-in-broken? if
my-space h# 8200.0010 or get-base-address (phys.lo phys.mid phys.hi)

else
my-address my-space h# 200.0010 or (phys.lo phys.mid phys.hi)
then (phys.lo phys.mid phys.hi)

/regs map-in to uartbase

4 dup my-w@ 4 or swap my-w! \ Enable memory space
uartbase encode-int " address" property

my-args (‘arg-str arg-len)
[which-port? catch if (‘arg-str arg-len | speed-str speed-len)
2drop false (false)
else (speed-str speed-len)
[] set-baud-rate catch if (speed-str speed-len | <nothing>)
2drop false (false)
else ()
usea? if usea else useb then inituart true (true)
then (okay?)
then (okay?)

136 Writing FCode Programs for PCI

Code Example 9-2 Complete Serial FCode Program (Continued)

: close (--)
4 dup my-w@ 4 invert and swap my-w! \ Disable memory space
uartbase /regs map-out -1 to uartbase
" address" delete-property

headers
sutest (--0) h# 7f bl do iuemit loop O ;
external

. selftest (-- error?)
open 0= if ." Can't open device" true exit then
my-args if (addr)
c@ lcc case
asciia of usea endof
asciib of useb endof
(default) ." Bad zs port letter = " emit close false exit
endcase
utest (fail?)
else \ No port letter so test both ports.
drop
usea utest
useb utest
or (fail?)
then
close

:read (addrlen --#read) \#read = -2 == none available right now
ukey? 0= if 2drop -2 exit then (addrlen)
tuck (len addr len)
begin dup 0<> ukey? and while (len addrlen)
over ukey mask-#data and swap ¢! (len addrlen)

1 /string (len addr' len")
repeat (len addr'len")
nip - (#read)

:write (addr len -- #written)
tuck bounds ?do (len)
ic@ uemit (len)

loop (len)

s install-abort (--) [] poll-tty d# 10 alarm ;
: remove-abort (--) [] poll-tty O alarm ;

\ "seek" might be implemented to select a load file name
\ Implement "load" (optional)

fcode-end

Serial Devices

137

138 Writing FCode Programs for PCI

10

Display Devices

The display device type applies to framebuffers and other devices that appear to be
memory to the processor with associated hardware to convert the memory image to a
visual display. Display devices can be used as console output devices.

Required Methods

To be usable as the console output device during Open Firmware start up, a display
device’s FCode must set the value of its device_type property to display . It must
also implement the methods open and close , and may optionally implement the
selftest method. However, for historical reasons, the open, close and selftest
methods are not created directly in the driver FCode as they are for other device types.

Unlike other device types that obtain support services from the system firmware
through the /packages node, display devices interact with system firmware with a
special defer word interface used exclusively by display devices.

When writing an FCode program for a display device, you create methods whose
behavior is later “installed” into the defer words of the display device interface. The
FCodes is-install , is-remove and is-selftest are used to attach the methods
defined in your FCode program to the defer word interface, and to create the open,
close and optional selftest routines for your display device. In addition, the
set-font FCode initializes the values of fontbytes , char-height and

char-width , all of which are used to configure the low level display device interface
defer words.

The lists of FCodes specifically designed for use with display devices are listed in Note
— Table 82 through Table 89 in Appendix A, “FCode Reference”.

139

Required Properties

Table 29 Required Display Device Properties

Property Name Typical Value
name " FirmWorks,generic-vga"
reg list of registers {device dependent}
device_type " display” {required for display devices}
character-set " 1S0O8859-1" (device dependent)
height #scanlines (device dependent)
width /scanline (device dependent)
depth 8 (device dependent)
linebytes #scanlines (device dependent)

Structure of adisplay Device Driver

The Open Firmware system firmware provides support to display device drivers with
the terminal emulator and the low level display device interface defer words. This
support requires that an FCode program create certain properties and do certain
operations in a certain order at probe time. In addition, the words installed with
is-install and is-remove must perform certain operations in a certain order.

Probe Time Actions

Create required properties.
Create manufacturer-specific properties (if any).
Create terminal emulator properties.
= height , width , depth and linebytes
= |f appropriate, is06429-1983-colors
m is-install
is-remove
is-selftest , if desired.

is-install Actions

The word whose execution token is installed with is-install must:

Map in the frame buffer. Enable PCI memory and/or 1/0 space access as required.

Initialize the graphics hardware.

Initialize the color palette.

= default-colors

= set-colors

Initialize frame-buffer-adr

Create the address property.

Install the b8 package.

= default-font

= set-font

= fb8-install

= If applicable, replace the behaviors of the low level display device interface defer
words with more appropriate behavior. (See the next section for details.)

140 Writing FCode Programs for PCI

m If necessary, correct the centering of the image on the screen by changing the value
of window-left and/or window-top

When is-install (-- xt) is executed, it creates the following methods:
m open (-- ok?)

When later called, executes the routine whose execution token is xt guarded by
catch . If the execution of xt results in a throw , false is returned. Otherwise, the
Open Firmware terminal emulator is initialized and true is returned.

m write (addr len -- #written)

When later called, passes its argument string to the Open Firmware terminal
emulator for interpretation.

m draw-logo (line# addr width height --)

When later called, executes the routine whose execution token was installed in the
defer word draw-logo . Initially, fb8-install loads draw-logo with the
behavior of fb8-draw-logo . (See the next section for more details.)

m restore (--)

When later called, executes the routine whose execution token was installed in the
defer word reset-screen . Initially, fb8-install loads reset-screen with
the behavior of fb8-reset-screen . (See the next section for more details.)

Low Level Display Device Interface defer Words

The low level display device interface is composed of the following defer words:

draw-character
reset-screen
toggle-cursor
erase-screen
blink-screen
invert-screen
insert-characters
delete-characters
insert-lines
delete-lines
draw-logo

When fb8-install is executed, each of these words is loaded with a default behavior
supplied by the fb8 default versions of these words (i.e. draw-character is loaded
with the behavior of fb8-draw-character).

If your hardware is capable of performing a given operation more efficiently than one
of the default methods, you may create an alternative method in FCode to take
advantage of your hardware’s capabilities, and may then replace the default behavior
with your alternative method.

For example, your hardware might have the capability of quickly erasing the screen. If
you wrote a word named (say) my-erase-screen , you could replace the default
behavior with the phrase:

[1 my-erase-screen to erase-screen

Display Devices

141

The complete definitions of the defer words can be found in Chapter 12 “Open
Firmware Dictionary”.

is-remove Actions

The word whose execution token is installed with is-remove must:

Reset the hardware, if applicable.

Unmap any mapped resources.

Disable PCI memory and/or PCI 1/0 space accesses as appropriate.
Delete the address property.

When is-remove (-- xt) is executed, it creates the following method:

m close (--)
When later called, executes the routine whose execution token is xt.

is-selftest Actions

The word whose execution token is installed with is-selftest must:

Must assume that the device may or may not be open.
Establish any device state necessary to perform its tests.
Perform a selftest of the display device returning 0 on test success and a non-zero
error code on test failure. The complexity of this test may depend upon the value
returned by diagnostic-mode? ; if so, more extensive testing should be done
when diagnostic-mode? returns true .

m Release any resources that were allocated to perform the tests.

When is-selftest (-- xt) is executed, it creates the following method:

m selftest (-- failure?)
When later called, executes the routine whose execution token is xt.

display Device Driver Issues

16-Color Text Extension Recommended Practice

IEEE Standard 1275-1994 defines the facilities for displaying text in terms of a two color
model. Most computers today have color capability. The 16-Color Text Extension
Recommended Practice describes extensions to the basic Terminal Emulator support
package that enable the use of additional colors on the Open Firmware console
display device.

A display driver that uses the fb8 support routines only has to meet two additional
requirements to support this extension:

m Define the property iso6429-1983-colors

142 Writing FCode Programs for PCI

m Set up the device’s color translation mechanism such that the correspondence
between pixel values in the frame buffer memory and displayed colors is as given in

Table 30.
Table 30 16 Color Text Extension Color Assignments
Color Number | Red Green Blue Color

0 0 0 0 Black
1 0 0 2/3 Blue
2 2/3 0 Green
3 2/3 2/3 Cyan
4 2/3 0 0 Red
5 2/3 0 2/3 Magenta
6 2/3 173 0 Brown
7 2/3 2/3 2/3 White
8 1/3 1/3 1/3 Grey
9 1/3 1/3 1 Bright Blue
10 1/3 1 1/3 Bright Green
11 1/3 1 1 Bright Cyan
12 1 1/3 1/3 Bright Red
13 1 1/3 1 Bright Magenta
14 1 1 1/3 Yellow
15 1 1 1 Bright White

The mechanism for creating this correspondence is the device driver’s responsibility.
For those devices having a color lookup table, loading the first sixteen entries as
shown above should achieve this result.

Note — The above table defines the sixteen colors in terms of the approximate
intensities of red, green and blue, where 0 means “no intensity” and 1 means
“maximum intensity”. The description of the colors does not imply that the hardware

must use an RGB color space.

Note — Some Sun system ROM implementations use color number 255 (i.e. 0xFF) as the
background color. To make your driver compatible with those systems, also load color
number 255 with the values shown above for color number 15.

If your device cannot support 8-bit frame buffers (e.g. has a 24-bit-only frame buffer),
the device driver must provide additional capabilities that would otherwise have been
provided by the fb8 support package. See the 16-Color Text Extension Recommended

Practice document for the details.

Display Devices

143

8-Bit Graphics Extension

IEEE Standard 1275-1994 defines a text oriented interface. Most computers today have
graphics capabilities, and users generally prefer graphical user interfaces over
command line interfaces like that defined by IEEE Standard 1275-1994. The 8-Bit
Graphics Extension Recommended Practice document describes extensions to the standard
that enable the manipulation of graphical, 256-color objects on display devices.

The graphics model used by this extension has the following characteristics:

m Pixels are represented by 8-bit values that represent one of 256 colors.

m The mapping of a color number to a display color is specified with three 8-bit values
each of which represent a color component in an RGB color space.

= A color component value of 0 represents the absence of that color while a value of
255 represents full saturation of the color (i.e. [0, 0, 0] is black and [255, 255, 255] is
white).

m When a color is specified with a memory region (as with set-colors and
get-colors), the first byte of the region represents the red component, the next
byte represents the green component and the next byte represents the blue
component. If multiple colors are specified with a memory region, the byte
describing the red component of the (N+1)th color immediately follows the byte
describing the blue component of the Nth color.

m The top-left corner of the display is [0, 0].

Rectangular regions of the display buffer are described by a set of coordinates
specifying the position of the top-left corner of the rectangle [x, y] and the width
and height of the rectangle [w, h].

m Data in memory representing rectangular regions consist of w times h contiguous
bytes where the first w bytes represent the pixels of the first row of the rectangle
(from left to right), the next w bytes represent the pixels of the second row, etc. Each
such byte contains the color number of the corresponding pixel.

This extension defines the following methods that must be added to the display
device driver.

draw-rectangle (addr x y w h --)
Display the rectangular image beginning at pixel location x,y of size w,h using the
image defined by the memory region starting at addr.

fill-rectangle (index x y w h --)
Fill the rectangular region beginning at pixel location X,y of size w,h using the color
specified by index.

read-rectangle (addr xy w h --)
Copy the rectangular image beginning at pixel location x,y of size w,h to the memory
region starting at addr.

Note — For displays that are not in 8-bit per pixel mode, read-rectangle is not
defined. It is therefore recommended that displays provide an 8-bit mode and use this
mode during Open Firmware execution.

color! (r g b index --)
Set the color associated with index to the value specified by r,g,b.

144 Writing FCode Programs for PCI

color@ (index--rgh)
Read the color associated with index and return its r,g,b components.

set-colors (addr index #colors --)
Set a range of #colors consecutive colors starting at index. addr is the address of the
memory area in which the color components are specified.

get-colors (addr index #colors --)
Read a range of #colors consecutive colors starting at index. addr is the address of the
memory area into which the color components are copied.

dimensions (-- width height)
Return the dimensions in pixels of the viewable area of the screen in the current mode.

Use of Legacy VGA Addressing

There are a couple of issues associated with the use of VGA ISA legacy addresses in
1/0 space.

VGA 1/0 space registers are non-relocatable and are distributed in small regions across
1/0 space. Strictly speaking, each of these small regions should be independently
mapped. However, given that these addresses in non-relocatable 1/0 space are not
going to be changed, it is safe—and therefore acceptable—to map in one large region
that covers all of the registers used by the driver.

Having said that, it is important to accurately report in the reg property the actual
registers decoded by the card with as many entries as are required. The following code
example uses four separate reg property entries to report the registers decoded by a
generic VGA card.

Since all VGA cards use these same non-relocatable legacy addresses, if two devices
have these addresses mapped simultaneously then both devices will respond to
accesses to the addresses. Consequently, it is good practice to “wrap” accesses to the
legacy addresses in a map-in /map-out pair such that the legacy addresses are only
“consumed” by the driver for a short period of time. Failure to do this may result in
problems if two copies of your device are ever installed in the same system.

Device Driver Example

Generic VGA Display Device Driver

This example FCode program is a complete bootable generic VGA console display
device driver.

Code Example 10-1 Complete Generic VGA Display Device Driver

\ Complete Generic VGA Display Device Driver
fcode-version2
hex

: copyright (--)
." Copyright (c) 1994-1996 FirmWorks. All Rights Reserved." cr

Display Devices 145

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued)

headers
-1 instance value io-base

: config-w@ (config-addr -- data) " config-w@" $call-parent ;
: config-w! (data config-addr --) " config-w!" $call-parent ;

: map-io-regs (--)
\ h# 8100.0000 means non-relocatable 1/O space
0 0 h# 8100.0000 h# 1.0000 " map-in" $call-parent to io-base

\ Enable 1/O space response
my-space 4 + dup config-w@ (addr value)
1or swap config-w!

:unmap-io-regs (--)
\ Disable 1/O space response
my-space 4 + dup config-w@ (addr value)
linvertand swap config-w!

io-base h# 1.0000 " map-out" $call-parent
-1 to io-base

:pc@ (offset-- byte) io-base + rb@ ;
. pc! (byte offset --) io-base + rb! ;
:pw! (word offset --) io-base + rw! ;

\ Access functions for various register banks

\ Reset attribute address flip-flop
: reset-attr-addr (--) 3da (input-statusl) pc@ drop ;

: setup-vse! (b--) 46e8pc! ;
:dac@ (--b) 3c8pc@ ;

: video-mode! (b --) reset-attr-addr 03cO pc! ;
:attrl (bindex --) 03c0 pc! 03cO pc! ;
rattr@ (index --b)

reset-attr-addr 03cO pc! 03cl pc@ reset-attr-addr

:grf! (bindex--) 03ce pc! 03cf pc! ;
: feature-ctl! (b --) 03da pc! ;

:misc@ (--b) 3ccpc@ ;
:misc! (b--) 3c2pc! ;

: crt-setup (index -- data-addr) 03d4 pc! 03d5 ;

ccrt! (bindex --) crt-setup pc! ;

jcrt@ (index --b) crt-setup pc@ ;

. crt-data! (b --) 03d5 pc! ;

. crt-set (bits index --) crt@ or crt-data! ;

: crt-clear (bits index --) crt@ swap invert and crt-data! ;

146

Writing FCode Programs for PCI

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued)

: seg-setup (index -- data-addr) 03c4 pc! 03c5 ;
:seq! (bindex --) seg-setup pc! ;
:seq@ (index --b) seg-setup pc@ ;

sunlock (--) \ Unlock all registers
80 11 crt-clear \ Unlock CRT registers
80 3 crt-set \ Unlock vertical retrace registers

:wakeup (--)
le setup-vse! \Video system enable, in setup mode
1 102 pc! \Enable VGA video subsystem
e setup-vse! \Out of setup mode
23 3c2 pc! \Enable memory, color base, page 0, clock @ 25.175 MHz
unlock

: async-reset (--)
20 1 seq! \ screen off
00seq! 30 seq! \ Pulse reset
1 seq@ 20 invert and 1 seq!\ Screen on

. low-power (--)
ff 4 crtl \ Disable hsync for low monitor power

\ Standard VGA CRT Controller registers, indices 0-h#18
: cri-table (--addrlen) \ 72 Hz

:crt-regs (--)
crt-table 0 ?do
i4 <> if \ Don't program hsync (at offset 4) until later
dupi+c@ i crt!
then
loop
drop

: attr-table (-- addrlen) \ Attribute controller indices 0-14
" "(00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of 41 00 Of 00 00)"

: attr-regs (--)
reset-attr-addr
attr-table 0 do dup i+ c@ i attr! loop drop

. grf-table (-- addrlen) \ Graphics controller indices 0-8
" "(00 00 00 00 00 40 05 Of ff)"

s grf-regs (--)
grf-table 0 do dupi+c@ igrf! loop drop

" "(5f 4f 50 82 54 80 bf 1f 00 41 00 00 00 00 00 31 9c Oe 8f 28 40 96 b9 a3 ff)"

Display Devices

147

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued)

: seg-table (--addrlen) ""(01 Of 00 Oe)" ;
. seq-regs (--)
seg-table 0 ?do dupi+c@ i1+ seq! loop drop

external
\ Set color lookup table to comply with 16-Color Text Extension Recommended Practice
: default-colors (-- addr index #indices)

\ The following array must be entered as one long line of text.

""(00 0000 aa0000 00 aa00 aa 5500 0000 aa aa00aa 00 aaaa aaaaaa
555555 ff 5555 55 ff 55 ff ff 55 55 55 ff ff 55 ff 55 ff ff ff ff ff)"

0 swap 3/

headers

\ Palette access

s init-dac (--)
ff 03c6 pc!

:index! (index --) 03c8 pc! ;

(plt! (b--) 03c9 pc! ;

pit@ (--b) 03c9 pc@ ;

external

\ Methods defined by the 8-Bit Graphics Extension Recommended Practice

: set-colors (addr index #indices --)
swap index!
3* bounds ?do ic@ plt! loop

: get-colors (addr index #indices --)
swap index!
3* bounds ?do plt@ ic! loop

:color@ (index--rgb) index! plt@ plt@ plt@ ;
: color! (index--rghb) index! swap rot plt! plt! plt! ;

headers

: setup-middle (--)
low-power

0 video-mode! \ Disable video palette
async-reset

6 4 seq! \ Enable access to all 256K of VGA memory
seq-regs

attr-regs
grf-regs

crt-regs

0 feature-ctl! \ Vertical sync ctl

148 Writing FCode Programs for PCI

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued)

- hsync-on (--)
crt-table drop 4 + c@ 4 crt! \ Set hsync position

: setup-end (--)
init-dac
hsync-on
default-colors set-colors
ff dup dup dup color! \ Load Bright White in color 255 for compatibility with Sun

20 video-mode! \ Video on

: setup-begin (--) wakeup ;

dinit (--)
\ Apparently the clocks take awhile to stabilize, so it is
\ sometimes necessary to do the setup twice
setup-begin
setup-middle
setup-end

" display" device-name

" FirmWorks,generic-vga" model

" display" device-type

"1S08859-1" encode-string " character-set" property
0 0 encode-bytes "is06429-1983-colors" property

d# 320 constant /scanline
d# 200 constant #scanlines
/scanline #scanlines * constant /fb

\Define reg property
\ PCI Configuration Space Registers
my-address my-space encode-phys 0 encode-int encode+ 0 encode-int encode+

\ Memory Space Base Address Register 10

\ Despite what the configuration base address register implies,

\ the S3’s memory region is mappable on 2 Mbytes boundaries.

\ This is a violation of the PCI spec, which requires that the base

\ address register must accurately describe the mapping granularity.

my-address my-space h# 200.0010 or encode-phys encode+
0 encode-int encode+ h# 20.0000 encode-int encode+

\ PCI Expansion ROM
my-address my-space h# 200.0030 or encode-phys encode+
0 encode-int encode+ h# 10.0000 encode-int encode+

\ VGA Sleep Register
h# 102 0 my-space h# a100.0000 or encode-phys encode+
0 encode-int encode+ h# 1 encode-int encode+

\ VGA Monochrome Emulation Mode Registers
h# 3b0 0 my-space h# a100.0000 or encode-phys encode+
0 encode-int encode+ h# ¢ encode-int encode+

Display Devices

149

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued)

\ VGA Control and Color Emulation Mode Registers
h# 3c0 0 my-space h# a100.0000 or encode-phys encode+
0 encode-int encode+ h# 20 encode-int encode+

\ VGA Subsystem Enable Register
h# 46e8 0 my-space h# a100.0000 or encode-phys encode+
0 encode-int encode+ h# 1 encode-int encode+

\ Frame Buffer

h# a.0000 0 my-space h# a100.0000 or encode-phys encode+
0 encode-int encode+ h# 2.0000 encode-int encode+

" reg" property

\ Some of Apple’s Open Firmware implementations have a bug in their map-in method. The
\ bug causes phys.lo and phys.mid to be treated as absolute addresses rather than
\ offsets even when working with relocatable addresses.

\ To overcome this bug, the Open Firmware Working Group in conjunction with Apple has
\adopted aworkaround thatis keyed to the presence or absence of the add-range method
\'in the PCI node. If the add-range method is present in an Apple ROM, the map-in

\ method is broken. If the add-range property is absent, the map-in method behaves

\ correctly.

\ The following methods allow the FCode driver to accomodate both broken and working
\ map-in methods.

: map-in-broken? (-- flag)
\ Look for the method that is present when the bug is present
" add-range" my-parent ihandle>phandle (adrlen phandle)
find-method dup if nip then (flag) \ Discard xt if present

\ Return phys.lo and phys.mid of the address assigned to the PCI base address
\ register indicated by phys.hi .
: get-base-address (phys.hi -- phys.lo phys.mid phys.hi)
" assigned-addresses" get-my-property if (phys.hi)
." No address property found!" cr

00 rot exit \ Error exit

then (phys.hi adr len)

rot >r (adrlen) (r:phys.hi)

\ Found assigned-addresses, get address

begin dup while (adrlen') \ Loop over entries
decode-phys (‘adr len' phys.lo phys.mid phys.hi)

h# ff and r@ h# ffand = if (adr len' phys.lo phys.mid) \ This one?
2swap 2drop (phys.lo phys.mid) \ This is the one

r> exit (phys.lo phys.mid phys.hi)
else (‘adr len' phys.lo phys.mid) \ Not this one
2drop (adrlen")
then (adrlen")
decode-int drop decode-int drop \ Discard boring fields
repeat
2drop @)

." Base address not assigned!" cr

00r> (00 phys.hi)

150 Writing FCode Programs for PCI

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued)

: map-frame-buffer (--)
\ Map frame buffer
map-in-broken? if
my-space h# 8200.0010 or get-base-address (phys.lo phys.mid phys.hi)

else
my-address my-space h# 200.0010 or (phys.lo phys.mid phys.hi)
then (phys.lo phys.mid phys.hi)

/fb " map-in" $call-parent
a.0000 + \ Generic VGA compatible address
to frame-buffer-adr

\ Enable memory space access
my-space 4 + dup config-w@ (addr value)
2 or swap config-w!

frame-buffer-adr encode-int " address" property

: unmap-frame-buffer (--)
frame-buffer-adr a.0000 - /fb " map-out" $call-parent
-1 to frame-buffer-adr

\ Disable memory space access
my-space 4 + dup config-w@ (addr value)
2 invert and swap config-w!

" address" delete-property

: display-install (--)
map-io-regs init
map-frame-buffer default-font set-font
/scanline #scanlines over char-width / over char-height / fb8-install

: display-remove (--) unmap-frame-buffer unmap-io-regs ;

/scanline encode-int " width" property
#scanlines encode-int " height" property
8 encode-int " depth" property
Iscanline encode-int " linebytes" property

[display-install is-install
[] display-remove is-remove

external
\ Methods defined by the 8-Bit Graphics Extension Recommended Practice

: fill-rectangle (indexxywh --)
2swap -rot /scanline * + frame-buffer-adr + (index w h fbadr)

swap 0 ?do (index w fbadr)
3dup swap rot fill (index w fbadr)
/scanline + (index w fbadr")

loop

3drop

Display Devices 151

Code Example 10-1 Complete Generic VGA Display Device Driver (Continued)

. draw-rectangle (addrxywh --)
2swap -rot /scanline * + frame-buffer-adr + (addr w h fbadr)

swap 0 ?do (‘addr w fbadr)
3dup swap move (‘addr w fbadr)
>r tuck + swap r> (‘addr' w fbadr)
/scanline + (addr' w fbadr")

loop

3drop

: read-rectangle (addrxywh --)
2swap -rot /scanline * + frame-buffer-adr + (addr w h fbadr)

swap 0 ?do (addr w fbadr)
3dup -rot move (‘addr w fbadr)
>r tuck + swap r> (addr' w fbadr)
/scanline + (‘addr' w fbadr")

loop

3drop

: dimensions (-- width height) /scanline #scanlines ;

fcode-end

152

Writing FCode Programs for PCI

11

Memory-Mapped Buses

A memory-mapped bus logically extends the processor’s memory address space to
include the devices on that bus. This enables the physical addresses of the children of
the bus device to be mapped into the CPU’s virtual address space and to be directly
accessed like memory using processor load and store cycles.

Memory-mapped buses include such buses as PCI, SBus and VMEbus.

Not all bus devices fall into this category. For example, SCSI is not a memory-mapped
bus; SCSI targets are not accessed with load or store instructions.

Required Methods

A memory-mapped bus package code must implement the open, close , reset , and
selftest methods, as well as the following:

decode-unit (addr len -- phys.lo ... phys.hi)
Convert addr len, a text string representation, to phys.lo ... phys.hi, a numerical
representation of a physical address within the address space defined by this package.
The format of phys.lo ... phys.hi varies from bus to bus.

dma-alloc (... size -- virt)
Allocate a virtual address range of length size bytes that is suitable for direct memory
access by a bus master device. The memory is allocated according to the most stringent

alignment requirements for the bus. virt is an 32-bit address that the Open Firmware-
based system can use to access the memory.

Note that dma-map-in must also be called to generate a suitable DMA address.

A child of a memory-mapped device calls dma-alloc using

" dma-alloc" $call-parent

153

For example:

-1 value my-vaddr \ Conventionally set to -1 indicating an invalid
\ virtual address
: my-dma-alloc (size --)
" dma-alloc" $call-parent to my-vaddr

dma-free (virt size --)
Free size bytes of memory previously allocated by dma-alloc at the virtual address

virt.

A child of a memory-mapped device calls dma-free by using

" dma-free” $call-parent

For example:

2000 value my-size

: my-dma-free (--)
my-vaddr my-size " dma-free" $call-parent
-1 to my-vaddr

dma-map-in (... virt size cacheable? -- devaddr)
Convert the virtual address range virt size, previously allocated by dma-alloc , into an

address devaddr suitable for DMA on the bus. dma-map-in can also be used to map
application-supplied data buffers for DMA use if the bus allows. If cacheable? is true,
the calling child desires to use any available fast caches for the DMA buffer. If access to
the buffer is required before the buffer is mapped out, the child must call dma-sync or
dma-map-out to ensure cache coherency with memory.

A child of a memory-mapped device calls dma-map-in using

" dma-map-in" $call-parent

For example:

: my-vaddr-dma-map (--)
my-vaddr my-size false " dma-map-in" $call-parent (devaddr)
to my-vaddr-dma

dma-map-out (virt devaddr size --)
Remove the DMA mapping previously created with dma-map-in . Flush all caches

associated with the mapping.

154 Writing FCode Programs for PCI

A child of a memory-mapped device calls dma-map-in by using

" dma-map-out" $call-parent

For example:

$call-parent

: my-vaddr-dma-free (--)
my-vaddr my-vaddr-dma my-size " dma-map-out" $call-parent
-1 to my-vaddr-dma

dma-sync (virt devaddr size --)
Synchronize (flush) any memory caches associated with the DMA mapping previously
established by dma-map-in . You must interleave calls to this method (or
dma-map-out) between DMA and CPU accesses to the memory region, or you may
not obtain the most recent data written into the cache.

For example:

: my-dma-sync (virt devadr size --)
" dma-sync" $call-parent

probe-self (‘arg-str arg-len reg-str reg-len fcode-str fcode-len --)
Probe for a child of this node. fcode-str fcode-len is a unit-address text string that
identifies the location of the FCode program for the child. reg-str reg-len is a probe-
address text string that identifies the address of the child itself. arg-str arg-len is an
instance-arguments text string for any device arguments for the child (which can be
retrieved within the child’s FCode program with the my-args FCode). probe-self
checks whether there is indeed FCode at the indicated location, perhaps by mapping
the device and using cpeek to ensure that the device is present and that the first byte
is a valid FCode start byte.

If the FCode exists, probe-self creates a new child device node and interprets the
FCode. If the interpretation of the FCode fails in some way, the new device node may
be empty, containing no properties or methods.

For example, to probe FCode for PCI Device 0:

" Ipci" open-dev
00" 0" 2dup probe-self
device-end

map-in (phys.lo ... phys.hi size -- virt)
Create a mapping associating the range of physical addresses beginning at phys.lo ...
phys.hi extending for size bytes within the package’s physical address space with a
processor virtual address virt.
The number of cells in the list phys.lo ... phys.hi is determined by the value of the
"#address-cells"” property of the node containing map-in .

Memory-Mapped Buses 155

For example, a child of a memory-mapped device calls map-in with " map-in"

$call-parent . (The following example assumes that the value of the parent’s
"#address-cells" property is 3):
> map-reg (--)

my-address xx-offset 0 d+ my-space (phys.lo phys.mid phys.hi)
xx-size " map-in" $call-parent (virt)
to xx-vaddr)

map-out (virt size --)
Destroy the mapping set by map-in at virtual address virt of length size bytes.

For example, a child of a memory-mapped device calls map-out with " map-out"
$call-parent

:unmap-reg (--)
xx-vaddr xx-size (virt size)
" map-out" $call-parent ()
-1 to xx-vaddr

PCI Bus Addressing

The PCI Bus has three distinct address spaces: Configuration, Memory and /0.

Configuration space addressing is geographical addressing with numbered buses,
devices, functions and registers. Memory space allows for up to 64 bit addressing. 1/0
space allows for up to 32 bit addressing.

A PCI address is represented numerically with three, 32-bit cells, phys.hi, phys.mid and
phys.lo. The text representation may take any of 5 different forms. Please refer to PCI
Bus Binding to IEEE Standard 1275-1994 for a detailed description.

PCI Required Properties

Table 31 Required PCI Properties

Property Name Sample Value

name " AAPL finagle"

device_type " pci”

#address-cells

#size-cells

reg

ranges

clock-frequency

bus-range

slot-names

bus-master-capable

156 Writing FCode Programs for PCI

SBus Addressing

The SBus uses geographical addressing with numbered slots.

An SBus physical address is represented numerically as two numbers, phys.hi and
phys.lo. phys.hi contains the SBus slot number and phys.lo contains the offset from the
base of that slot.

The text string representation is slot#, offset where both slot# and offset are the ASCII
representations of hexadecimal numbers. slot# encodes phys.hi and offset encodes
phys.lo.

Please refer to IEEE Draft Std P1275.2/D14a Standard for Boot (Initialization Configuration)
Firmware Supplement for IEEE 1496 (SBus) Bus for a detailed description.

SBus Required Properties

Table 32 Required SBus Properties

Property Name Sample Value
name " SUNW,finagle"
device_type " sbus"
ranges
reg
burst-sizes

clock-frequency

slot-address-bits

VMEBus Addressing

VMEBuUs has a number of distinct address spaces represented by a subset of the 64
possible values encoded by the six “address modifier” bits. The maximum size of one
of these address spaces is 32 bits. An additional bit is used to select between 16-bit and
32-bit data.

A VMEBuUSs physical address is represented numerically as two numbers, phys.hi and
phys.lo. phys.hi is made up of the six address modifier bits AMO-5 in bits 0-5 and the

data width bit (0 = 16-bit data, 1 = 32-bit data) in bit 6. phys.lo is the offset within the
selected address space.

The text string representation is AML,VME-address where both AML and VME-address
are ASCII representations of hexadecimal numbers. AML encodes phys.hi and
VME-address encodes phys.lo.

Please refer to IEEE Draft Std P1275.3/D8 Standard for Boot (Initialization Configuration)
Firmware Supplement for IEEE 1014-1987 (VME) Bus for a detailed description.

Memory-Mapped Buses 157

VMEBus Required Properties

Table 33 Required VMEbus Properties

Property Name Sample Value
name " SUNW,vizzy"
device_type " vmebus"
ranges
reg

158 Writing FCode Programs for PCI

name
stack:
code:
generates:

12

Open Firmware Dictionary

This dictionary describes all of the words defined by IEEE Standard 1275-1994.
Included within this dictionary are all of the pre-defined FCode words that you can
use as part of FCode source code programs. Appendix A, “FCode Reference”, contains
a command summary, with words grouped by function.

The dictionary also includes assembler directives, debugger commands, tokenizer
directives and macros, configuration variables, properties, standard methods, nvedit
commands, Client Interface commands and User Interface commands.

The words are given alphabetically in this chapter, sorted by the first alphabetic
character in the word’s name. For example, the words mod and */mod are adjacent to
each other. Words having no alphabetic characters in their names are placed at the
beginning of the chapter, in ASCII order.

The boot ROM and tokenizer are case-insensitive (all Forth words are converted to
lowercase internally). The only exceptions are literal text, such as text inside " strings
and text arguments to the ascii command, which are left in the original form. In
general, you may use either uppercase or lowercase. By convention, Open Firmware
drivers are written in lowercase.

All arithmetic uses 32-bit signed values, unless otherwise specified.

Defining words create a header by calling external-token , hamed-token , or
new-token . See the definitions of these words for more details.

All FCode byte values listed in this chapter are given in hexadecimal.

The stack diagram notation used in this chapter is described by Table 2, “Stack Item
Notation,” on page 9.

The dictionary definitions have the following form:

“pronunciation”

(stack diagram)
FCode#
tokenizer macro (if applicable)

Prose description.

159

“store”

stack: (x a-addr --)
code: 72
Stores x at a-addr. For more portable code, use I' if you explicitly want a 32-bit access.
a-addr must be aligned as given by variable
See also: ¢!, w!, Il [rb! | rw! | rll
" “quote”
stack: ([text<">< >] -- text-str text-len)
code: none
generates: b(") len-byte xx-byte ... xx-byte
Gathers the immediately following text string or hex data until reaching the terminator
"<whitespace >.
At execution time, the address and length of the string is left on the stack. For example:
" AAPL,new-model" encode-string " model" property
You can embed control characters and 8-bit binary numbers within strings. This is
similar in principle to the \n convention in C, but syntactically tuned for Forth. This
feature applies to the string arguments of the words " and ."
The escape character is . The list of escape sequences is:
Table 34 Escape Sequences in Text Strings
Syntax Function
un quOte (Il)
"n newline
"r carriage return
"t tab
"f formfeed
linefeed
"b backspace
"l bell
"N X control x, where x is any printable character
"(hh hh) Sequence of bytes, one byte for each pair of hex digits hh . Non-hex
characters will be ignored
" followed by any other printable character not mentioned above is equivalent to that
character.
"(" means to start parsing pairs of hexadecimal digits as one or more 8-bit characters in
the range 0x00 through OxFF, delimited by a trailing) and ignoring non-hexadecimal
digits between pairs of hexadecimal digits. Both uppercase and lowercase hexadecimal
digits are recognized. Since non-hex characters (such as space or comma) are ignored
between "(and) , these characters make useful delimiters. (The “makearray” tool can
be used in conjunction with this syntax to easily incorporate large binary data fields
into any FCode Program.)
Any characters thus recognized are appended to any previous text in the string being
160 Writing FCode Programs for PCI

stack:
code:

#>

stack:
code:

stack:
code:
generates:

stack:
code:

assembled. After the) is recognized, text assembly continues until a trailing
"<whitespace>

For example:

" This is "(01 32,8e)abc"nA test xyzzy "!"! abcdefg""hijk" bl"

NANNNNNNN N NN N N

3bytes newline 2bells ™ control b

Note — The use of "n for line breaks is discouraged. The preferred method is to use cr,
rather than embedding the line break character inside a string. Use of cr results in
more accurate display formatting, because Forth updates its internal line counter when
cr is executed.

When " is used outside a colon definition, only two interpreted strings of up to 80
characters each can be assembled concurrently. This limitation does not apply in colon
definitions.

See also: b(")
(udl--ud2)
Cc7

Converts a digit udl in pictured numeric output conversion. Typically used between
<# and #>.

(ud --strlen)
C9

Ends pictured numeric output conversion. str is the address of the resulting output
array. len is the number of characters in the output array. str and len together are
suitable for type . See () and (u.) for typical usages.

“tiCk"
("old-name< >" -- xt)

none
b(") old-FCode#

Generates the execution token (xt) of the word immediately following ' in the input
stream. ' should only be used outside of definitions. See b("), ['] for more details.

For example:

defer opt-word (--) ' noop is opt-word

([text<)> --)
none

Causes the compiler/Zinterpreter to ignore subsequent text after the "(" up to a
delimiting ") " . Note that a space is required after the (. Although either (or\ may be

Chapter 12 - Open Firmware Dictionary 161

used equally well for documentation, by common convention we use (...) for stack
comments and \ ... for all other text comments and documentation.

For example:
: 4drop (abcd--)
2drop (ab)
2drop ()
See also: (s
stack: (n--strlen)
code: none
generates: dup abs <# u#s swap sign u#>
Converts a number into a text string according to the value in base .This is the numeric
conversion primitive, used to implement display words such as "." If n is negative, the
first character in the array will be a minus (-) sign.
For example:
" CPU boot: show-version (--)
.rom version is " base @ d# 16 base ! (old-base)
firmware-version (old-base version)
Iwsplit (.) type ascii . emit .h cr base ! ()
* “star”
stack: (nul nu2 -- prod)
code: 20
prod is the arithmetic product of nul times nu2. If the result cannot be represented in
one stack entry, the least significant bits are kept.
*/ “star slash”
stack: (n1n2n3--quot)
code: none
Calculates n1* n2/ n3. The inputs, outputs and intermediate products are all 32-bit.
+ Llplusj1
stack: (nul nu2 -- sum)
code: 1E
sum is the arithmetic sum of nul plus nu2.
+! “plus store”
stack: (nu a-addr --)
code: 6C
nu is added to the value stored at a- addr. This sum replaces the original value at a-addr.
a-addr must be aligned as given by variable
162 Writing FCode Programs for PCI

stack:
code:

stack:
code:

stack:
code:

stack:
code:
generates:

stack:
code:

“comma”

(x--)
D3

Reserves one cell of storage in data-space and stores x in the cell.The data space
pointer must be aligned prior to the execution of , .

For example, to create an array containing integers 40004000 23 45 6734:

create my-array 40004000, 23,45, 6734,

“minus”

(nul nu2 -- diff)
1F

diff is the result of subtracting nul minus nu2.

“print”
(nu--)
9D

Displays the absolute value of nu in a free field format with a leading minus sign if nu
is negative, and a trailing space.

If the base is hexadecimal, . displays the number in unsigned format, since signed hex
display is hardly ever wanted. Use s. to display signed hex numbers.

See also:s. , .d, .h

“dot quote”
([text<">] --)
none

b(") len text type

This word compiles a text string, delimited by "<whitespace> e.g.." hello
world" .

At execution time, the string is displayed. This word is equivalent to using " text"
type

. is normally used only within a definition. The text string will be displayed later
when that definition is called. You may wish to follow it with cr to flush out the text
buffer immediately. Use .(for any printing to be done immediately.

See also: ", .(, tokenizer|

([text<)>] —)
none

Gathers a text string, delimited by) , to be immediately displayed. For example:

.(hello world)

This word is equivalent to: " text" type

Chapter 12 - Open Firmware Dictionary 163

Use .(to print out text immediately. (You should follow it with a cr to flush out the
text buffer immediately). .(may be called either inside or outside of definitions; the
text is immediately displayed in either case.

Note that during FCode interpretation the string will typically be printed out of serial
port A, since any framebuffer present may not yet be activated at the time that PCI
slots are being probed. Use ." for any printing to be done when new words are later
executed.

See also: ." , tokenizer|
/
stack: (nln2-- quot)
code: 21
Calculates nl divided by n2. An error condition results if the divisor (n2) is zero. See
/mod.
“/H
The root node of the device tree.
stack: (E:...--772)
(C: "new-name< >" -- colon-sys)
code: none
generates: new-token|named-token|external-token b(:)
Begins a new definition, terminated by ; Used in the form:
: my-newname ... ;
Later usage of my-newname is equivalent to usage of the contents of the definition.
See named-token , new-token , and external-token for more information on
header formats.
stack: (C: colon-sys --)
(--) (R: -- nest-sys)
code: none
generates: b(;)
Ends the compilation of a colon definition. Upon later execution, returns control to the
calling definition specified by nest-sys.
See also: :
<
stack: (nln2--less_than?)
code: 3A
less_than? is true if nl is less than n2. n1 and n2 are signed integers.
164 Writing FCode Programs for PCI

<#

stack:
code:

<<

stack:
code:

generates:

stack:
code:

<>

stack:
code:

stack:
code:

stack:
code:

()
96

Initializes pictured numeric output conversion. You can use the words:

<# # #s hold sign #>

to specify the conversion of a 32-bit number into an ASCII character string stored in

right-to-left order. See (.) and (u.) for example usages.

(x1u--x2)
none
Ishift

X2 is the result of logically left shifting x1 by u places. Zeroes are shifted into the least-

significant bits.

For example:

: bljoin (byte.low byte.lowmid byte.highmid byte.high -- 1)
8<<+ 8<<+ 8<<+

(Nl n2 -- less_than_or_equal?)
43

less_than_or_equal? is true if nl is less than or equal to n2. nl1 and n2 are signed
integers.

(x1 x2 -- not_equal?)
3D

not_equal? is true if x1 is not equal to x2. x1 and x2 are signed integers.

(X1 x2 -- equal?)
3C

equal? is true if x1 is equal to x2. x1 and x2 are signed integers.

(nl1 n2 -- greater_than?)
3B

greater_than? is true if nl is greater than n2. n1 and n2 are signed integers.

Chapter 12 - Open Firmware Dictionary

165

stack:
code:

>>

stack:
code:

generates:

?

stack:
code:

generates:

stack:
code:

stack:
code:

[]
stack:
code:

generates:

(nln2 -- greater_than_or_equal?)
42

greater_than_or_equal? is true if nl is greater than or equal to n2. n1 and n2 are signed
integers.

(x1u--x2)
none
rshift

x2 is the result of logically right shifting x1 by u places. Zeroes are shifted into the
most-significant bits. Use >>a for signed shifting.

For example:

: whsplit (w -- b.low b.high)
dup h#ffand swap 8>>
h# ff and

“fetch print”
(a-addr --)
none

@.

Fetches and prints the 32-bit value at the given address. A standard Forth word,
primarily used interactively.

“fetch”
(a-addr -- x)
6D

x is the value stored at a-addr. For more portable code, use |@ if you explicitly want a
32-bit access. a-addr must be aligned as given by variable

See also: c@Q w@1@, rb@, rw@ rl@

(--)

none

Enter interpretation state.

“bracket tick bracket”

([old-name< >] -- xt)
none
b(") old-FCode#

"or[] isused to generate the execution token (xt) of the word immediately
following the ' or [1]

' should only be used outside definitions; ['] may be used either inside or outside

166

Writing FCode Programs for PCI

stack:
code:

stack:
code:

stack:
code:

0<

stack:

code:

0<=

stack:

code:

definitions. Examples shown usually use [] , since it will always generate the
intended result:

: my-probe ... [l my-install is-install ... ;

or

[1 my-install is-install

In normal Forth, ' may be used within definitions for the creation of language
extensions, but such usage is not applicable to FCode Programs.

([rest-of-line<eol>] --)
none

Causes the compiler/interpreter to ignore the rest of the input line after the\ .\ can
occur anywhere on an input line. Note that a space must be present after \ .

For example:

0 value his-ihandle \ Place to save someone's ihandle

See also: (, (s

(--)

none

Enter compilation state.

(-0)
A5

Leaves the value 0 on the stack. The only numbers that are not encoded using b(lit)
are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, they are
assigned individual FCodes to save space.

(n --less_than_0?)
36

less_than_07? is true if n is less than zero (negative).

(n --less_than_or_equal _to 0?)
37

less_than_or_equal_to_07? is true if n is less than or equal to zero.

Chapter 12 - Open Firmware Dictionary 167

0o<>

stack: (n -- not_equal_to_0?)
code: 35

not_equal_to_07? is true if n is not zero.

0=
stack: (nu/flag -- equal_to_0?)
code: 34
equal_to_07 is true if nu/flag is zero. This word will invert any flag.
0>
stack: (n -- greater_than_0?)
code: 38
greater_than_07 is true if n is greater than zero.
0>=
stack: (n -- greater_than_or_equal_to_07?)
code: 39
greater_than_or_equal_to_07? is true if n is greater than or equal to zero.
1
stack: (-1)
code: A6
Leaves the value 1 on the stack. The only numbers that are not encoded using b(lit)
are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, these values
are assigned individual FCodes to save space.
1+
stack: (nul--nu2)
code: none

generates: 1+

nu2 is the result of adding 1 to nul.

1-
stack: (nul--nu2)
code: none

generates: 1 -

nu2 is the result of subtracting 1 from nul.

-1
stack: (---1)
code: A4

Leaves the value -1 on the stack. The only numbers that are not encoded using b(lit)
are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, these values
are assigned individual FCodes to reduce the resulting FCode image size.

168 Writing FCode Programs for PCI

stack:
code:

2!
stack:
code:

2*
stack:
code:

2+
stack:
code:

generates:

2-
stack:
code:

generates:

2/

stack:
code:

2@
stack:
code:

(-2)
A7

Leaves the value 2 on the stack. The only numbers that are not encoded using b(lit)
are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, these values
are assigned individual FCodes to reduce the resulting FCode image size.

“two store”

(x1 x2 a-addr --)
77

x1 and x2 are stored in consecutive 32-bit locations starting at a-addr. x2 is stored at the
lower address. This is equivalent to: swap over ! cell+ !

(x1--x%x2)
59

X2 is the result of shifting x1 left one bit. A zero is shifted into the vacated bit position.
This is equivalent to multiplying by 2.

(nul--nu2)
none
2+

nu2 is the result of adding 2 to nul.

(nul--nu2)
none
2 -

nu2 is the result of subtracting 2 from nul.

“two slash”
(x1--x2)
57

X2 is the result of arithmetically shifting x1 right one bit. The sign is included in the
shift and remains unchanged. This is equivalent to dividing by 2.

“two fetch”

(a-addr -- x1 x2)
76

x1 and x2 are two numbers stored in consecutive 32-bit locations starting at a-addr. x2 is
the number that was stored at the lower address. This is equivalent to: dup cell+ @
swap @ .

Chapter 12 - Open Firmware Dictionary 169

stack: (--3)
code: A8
Leaves the value 3 on the stack. The only numbers that are not encoded using b(lit)
are the values -1, 0, 1, 2, or 3. Because these numbers occur so frequently, these values
are assigned individual FCodes to reduce the resulting FCode image size.
>>a
stack: (x1u--x2)
code: 29
X2 is the result of arithmetically right shifting x1 by u places. The sign bit of x1 is
shifted into the most-significant bits (i.e. sign extend the high bit).
For example:
ok ffff.0000 6 >>a .h
fffffcO0
ok ffff.0000 6 >> .h
3fffc00
abort
stack: (... -)(R:...--)
code: 21
Aborts program execution, clearing the data and return stacks. Control returns to the
ok prompt. Called after encountering fatal errors.
For example:
: probe-loop (addr --)
begin dup |@ drop key? if abort then again
\ generate a tight probe loop until any key is pressed.
See also: exit
abort" “abort quote”
stack: (C: [text<">] --)
(... abort? -- ... | <nothing>) (R: ... -- ... | <nothing>)
code: none
If abort? is non-zero, display text and call abort . Leading spaces in text are not ignored
and end-of-line is not treated as a delimiting space.
Although abort" is not available as an FCode, the same affect can be achieved with a
phrase like
if ." error-text" -2 throw then
170 Writing FCode Programs for PCI

abs
stack: (n--u)
code: 2D

u is the absolute value of n. If n is the maximum negative number, u is the same value
since the maximum negative number in two’s complement notation has no positive

equivalent.
accept
stack: (addr lenl -- len2)
code: none

generates: span @ -rot expect span @ swap span !

Get an edited input line, storing it at addr. lenl is maximum allowed length. len2 is
actual length received.

For example:

h# 10 buffer: my-name-buff

hello (--)
." Enter Your First name " my-name-buff h# 10 accept
" FirmWorks Welcomes " my-name-buff swap type cr

"address"

The standard property name which specifies the virtual addresses of one or more
memory-mapped regions of the associated device. This property is typically used to
report the virtual addresses of regions that the firmware has already mapped such that
client programs can re-use those mappings.

The "address" property should be created after a virtual address has been mapped
and should delete the "address” property when that mapping is destroyed.

See also: free-virtual

"address-bits"

The standard property name for use with "network” devices which indicates the
number of bits needed to address this device on the physical layer of the network. The
absence of this property implies the default value of 48.

"#address-cells"

The standard property name used with packages that define a physical address space
i.e. those packages with a "decode-unit" method. This property specifies the
number of cells that are used to encode a physical address within that package’s
address space. The absence of this property in a package with a "decode-unit"
method implies a default value for this property of 2.

See also: map-in , map-low , decode-unit , my-address , my-space , my-unit ,
encode-phys , and decode-phys

Chapter 12 - Open Firmware Dictionary 171

.adr

stack: (addr --)
code: none
Displays in symbolic form the symbol associated with the address nearest to (but not
greater than) addr. The symbolic form of an address is usually a symbol name plus a
non-negative numeric offset.
See also: value>sym
again
stack: (C: dest-sys --)
(-)
code: none
generates: bbranch -offset
Used in the form begin...again to generate an infinite loop. Use a keyboard abort, or
abort or exit , to terminate such a loop. Use this word with caution!
For example:
: probe-loop (addr--)
\ generate a tight probe loop until any key is pressed.
begin dup |@ drop key? if abort then again
See also: repeat , until , while
alarm
stack: (xtn--)
code: 213
Arranges to execute the package method xt at periodic intervals of n milliseconds (to
the best accuracy possible). If n is 0, stop the periodic execution of xt within the current
instance context (leaving unaffected any periodic execution of xt that was established
within a different instance).
xt is the execution token, as returned by [] . xt must be the execution token of a
method which neither expects stack arguments nor leaves stack results i.e. whose stack
diagram is (--)
alarm executes in the context in which it was installed. Each time the method is called,
the current instance will be set to the same as the current instance at the time that
alarm was executed and the current instance will then be restored to its previous
value afterwards. alarm must be removed prior to closing the instance which installed
it.
A common use of alarm would be to implement a console input device’s polling
function.
For example:
: my-checker (--) test-dev-status if user-abort then ;
> install-abort (--) [] my-checker d# 10 alarm ;
172 Writing FCode Programs for PCI

alias

stack: ("new-name< >old-name< >" --)
code: none

alias creates a new name, with the exact behavior of some other existing name. The
new name can then be used interchangeably with the old name and have the same
effect.

The tokenizer does not generate any FCode for an alias command, but instead simply
updates its own lookup table of existing words. Any occurrence of new-name causes the
assigned FCode value of old-name to be generated. One implication is that new-name
will not appear in the Open Firmware dictionary after the FCode Program is compiled.
If this behavior is undesirable, use a colon definition instead.

If the original FCode source text is downloaded and interpreted directly, without being
tokenized or detokenized, then any new alias words will show up and be usable
directly.

For example:

alias pkg-prop get-package-property

"/aliases"
The standard node containing this system’s device alias list. The value of the name
property of this node is “aliases . The remaining properties of this node constitute
the device alias list. For each such property, the property name is the name of an alias
and the property value is the alias’s expansion encoded with encode-string

align

stack: (--)

code: none
Allocates dictionary bytes as necessary to leave the top of the dictionary variable
aligned.

aligned

stack: (nl--nl] a-addr)

code: AE
Increases nl as necessary to yield a variable aligned address. If nl is already aligned,
returns nl. Otherwise, returns the next higher variable aligned address, a-addr.

alloc-mem

stack: (len -- a-addr)

code: 8B

Allocates a buffer of len of physical memory that has been aligned to the most stringent
requirements of the processor. If successful, returns the associated virtual address. If
not successful, throw will be called with an appropriate error message as with

abort" . Memory allocated by alloc-mem is not suitable for DMA.

Chapter 12 - Open Firmware Dictionary 173

allot
stack:
code:
generates:

To detect an out-of-memory condition:

h# 100 ['] alloc-mem catch ?dup if
throw

else
(virt) constant my-buff

then

See also: abort" , dma-alloc , free-mem , throw .

(len--)
none
0 max 0 ?do O c, loop

Allocates len bytes in the dictionary. If the operation fails, a throw will be called with
an appropriate error message as with abort" . Error conditions can be detected and
handled properly with the phrase [] allot catch

"alternate-reg"

This property describes alternative access paths for the addressable regions described
by the "reg" property. Typically, an alternative access path exists when a particular
part of a device can be accessed either in memory space or in I/0 space, with a
separate base address register for each of the two access paths. The primary access
paths are described by the "reg" property and the secondary access paths, if any, are
described by the "alternate-reg" property.

If no alternative paths exist, the "alternate-reg" property should not be defined. If
the device has alternative access paths, each entry (i.e. each phys-addr size pair) of its
value represents the secondary access path for the addressable region whose primary
access path is in the corresponding entry of the "reg" property value. If the number of
"alternate-reg" entries exceeds the number of "reg" property entries, the
additional entries denote addressable regions that are not represented by "reg"
property entries, and are thus not intended to be used in normal operation; such
regions might, for example, be used for diagnostic functions. If the number of

"alternate-reg" entries is less than the number of "reg" entries, the regions
described by the extra "reg" entries do not have alternative access paths. An
"alternate-reg" entry whose phys.hi component is zero indicates that the

corresponding region does not have an alternative access path; such an entry can be
used as a “place holder” to preserve the positions of later entries relative to the
corresponding "reg" entries. The first "alternate-reg" entry, corresponding to the
"reg" entry describing the function’s Configuration Space registers, has a phys.hi
component of zero.

The property value is an arbitrary number of (phys-addr, size) pairs where:
m phys-addr is (phys.lo phys.mid phys.hi), encoded with encode-phys

m Size is a pair of integers, each encoded with encode-int . The first integer denotes
the most-significant 32 bits of the 64-bit region size and the second integer denotes
the least-significant 32 bits thereof.

See also: "reg"

174

Writing FCode Programs for PCI

and

stack: (x1x2--x3)
code: 23

x3 is the bit-by-bit logical and of x1 with x2.

apply

stack: (... "method-name< >device-specifier< >" -- 7?7)

code: none
Executes the named method in the specified package by performing the function of
execute-device-method . If the operation fails, a throw will be called with an
appropriate error message as with abort" . Error conditions can be detected and
handled properly with the phrase ['] apply catch

ascii

stack: ([text< >] -- char)

code: none

generates: b(lit) 00 00 00 value

Skips leading space delimiters and puts the ASCII value of the first letter in text on the
stack. For example:

ascii C (equals hex 43)
ascii ¢ (equals hex 63)

ascii may be used either inside or outside of definitions. ascii is equivalent to
[char] , but [char] is ANS standard Forth.

See also: char , [char]

assign-addresses

stack: (--)
code: none

This User Interface word is intended to be used for debugging FCode within the
context of begin-package...end-package . Executing this word causes addresses to
be assined to this node creating an "assigned-addresses" property reflecting those
addresses. This word simulates the action of the FCode probing process for PCI
devices, and should be executed after evaluating the FCode for the node and before the
execution of end-package.

auto-boot?
stack: (-- auto?)
code: none

If the configuration variable auto-boot? is set to true after power-on or reset-all :
the command string specified by boot-command will be executed. In the usual case,
the value of boot-command is boot . Usually, boot transfers control to a client
program.

If auto-boot? s set to false, the User Interface command interpreter is entered.

Chapter 12 - Open Firmware Dictionary 175

"available"

b(ll)
stack:
code:

b(’)
stack:
code:

b(:)
stack:
code:

b(;)
stack:
code:

banner

stack:
code:

This property defines resources that are managed by this package that are currently
available for use by a client program. The claim and release methods affect the
value of this property.

The property value is an arbitrary number of (phys-addr, length) pairs where:
m phys-addr is a phys.lo phys.mid phys.hi list of integers encoded with encode-int

m length (whose format depends on the package) is one or more integers, each encoded
with encode-int

See also: claim , "existing" ,"reg" , release

(--strlen)

12

An internal word, generated by ", ." and .(which leaves a text string on the stack.

Never use the word b(") in source code.

(- xt)
11

An internal word, generated by ' and [] which leaves the execution token of the
immediately following word on the stack. The FCode for b() should always be
followed by the FCode of the desired word. Never use the word b(") in source code.

(--)
B7

An internal word generated by the defining word : . Never use the word b(:) in
source code.

(--)
C2

An internal word generated by ; to end a colon definition. Never use the word b(;)
in source code.

(--)
none

Displays the system power-on banner in a system-dependent screen location (usually
at the top of the screen or at the current cursor position).

If the current output device has a "device_type" property whose value is
"display" , display a logo by executing the current output device’s draw-logo
method with the following arguments:

176

Writing FCode Programs for PCI

m Theline# argument is either 0 or the line number corresponding to the current
cursor position, at the system’s discretion.

m If oem_logo? is true, the addr argument is the address returned by oem-logo .
Otherwise, it is the address of the system-dependent default logo.

m The width and height arguments are both 64.

In any case:

m If oem-banner? is true, display the text given by the value of oem-banner .

m Otherwise, display implementation-dependent information about the system, for
example the machine type, serial number, firmware revision, network address, and
hardware configuration.

If banner is executed from within the NVRAM script, suppress automatic execution of
the following Open Firmware start-up sequence:

= probe-all
= install-console
= banner

For a usage example, see “Patching FCode of a Plug-in Card” on page 22.

See also: suppress-banner

base
stack: (-- a-addr)
code: A0

base is the variable that contains the current numeric conversion radix to be used
when the FCode Program is executing, such as 10 for decimal, 16 for hex, 8 for octal,
and so on. Like any variable, base leaves its address on the stack.

For example, to print the current value of base, use:

base @ .d

The tokenizer words decimal , hex, or octal are also available for changing the value
in base as desired. However, these four words behave differently depending whether
they occur within a definition or outside of a definition.

If any of decimal , hex, or octal occur within a definition, then they will be
compiled, later causing a change to the value in base when that definition is executed.
This can be a useful affect when, for example, a device’s open method must interpret a
number in an argument string. In such a case, however, the value in base should be
saved prior to changing the base, and the old value of base should be restored prior to
leaving the definition in which the number base was changed. Failure to do this can be
very confusing to the user who will have caused the number base of the machine to
change without explicitly attempting to do so.

If any of decimal , hex, or octal occur outside of a definition, however, then they are
interpreted as commands to the tokenizer program itself, thus affecting the
interpretation of all subsequent numbers in the text.

Note that changes to base affect the numeric base of the User Interface, which can
create much confusion for any user (the default value for base is hexadecimal). If you
must change the base, it is recommended that you save and then restore the original

Chapter 12 - Open Firmware Dictionary 177

base, as in:

:.0(n--) \Print nin octal
base @ swap (oldbasen)
octal . (oldbase)
base !

In general, only numeric output will be affected by the value in base . Fixed numbers in
FCode source are interpreted by the tokenizer program. Most numeric input is
controlled by decimal , hex, octal , d#, h#, and o#, but these words only affect the
tokenizer input base; they but do not affect the value in base .

For example:

(Assume the initial value in base is 16, i.e. User Interface is in hex)
(No assumptions should be made about the initial tokenizer base)

versionl
hex (Tokenizer in base 16; later execution, using base, in base 16)
20. (Compile decimal 32, later print "20" when FCode executes)
decimal (Tokenizer is in base 10, later execution is in base 16)
20. (Compile decimal 20, later print "14" since FCode executes in hex)
:TEST (--)
octal (Still compiling in decimal, later change base when TEST executes)
20. (Compiles decimal 20, prints "24" since base was just changed)

h# 20 .d (Compiles decimal 32, prints "32"; no permanent base changes)
20. (Compiles decimal 20, prints "24")

20. (Compile decimal 20, later print "14"

TEST (Prints "24 32 24"; has a side-effect of changing the base)

20. (Compile decimal 20, later print 24 since TEST changed base)
hex (Tokenizer is in base 16; later execution, using base, still in base 8)
20. (Compile decimal 32, later print "40")

If this all seems confusing, simply follow these guidelines:

Good: Initially declare hex just after fcode-version2 , and make liberal use of d#, o#,
h#, .h and.d .

Bad: Changing base within a definition (either directly or by calling decimal , hex, or
octal) without restoring the previous base before reaching the end of the definition.

bbranch
stack: (--)
code: 13

An internal word generated by again , repeat , and else which causes an
unconditional branch. Never use the word bbranch in source code.

b?branch
stack: (flag --)
code: 14

An internal word generated by until , while , and if which causes a conditional

178 Writing FCode Programs for PCI

branch. Never use the word b?branch in source code.

b(buffer:)
stack: (n--)
code: BD
An internal word generated by the defining word buffer: which allocates n bytes of
storage space. Never use the word b(buffer:) in source code.
b(case)
stack: (sel-- sel)
code: C4
An internal word generated by case . Never use the word b(case) in source code.
b(constant)
stack: (n--)
code: BA
An internal word generated by the defining word constant . Never use the word
b(constant) in source code.
b(create)
stack: (--)
code: BB
An internal word generated by the defining word create . Never use the word
b(create) in source code.
b(defer)
stack: (--)
code: BC
An internal word generated by the defining word defer . Never use the word
b(defer) in source code.
b(do)
stack: (end start --)
code: 17
An internal word generated by do. Never use the word b(do) in source code.
b(?do)
stack: (end start --)
code: 18

An internal word generated by ?do. Never use the word b(?do) in source code.

Chapter 12 - Open Firmware Dictionary 179

begin

stack:

code:
generates:

(C: -- dest-sys)
(-)

none

b(<mark)

Marks the beginning of a conditional loop, such as begin ...until , begin ...while
repeat , or begin ...again . See these other words for more details.

begin-package

stack: (‘arg-str arg-len reg-str reg-len dev-str dev-len --)
code: none

Prepares to create a new node in the device tree by performing the following

operations:

m The parent device (and all higher parents) is opened with open-dev using the
parameters dev-str and dev-len. If open-dev is unsuccessful, execution is terminated
with an error message.

m my-self is set to the new parent ihandle.

m The active package is set to the parent device.

m The child node is opened with new-device

m The child arguments contained in the parameters arg-str, arg-len, reg-str and reg-len
are set with set-args

dev-str and dev-len contain the device-path string of the parent of the child about to be

created. The form of the device-path string is either a full device pathname or a pre-

existing device alias.

reg-str and reg-len contain the unit-address string, the text representation of the

physical address of the child within the address space of the parent. For PCI, an

example would be "3,0" . (The child can retrieve the numerical form of the unit-
address with my-address and my-space .)

arg-str and arg-len contain the instance-arguments string. (The child can retrieve this

value with my-args .)

For example:

00" 3,0"" /pci" begin-package

Note — Since Open Firmware is only required to provide two buffers for the

interpreter’s use in assembling strings, trying to pass an argument string, a unit

address string and a device-path string directly to begin-package through the
interpreter is likely to fail.

A simple work-around is to define a word containing, say, the argument string and so

use the compiler to assemble the string and hold it in the dictionary. This word would

then be called to push the argument string onto the stack.

For example:

: arg$ " my begin package args" ;
arg$ " 0,0,0" " /pci" begin-package
180 Writing FCode Programs for PCI

begin-select

stack: ("device-specifier< >" --)
code: none

A User Interface extension provided by some implementations (e.g. FirmWorks/Sun).

Creates an instance chain for the device specified by device-specifier except that the
open method of the leaf node is not called. begin-select is useful for debugging the
open method of a driver by allowing the open method to be called under the control
of the debugger. For example:

ok begin-select foo
ok debug open open

See also: “Using begin-select” on page 38.

begin-select-dev
stack: (dev-str dev-len --)
code: none

A User Interface extension provided by some implementations (e.g. FirmWorks/Sun).

Creates an instance chain for the device specified by dev-str dev-len except that the
open method of the leaf node is not called. begin-select -dev is useful for
debugging the open method of a driver by allowing the open method to be called
under the control of the debugger. For example:

ok "foo" begin-select-dev
ok debug open open

See also: “Using begin-select-dev” on page 38.

behavior
stack: (defer-xt -- contents-xt)
code: DE

This command is used to retrieve the execution contents of a defer word.

A typical use would be to fetch and save the current execution of a defer word, change
the behavior temporarily and later restore the original behavior. For example:

defer my-func

0 value old-func

[framus is my-func ...

['] my-func behavior is old-func
[1 foo is my-func

... my-func ...

old-func is my-func

Chapter 12 - Open Firmware Dictionary 181

bell

stack: (-- 0x07)

code: AB
Leave the ASCII code for the bell character on the stack.

b(endcase)

stack: (sel--)

code: C5
An internal word generated by endcase . Never use the word b(endcase) in source
code.

b(endof)

stack: (--)

code: C6
An internal word generated by endof . Never use the word b(endof) in source code.

between

stack: (n min max -- min<=n<=max?)

code: 44
min<=n<=max? is true if n is between min and max, inclusive of both endpoints.
See within ~ for a different form of comparison.

b(field)

stack: (addr -- addr+offset)

code: BE
An internal word generated by the defining word field . Never use the word
b(field) in source code.

bl “bee el”

stack: (-- 0x20)

code: A9
Leaves the ASCII code for the space character on the stack.

blank

stack: (addr len --)

code: none

generates: bl fill
Sets len bytes of memory beginning at addr to the ASCII character value for space (hex
20). No action is taken if len is zero.

b(leave)

stack: (--)

code: 1B

An internal word generated by leave . Never use the word b(leave) in source code.

182

Writing FCode Programs for PCI

blink-screen

stack: (--)
code: 15B

A defer word, called by the terminal emulator, when it has processed a character
sequence that calls for ringing the console bell, but the console input device package
has no ring-bell method.

blink-screen is initially empty, but must be loaded with a system-dependent routine
in order for the terminal emulator to function correctly. The routine must cause some
momentary discernible effect that leaves the screen in the same state as before.

This can be done with to , or it can be loaded automatically with fbl-install or
fb8-install (which load fbl-blink-screen or fb8-blink-screen ,
respectively). These default routines invert the screen (twice) by xor-ing every visible
pixel. This is quite slow.

A replacement routine simply disables the video for 20 milliseconds or so, i.e.

: my-blink-screen (--) video-off 20 ms video-on ;

\ load default behaviors with fbx-install, then:
['T my-blink-screen to blink-screen

Of course, this example assumes that your display hardware is able to quickly enable
and disable the video without otherwise affecting the state.

b(lit)

stack: (--n)

code: 10
An internal word used to save numbers. Never use the word b(lit) in source code.
The only numbers that are not encoded using b(lit) are the values -1, 0, 1, 2, or 3.
Because these numbers occur so frequently, these values are assigned individual
FCodes to save space.

bljoin

stack: (byte.lo byte2 byte3 byte.hi -- quad)

code: 7F
Merges the least significant byte from each of the four input stack items into a single
32-bit word. All other bits of the input stack items must be zero to guarantee correct
results.

"block™
This is the standard property value of the "device_type" property for random

access, fixed-length block storage devices (i.e. hard and floppy disks, CDROMs).

Although devices of type "block" present a byte-oriented interface to the rest of the
system, the associated hardware devices are usually block-oriented [i.e. the device
reads and writes data in “blocks” (groups of, for example, 512 or 2048 bytes)]. The
standard deblocker support package assists in the presentation of a byte-oriented
interface above an underlying block-oriented interface, implementing a layer of
buffering that “hides” the underlying block length.

Chapter 12 - Open Firmware Dictionary 183

"block” devices are often subdivided into several logical “partitions” as defined by a
“disk label” - a special block, usually the first one, containing information about the
device. The driver is responsible for appropriately interpreting a disk label. The driver
may use the standard disk-label support package if it does not implement a
specialized label. The disk-label support package interprets a system-dependent
label format. Since the disk booting protocol usually depends upon the label format,
the standard disk-label support package also implements a load method for the
corresponding boot protocol.

Devices of type "block” must implement the following methods:

open
close
read
seek
load

If the device is writable, the write method should also be implemented.

block devices often use the deblocker support package to implement the read ,
write , and seek methods, and the disk-label support package to implement the
load method.

block-size
stack: (-- block-len)
code: none

block-size returns the “granularity” in bytes for accesses to this device. All transfers
to the device should be multiples of this size.

If block-len is 1, the device supports arbitrary transfer sizes up to the value specified by
max-transfer

b(loop)
stack: (--)
code: 15
An internal word generated by loop . Never use the word b(loop) in source code.
b(+loop)
stack: (n--)
code: 16
An internal word generated by +loop . Never use the word b(+loop) in source code.
b(<mark)
stack: (--)
code: B1

An internal word generated by begin . Never use the word b(<mark) in source code.

184 Writing FCode Programs for PCI

body> “body from”

stack: (a-addr -- xt)
code: 85

Converts the data field address of a word to its execution token.

>pody “to body”

stack: (xt -- a-addr)
code: 86

Converts the execution token of a word to its data field address.

b(of)
stack: (testval --)
code: 1C
An internal word generated by of . Never use the word b(of) in source code.
boot
stack: ("{param-text}<eol>" --)
code: none

Loads and executes the program specified by param-text by:

Ensuring a suitable state for booting,

m Performing the function of load to load a client program from the device (if any)
specified by param-text, and

m If load succeeds, perform the function of go to execute the client program.

For example:

ok boot

ok boot device-specifier
ok boot arguments

ok boot device-arguments

boot-command
stack: (--addrlen)

The value of this configuration variable is a string describing the boot command to be
used if auto-boot? s true.

The suggested default value is “boot”.

boot-device
stack: (-- dev-str dev-len)

The value of this configuration variable is a string describing the device name and any
required filename to be used by boot if diagnostic-mode? is false. The string is a
device specifier or a list of device specifiers as described in the definition of load .

The suggested default value is “disk”.

Chapter 12 - Open Firmware Dictionary 185

boot-file

stack: (-- arg-str arg-len)
The value of this configuration variable is a string describing the default arguments to
be used by boot if diagnostic-mode? is false.
The suggested default value is the empty string.

"bootargs”
This property appears in the /chosen node if a boot or aload command has been
issued since Open Firmware was last reset. The property value is the arguments field
of the most recent boot command.

"bootpath”
This property appears in the /chosen node if a boot or aload command has been
issued since Open Firmware was last reset. The property value is the complete device
path to which the device specifier of that last command was resolved.

bounds

stack: (start cnt -- start+cnt start)

code: AC
Converts a starting value and count into the form required for a do or ?do loop. For
example, to perform a loop 20 times, counting up from 4000 to 401f inclusive, use:

4000 20 bounds do...loop
This is equivalent to:
4020 4000 do...loop

+bp

stack: (addr --)

code: none
Adds the given address to the breakpoint list.

_bp

stack: (addr --)

code: none
Removes the breakpoint at the given address.

__bp

stack (--)

code: none
Removes the most recently set breakpoint.

186 Writing FCode Programs for PCI

bp
stack: (--)
code: none

Displays a list of all of the addresses at which breakpoints are set.

bpoff
stack: (--)
code: none
Removes all breakpoints.
.breakpoint
stack: (--)
code: none

.breakpoint is a defer word that is executed whenever a breakpoint occurs. The
default behavior is .instruction

See also: defer

b(>resolve)
stack: (--)
code: B2

An internal word generated by repeat and then . Never use the word b(>resolve)
in source code.

bs
stack: (-- 0x08)
code: AA
Leaves the ASCII code for the backspace character on the stack.
b(to)
stack: (--)
code: C3
An internal word generated by to . Never use the word b(to) in source code.
buffer:
stack: (len "new-name< >" --)(E: -- a-addr)
code: none

generates: new-token|named-token|external-token b(buffer:)

Allocates len bytes of storage space and creates a name, new-name. When new-name is
executed, it leaves the address of the first byte of the buffer on the stack.

For example:

200 buffer: name
name (addr)

Chapter 12 - Open Firmware Dictionary 187

b(value)

stack: (n--)

code: B8
An internal word generated by the defining word value . Never use the word
b(value) in source code.

b(variable)

stack: (n--)

code: B9
An internal word generated by the defining word variable . Never use the word
b(variable) in source code.

bwijoin

stack: (byte.lo byte.hi -- w)

code: BO
Merges the least significant byte of each of the two input stack arguments into a
doublet. Correct results are only guaranteed if all other bits of the input stack
arguments are zero.

bxjoin

stack: (b.lo b.2b.3b.4b5b.6b.7b.hi--0)

code: 241
Join 8 bytes to form an octlet. The high-order bits of each of the bytes are ignored.
This function is only available on 64-bit implementations.

llbytell

This is the standard property value of the "device_type" property for sequential
access, record-oriented storage devices (e.g. tape).

Although devices of type "byte" present a byte-oriented interface to the rest of the
system, the associated hardware devices are usually record-oriented (i.e. the device
reads and writes data in "records" containing more than one byte). The records may be
either fixed length (all records must be the same length) or variable length (the record
length may vary from record to record). Tapes may be subdivided into several tape
files delimited by file marks.

The standard deblocker support package assists in the presentation of a byte-
oriented interface above an underlying record-oriented interface, implementing a layer
of buffering that “hides” the underlying record structure.

Devices of type "byte" must implement the following methods:

open
close
read
seek

The seek method locates the byte numbered pos.lo with the tape file pos.hi. If pos.lo
and pos.hi are both zero, the tape is rewound. seek returns false if successful and

188

Writing FCode Programs for PCI

byte-load

stack:
code:

c!
stack:
code:

stack:
code:

true if unsuccessful.

= load

The load method reads a client program from the tape file specified by the value of
the instance-argument text string (as returned by my-args). That value is the string
representation of a decimal integer. If the instance-argument string is empty, tape file
0 is used. The file read is placed into memory at addr, returning len, the number of
bytes actually read.

If the device is writable, the write method should also be implemented.

byte devices often use the deblocker support package to implement the read ,
write , and seek methods.

(addr xt --)
23E

Interprets the FCode Program located at addr . If xt is 1, use rb@ to read the FCode
Program, otherwise use xt as the execution token of the definition to be used to read
the FCode Program. Continue reading and interpreting the program until endO is
encountered.

Be aware that byte-load does not itself create a new device node as a “container” for
any properties and methods defined by the FCode Program that byte-load evaluates.
If the FCode Program is intended to create such a node, appropriate preparation must
be done before and after executing byte-load . For example, new-device and set-
args can be executed before and finish-device can be executed after byte-load is
executed.

If byte-load s to be executed from the User Interface, additional set up is usually
necessary before executing new-device ; see begin-package for more details.

“see store”

(byte addr --)
75

Stores the least significant 8 bits of byte in the byte at addr.

See also: rb!

“see comma”
(byte --)
DO

Compiles a byte into the dictionary. ¢, can be used, in conjunction with create , to
create an array-type structure, as:

create yellow 77 c, 23 ¢c, ffc, ffc,47c, 22¢c, ...

Later execution of yellow leaves the address of the first byte of the array (i.e. the
address of the byte “77”) on the stack.

Chapter 12 - Open Firmware Dictionary 189

C; “see semicolon”

stack: (C: code-sys --)
(--) (R:-- nest-sys)

code: none
Ends the creation of a machine code word by assembling code that will, upon
execution, return control to the calling routine specified by nest-sys.

Ic “per see”

stack: (--n)

code: 5A
Leaves the number of address units to a byte (i.e. 1) on the stack.
See also: /w, /l , /n

/c* “per see star”

stack: (nul--nu2)

code: none

generates: chars
Synonym for chars .

c@ “see fetch”

stack: (addr --byte)

code: 71
Fetches the byte at address addr and leaves it on top of the stack with the high order
bytes filled with zeroes.
See also: rb@

ca+t “see ay plus”

stack: (addrl index -- addr2)

code: 5E
Increments addrl by index times the value of /c . ca+ should be used in preference to +
when calculating addresses because it more clearly expresses the intent of the
operation and is more portable.

cal+ “see ay one plus”

stack: (addrl -- addr2)

code: none

generates: char+
Synonym for char+

callback

stack: ("service-name< >" "arguments<eol>" --)

code: none
Executes the specified client program callback routine.

190 Writing FCode Programs for PCI

$callback

stack:
code:

(argn ... argl nargs addr len -- retn ... ret2 Nreturns-1)
none

Executes the specified client program callback routine.

$call-method

stack: (... method-str method-len ihandle -- ?7?)
code: 20E
Executes the device interface method method-str method-len within the open package
instance ihandle. The ellipses (...) indicate that the contents of the stack before and after
the method is called depend upon the particular method being called.
For example:
:dma-alloc (#bytes --virt) "dma-alloc" my-parent $call-method ;
See also: open-package
call-package
stack: (... xtihandle -- ???)
code: 208
Executes the device interface method xt within the open package instance ihandle. The
ellipses (...) indicate that the contents of the stack before and after the method is called
depend upon the particular method being called.
For example:
0 value label-ihandle \ place to save the ihandle of other package
0 value offset-method \ place to save the xt of found method
Dinit (--)
my-args " disk-label" $open-package (ihandle)
to label-ihandle
" offset" label-ihandle
ihandle>phandle (name-addr name-len phandle)
find-method if (xt)
to offset-method
else ()
" Can't find offset method "
then
init
: add-offset (d.byte# -- d.bytes#)
offset-method label-ihandle call-package
See also: find-method , open-package
$call-parent
stack: (... method-str method-len -- 7??)
code: 209

Calls the method named by method-str method-len within the parent instance. If the

Chapter 12 - Open Firmware Dictionary 191

called package has no such method, an error is signaled with throw . Equivalent to:

my-parent $call-method

The ellipses (...) and question marks (???) indicate that the contents of the stack before
and after the method is called depend upon the particular method being called.

For example, since the stack diagram for dma-alloc s (size -- virt), size must be
pushed on the stack followed by method-str and method-len prior to calling
$call-parent which subsequently returns virt:

: my-dma-alloc (-- virt)h# 2000 " dma-alloc"$call-parent ;

.calls “dot calls”

stack: (xt--)
code: none

Displays a list of all of the commands which directly use the execution token xt.

For example, if framus calls foo and bar calls framus :

[] foo .calls

will display framus and not bar .

carret
stack: (-- 0x0D)
code: none

generates: b(lit) 00 00 00 0x0D

Leaves the ASCII code for “carriage return” (i.e. Control-M) on the stack.

case
stack: (selector -- selector)
code: none

generates: b(case)

Starts a case statement that selects its action based on the value of selector. For
example:

: foo (selector --)
case
0 of ." It was 0" endof
5 of ." It was 5" endof
-2 of ." It was -2" endof
endcase

of tests the top of the stack against selector at run time.

m If they are the same, both the top stack item and selector are dropped and the code
between of and the next endof is executed. Program control then continues after
the endcase .

192 Writing FCode Programs for PCI

m If they are not the same, the top stack item is dropped and execution continues at
the point just following the matching endof with selector on the top of the stack.

endcase expects an item (typically selector) on top of the stack and drops it.

An optional “default clause” may be implemented by placing code between the last
endof and the endcase . When such a default clause is executed, selector is on the
stack. The default clause may use selector, but the default clause must leave an item on
the stack for endcase to drop. The item left for endcase to drop need not be selector.
For example:

: bar (selector -- value)
case
3 of 21 endof
4 of 33 endof
1+ 0\ Default clause. Use selector and push 0 for endcase to drop
endcase

case statements can be used both inside and outside of colon definitions.

catch
stack: (... xt--???error-code | ??? false)
code: 217

Creates a new error handling context and executes xt in that context.

If a throw (see below) is called during the execution of xt,
1. The error handling context is removed

2. The stack depth is restored to the depth that existed prior to the execution of xt (not
counting the xt stack item)

3. The error code that was passed to throw is pushed onto the stack

4, catch returns

If throw is not called during the execution of xt, the error handling context is removed
and catch returns a false . The stack effect is otherwise the same as if xt were
executed using execute .

For example:

: add-n-check-limit (n1 n2n3 --n)
+ + dup h# 30 > if true throw then

:add-me (n1n2n3 --abc|nl+n2+n3)
[l add-n-check-limit catch if
" Sum exceeds limit" .s
else
" Sum is within limit. Sum=".s
then cr

Chapter 12 - Open Firmware Dictionary 193

Note that, given this definition:

12 3 add-me

shows:

Sum is within limit. Sum =6

while:

10 20 30 add-me

may show something like:

Sum exceeds limit 50 9 12

Note — Upon a non-zero throw , only the stack depth is guaranteed to be the same as
before catch , not the data stack contents.

cell+

stack: (addrl -- addr2)

code: 65
Increments addrl by the value of /n . cell+ should be used in preference to wal+ or
lal+ when the intent is to address items that are the same size as items on the stack.

cells

stack: (nul--nu2)

code: 69
nu2 is the result of multiplying nul by /n , the length in bytes of a normal stack item.
This is useful for converting an index into a byte offset.

char

stack: ("text< >" -- char)

code: none
Leaves the ASCII code for the next non-whitespace character in the input buffer on the
stack. Only for use outside of definitions.
See also: ascii , [char]

char+

stack: (addrl -- addr2)

code: 62

Increments addrl by the value of /c . char+ should be used in preference to + when
calculating addresses because it more clearly expresses the intent of the operation and
is more portable.

194 Writing FCode Programs for PCI

[char]

stack: ([text< >] -- char)
code: none

Leaves the ASCII code for the next non-whitespace character in the input buffer on the
stack. For example:

[char] C (equals hex 43)
[char] c (equals hex 63)

See also: ascii , char

"character-set"

stack: This standard property applies to packages implementing "device_type" of
"serial" or "display" . The value of this property defines the character set for this
device. A typical value is “1SO8859-1".

See IEEE Standard 1275-1994 for more details.

char-height
stack: (-- height)
code: 16C

A value , containing the standard height (in pixels) for all characters to be drawn. This
number, when multiplied by #lines , determines the total height (in pixels) of the
active text area.

This word must be set to the appropriate value if you wish to use any fb1- or fb8-
utility routines or >font . This can be done with to , but is normally done by calling

set-font

chars

stack: (nul--nu2)

code: 66
nu2 is the result of multiplying nul by /c , the length in bytes of a byte. This is useful
for converting an index into a byte offset.

char-width

stack: (-- width)

code: 16D
A value , containing the standard width (in pixels) for all characters to be drawn. This
number, when multiplied by #columns , determines the total width (in pixels) of the
active text area.
This word must be set to an appropriate value if you want to use any fb1- or fb8-
utility routines. This can be done with to , but is normally done by calling set-font

child

stack: (phandle.parent -- phandle.child)

code: 23B

Returns the phandle of the package that is the first child of the package phandle.parent.

Chapter 12 - Open Firmware Dictionary 195

"/chosen”

claim

stack:
code:

clear

stack:
code:

child returns zero if the package phandle.parent has no children.

You will generally use child , together with peer , to enumerate (possibly recursively)
the children of a particular device. One common use could be for bus adapter device
drivers to use the phrase my-self ihandle>phandle to develop the phandle.parent
argument.

For example:

: my-children (--) \ shows phandles of all children
my-self ihandle>phandle child (first-child)
begin ?dup while dup .h peer repeat

The standard node containing properties describing parameters chosen or specified at
run-time for this system. The value of the name property of this node is “chosen . The
remaining properties of this node are:

stdin
stdout
bootpath
bootargs
memory
mmu

([addr ...] len ... align -- baseaddr ...)
none

Allocates len ... (whose format depends upon the package) bytes of addressable
resource. If align is zero, the allocated range begins at the specified address addr.
Otherwise, addr ... (whose format depends upon the package) is not specified and an
aligned address is automatically chosen. The alignment boundary is the smallest
power of 2 that is greater than or equal to the value of align. baseaddr ... (whose format
is the same as addr) is the allocated virtual address, and is equal to addr if align was
zero.

Allocates addressable resources with fine-grained control. In general, claim is used
only to implement system-specific programs. General purpose memory allocation can
be accomplished in a portable fashion by alloc-mem

See also: alloc-mem , "available" , free-mem , release

(.=)

none

Empties the stack. While clear is often useful when interactively debugging, it is
almost always inappropriate to use clear in a program.

196

Writing FCode Programs for PCI

close

stack: (--)
code: none

Closes this previously open’d device (e.g. turns off the device, disables PCI memory
and/or 1/0 space accesses, clears the PCI bus master enable bit, unmaps the device
and de-allocates any resources that were allocated by open). When closing an instance
chain, a particular instance’s close method is executed before its parent instances are
closed such that the parents’ methods can still be used by close .

close-dev
stack: (thandle --)
code: none

Closes the device identified by ihandle as well as all of its parents.

close-package

stack: (ihandle --)
code: 206

Closes the package instance identified by ihandle by calling that package’s close
method and then destroying the instance.

For example:

: tftp-load-avail? (-- exist?)
0 0 " obp-tftp" $open-package (ihandle)
dup ihandle>phandle " load" rot
find-method if drop true else false then
close-package

See also: open-package , $open-package

code
stack: (E:...--772)

(C: "new-name< >" -- code-sys)
code: none

Begins the creation of a machine-code command called new-name. Interpret the
commands which follow as assembler mnemonics until ¢; or end-code is
encountered.

If the assembler is not installed, code is still present. However, machine code must be
hand-assembled and entered into the dictionary by value with c, , w,,l, or, .

column# “column number”
stack: (-- column#)
code: 153

A value , set and controlled by the terminal emulator, that contains the current
horizontal position of the text cursor. A value of 0 represents the leftmost cursor
position of the text window, not the leftmost pixel of the framebuffer.

column# can (and should) be looked at as needed if your FCode Program is

Chapter 12 - Open Firmware Dictionary 197

implementing its own set of framebuffer primitives.

For example:

: set-column (column# --)
0 max #columns 1- min to column#

See also: window-left

#columns “number columns”
stack: (-- columns)
code: 151
This is a value that returns the number of columns of text in the text window i.e. the
number of characters in a line, to be displayed using the boot ROM’s terminal
emulator.
#columns must be set to a proper value in order for the terminal emulator to function
correctly. The open method of any package that uses the terminal emulator package
must set #columns to the desired width of the text region. This can be done with to ,
or it can be handled automatically as one of the functions performed by fb1-install
or fb8-install
See also: is-install , fbl-install , fb8-install , to
comp
stack: (addrl addr2 len -- n)
code: 7A
Compares two strings of length len starting at addresses addrl and addr2 and
continuing for len bytes. n is 0 if the arrays are the same. n is 1 if the first differing
character in the array at addrl is numerically greater than the corresponding character
in the array at addr2. n is -1 if the first differing character in the array at addrl is
numerically less than the corresponding character in the array at addr2.
For example:
ok " this" drop " that" comp .h
1
ok " thisismy" drop " this" comp .h
0
ok "thin" drop " this" comp .h
frFFFfef
"compatible”
This standard property specifies a list of devices with which this device is compatible.
This property is used by client programs to determine the appropriate driver for the
associated device in those cases where the client program does not have a driver
matching the value of the "name" property.
The property format is identical to the format for the "name" property.
198 Writing FCode Programs for PCI

For example:

" AAPL,dev-name" encode-string

" INTL,my-dev" encode-string encode+

" RST,dev21-type4" encode-string encode+
" compatible” property

Please note that you must ensure compatibility with another device’s driver prior to
using the "compatible” property; Open Firmware makes no attempt to cross-check
the correctness of the claim of compatibility.

compile
stack: (--)
code: none
Compiles the following command at run time.
Included for compatibility. Postpone is preferred for new code.
compile,
stack: (xt--)
code: DD
Compiles the behavior of the word given by xt.
[compile]
stack: ([old-name< >] --)
code: none
Compiles the immediately-following command.
Included for compatibility. postpone is preferred for new code.
config-b@
stack: (config-addr -- data)
code: none
Performs an 8-bit Configuration Read from the configuration space of a PCI device.
config-addr refers to the phys.hi cell of a PCI address (as returned by my-space).
This is a method of a PCI bus node. Consequently, the method is typically accessed by
PCI child devices with $call-parent
See also: config-b! | config-l@ , config-I! , config-w@ , config-w!
config-b!
stack: (data config-addr --)
code: none

Performs an 8-bit Configuration Write from the configuration space of a PCI device.
config-addr refers to the phys.hi cell of a PCI address (as returned by my-space).

This is a method of a PCI bus node. Consequently, the method is typically accessed by
PCI child devices with $call-parent

Chapter 12 - Open Firmware Dictionary 199

See also: config-b @, config-l@ , config-I! , config-w@ , config-w!

config-1@
stack: (config-addr -- data)
code: none
Performs a 32-bit Configuration Read from the configuration space of a PCI device.
config-addr refers to the phys.hi cell of a PCI address (as returned by my-space).
config-addr must be 32-bit aligned.
This is a method of a PCI bus node. Consequently, the method is typically accessed by
PCI child devices with $call-parent . Of course, the method can also be accessed
from the bus node itself. For example, to read the Device ID and Vendor ID for all
possible slots on the PCI bus and print them in a formatted listing:
ok hex
ok select /pci
ok 200doi2 u.ri800 * config-l@ 9 u.r cr loop
ok unselect-dev
See also: config-b@ , config-b! , config-I! , config-w@ , config-w!
config-I!
stack: (data config-addr --)
code: none
Performs a 32-bit Configuration Write from the configuration space of a PCI device.
config-addr refers to the phys.hi cell of a PCI address (as returned by my-space).
config-addr must be 32-bit aligned.
This is a method of a PCI bus node. Consequently, the method is typically accessed by
PCI child devices with $call-parent
See also: config-b@ , config-b! |, config-l@ , config-w@ , config-w!
config-w@
stack: (config-addr -- data)
code: none

Performs a 16-bit Configuration Read from the configuration space of a PCI device.

config-addr refers to the phys.hi cell of a PCI address (as returned by my-space).
config-addr must be 16-bit aligned.

This is a method of a PCI bus node. Consequently, the method is typically accessed by
PCI child devices with $call-parent . For example, to read the Device ID:

my-space 2+ " config-w@" $call-parent (device-id)

See also: config-b@ , config-b! |, config-l@ , config-I! , config-w!

200

Writing FCode Programs for PCI

config-w!

stack: (data config-addr --)
code: none

Performs a 16-bit Configuration Write from the configuration space of a PCI device.

config-addr refers to the phys.hi cell of a PCI address (as returned by my-space).
config-addr must be 16-bit aligned.

This is a method of a PCI bus node. Consequently, the method is typically accessed by
PCI child devices with $call-parent . For example, to enable 170 Space accesses:

my-space 4 + dup " config-w@" $call-parent (config-addr value)
1 or swap " config-w!" $call-parent

See also: config-b@ , config-b! |, config-l@ , config-I! , config-w@
constant
stack: (X "new-name< >" --) (E: -- value)
code: none

generates: new-token|named-token|external-token b(constant)

Creates a named constant. The name is initially created with:

456 constant purple

where 456 is the desired value for purple

Later occurrences of purple will leave the correct value on the stack. constant
values should never be changed by the program. If you wish to change the value of a
constant in a program, you should use value instead of constant

2constant
stack: (X1 X2 "new-name< >" --) (E: -- x1 x2)
code: none

Creates a named two-number constant.

control
stack: ([text< >] -- char)
code: none

generates: b(lit) 00 00 00 xx-byte

Causes the compiler/Zinterpreter to interpret the next letter as a control-code. For
example:

control ¢ (equals 03)

count
stack: (pstr -- str len)
code: 84

Converts a packed string into a byte-array format. pstr is the address of a packed

Chapter 12 - Open Firmware Dictionary 201

string, where the byte at address pstr is the length of the string and the string itself
starts at address pstr+1.

Packed strings are generally not used in FCode. Virtually all string operations are in
the "str len" format.

For example:

h# 100 alloc-mem constant my-buff
" This is a string" my-buff pack (pstr) count type

cpeek

stack: (addr -- false | byte true)

code: 220
Tries to read the 8-bit byte at address addr. Returns the data and true if the access was
successful. A false return indicates that a read access error occurred.
See also: rb@

cpoke

stack: (byte addr -- okay?)

code: 223
Attempts to write the 8-bit byte at address addr. Returns true if the access was
successful. A false return indicates that a write access error occurred.
Note — cpoke may be unreliable on bus adapters that buffer write accesses.
See also: rb!

Cr

stack: (--)

code: 92
A defer word used to terminate the line on the display and go to the next line. The
default implementation transmits a carriage return and line feed to the display, clears
#out and adds 1 to #line
Use cr whenever you want to start a new line of output, or to force the display of any
previously buffered output text. This forcing is valuable for outputting error messages,
to ensure that the error message is sent before any system crash.
For example:

: show-info (--)
." This is the first line of output " cr
." This is the second line of output " cr
202 Writing FCode Programs for PCI

(cr
stack:
code:

create

stack:
code:
generates:

$create

stack:
code:

ctrace

stack:
code:

d#

stack:
code:
generates:

(--)
91
Outputs only the carriage return character (carret , 0x0D). The most common use of

(cr is for reporting the progress of a test that has many steps. By using (cr instead of
cr, the progress report appears on a single line instead of scrolling.

("new-name< >" --) (E: -- addr)
none
new-token|named-token|external-token b(create)

Creates the name new-name. When new-name is subsequently executed, it returns the
address of memory immediately following new-name in the dictionary. You can use
create to build an array-type structure, as:

create green 77 ¢, 23 ¢, ffc, ffc, 47 ¢, 22 c, ...

Later execution of green leaves the address of the first byte of the array (here, the
address of the byte “77”) on the stack. The returned address will be two-byte aligned.

create may not be used within definitions in an FCode Program. The common Forth
construct create...does> is not supported.

See also: $create

“dollar create”

(name-str name-len --) (E: -- addr)
none

Like create but takes a name string from the stack.

“see trace”

(--)

none

Displays the subroutine call stack that was in effect when the program state was saved

(i.e. when the program was suspended). The format of the display is implementation
dependent.

“dee number”

([number< >] --n)
none
b(lit) xx-byte xx-byte xx-byte xx-byte

Causes the compiler/interpreter to interpret the next number in decimal (base 10),
regardless of any previous settings of hex, decimal or octal . Only the immediately
following number is affected, the default numeric base setting is unchanged. For

Chapter 12 - Open Firmware Dictionary 203

d+
stack:
code:

stack:
code:

.d

stack:
code:
generates:

example:

hex
d# 100 (equals decimal 100)
100 (equals decimal 256)

See also: h#, o#

“dee plus”

(d1d2--d.sum)
D8

Adds two 64-bit numbers, leaving the 64-bit sum on the stack.

For example:

ok 1234.0000 0056.7800 9abc 3400.009a d+ .s
1234.9abc 3456.789a

See also: um*, um/mod

“dee minus”

(d1 d2 -- d.diff)
D9

Subtracts two 64-bit numbers, leaving the 64-bit result on the stack.

For example:

ok 0610d-.s

ffff.ffff 5

ok 4444.8888 aaaa.bbbb 2222.1111 5555.2222 d- .s
2222.7777 5555.9999

See also: um*, um/mod

“dot dee”
(n--)

none
base @ swap d# 10 base!. base !

Displays n in decimal with a trailing space. The value of base is not permanently
affected.

See also: .h

"deblocker"

This is the standard package to assist in the implementation of byte-oriented read and
write methods for block-oriented or record-oriented storage devices such as disks and
tapes. The package provides a layer of buffering to implement a high-level byte-
oriented interface above a low-level block-oriented interface.

The deblocker package implements the following methods:

204

Writing FCode Programs for PCI

m open (-- okay?)

Prepare this device for subsequent use.
m close (--)

Close this previously-open’d device.

m read (addr len -- actual)

Read from device into the specified memory buffer, returning the number of bytes
actually read.

m write (addr len -- actual)

Write to the device from the specified memory buffer, returning the number or bytes
actually written.

m seek (offset file# -- status)

Set the position at which the next read or write will take place, returning -1 if the
operation fails and either 0 or 1 if the operation succeeds.

Any package that uses the deblocker package must define the following interface
methods:

m Dblock-size (-- block-len)
Return the “granularity” of the device in bytes.

m dma-alloc (... size -- virt)

Allocate size bytes of contiguous memory with the DMA address space of the device
bus, returning the virtual address virt.

m max-transfer (-- max-len)

Return the size of the largest possible transfer in bytes rounded down to an integer
multiple of block-size

m read-blocks (addr block# #blocks -- #read)

Read #blocks, starting from block#, from the device into the memory beginning at
addr, returning the number of blocks actually read.

m write-blocks (addr block# #blocks -- #written)

Write #blocks, starting from block#, from memory beginning at addr to the device,
returning the number of blocks actually written.

debug
stack: ("old-name< >" --)
code: none

Marks the command old-name for debugging. Subsequent attempts to execute
old-name cause entry into the Forth source-level debugger. An Open Firmware
system that implements the source-level debugger must allow at least one command to
be marked at any given moment and may allow several commands to be marked for
debugging simultaneously.

During the execution of a debugged command, the name of the command that is about
to be executed and the contents of the stack are displayed before the execution of each
command called by the debugged command.

Debugging occurs in either “step mode” or “trace mode” as controlled by the stepping

Chapter 12 - Open Firmware Dictionary 205

commands, stepping and tracing

In “step mode”

each “step” represents the execution of a single Forth word. The user

controls the progress of execution with the following keystrokes:

Table35 “Step” Mode Commands for the Source-Level Debugger

Keystroke Description

<space-bar> Execute the word just displayed and proceed to the next word.

d “Down a level”. Mark for debugging the word whose name was just
displayed, then execute it.

u “Up a level”. Un-mark the word being debugged, mark its caller for
debugging, and finish executing the word that was previously being
debugged.

c “Continue”. Switch from stepping to tracing, thus tracing the remainder of
the execution of the word being debugged.

f Start a subordinate Forth interpreter with which Forth commands can be
executed normally. When that interpreter is terminated (with resume),
control returns to the debugger at the place where the f command was
executed.

resume Exit from a subordinate interpreter, and go back to the stepper (See the
preceding f command.)

q “Quit”. Abort the execution of the word being debugged and all its callers
and return to the command interpreter.

Table 36 FirmWorks/Sun “Step” Mode Extensions
Keystroke Description

g “Go.” Turn off the debugger and continue execution.

h “Help”. Display symbolic debugger documentation.

? “Short Help”. Display brief symbolic debugger documentation.

S “see”. Decompile the word being debugged.

$ Non-destructively display the address,len on top of the stack as a text string.

(Moves the beginning of the debug region to the current position in the word
being debugged.

) Moves the end of the debug region to the current position in the word being
debugged.

* Expands the debug region to include the entire word.

< Moves the beginning of the debug region to just after the current position in

the word being debugged, and moves the end of the debug region to the end
of that word.

This is useful for skipping past the end of a loop — step to the word that
ends the loop then type <.

In “trace mode”, execution continues automatically with each of the words that are
called by the marked word. As the words are executed, calling information is

displayed.

Debug mode ca

n be turned off with the debug-off command.

The system does not necessarily operate at full speed when one or more commands are

marked for deb

ugging.

206

Writing FCode Programs for PCI

Debugging basic Forth commands (which could have been used in the implementation
of debug) is not recommended. The system may ignore requests to debug words that
are “unsafe” to debug.

See also: (debug , debugging , debug(,)debug , debug-me , debug-off , stepping ,
tracing , resume

(debug

stack: (xt--)

code: none
Marks the command indicated by xt for debugging.

debug(

stack: (--)

code: none
A debugger extension provided by some implementations (e.g. FirmWorks/Sun).
debug(can be compiled into a word. When debug(is executed, it invokes the
debugger with the debugger’s scope beginning just after the call to debug(and
ending at the end of the word.

)debug

stack: (--)

code: none
A debugger extension provided by some implementations (e.g. FirmWorks/Sun).
)debug can be compiled into a word. When)debug is executed, it moves the end of
the debugger’s scope to just after the call to)debug .

debug-me

stack: (--)

code: none
A debugger extension provided by some implementations (e.g. FirmWorks/Sun).
debug-me can be compiled into a word. When debug-me is executed, it invokes the
debugger on the word containing it, and makes the debugger’s scope the entire word
containing debug-me even though debugging is not triggered until debug-me is first
executed.

debug-off

stack: (--)

code: none
Turns off the Forth source-level debugger.

debugging

stack: ("old-name< >" --)

code: none

A debugger extension provided by some implementations (e.g. FirmWorks/Sun).

Chapter 12 - Open Firmware Dictionary 207

decimal

stack:
code:

A shorthand way to mark a word for debugging and execute it. debugging foo is
equivalent to debug foo foo.

(--)

none

If used outside of a definition, commands the tokenizer program to interpret
subsequent numbers in decimal (base 10).

If used within a definition, appends the phrase 10 base ! to the FCode Program that is
being created thus affecting later numeric output when the FCode Program is
executed.

See also: base

decode-hytes

stack: (prop-addrl prop-lenl data-len -- prop-addr2 prop-len2 data-addr data-len)

code: none

generates: >r over r@ + swap r@ - rot r>
Decodes data-len bytes from a property value array and returns the remainder of the
array and the decoded byte array.

decode-int

stack: (prop-addrl prop-lenl -- prop-addr2 prop-len2 n)

code: 21B

Decodes a number from the beginning of a property value array and returns the
remainder of the property value array and the number n.

For example:

: show-clock-frequency (--)
" clock-frequency" get-inherited-property 0= if
." Clock frequency: " decode-int .h cr 2drop
then

decode-phys

stack:
code:

(prop-addrl prop-lenl -- prop-addr2 prop-len2 phys.lo ... phys.hi)
128

Decodes a unit address from a property value array and returns the remainder of the
array and the decoded list of address components. The number of cells in the list
phys.lo ... phys.hi is determined by the value of the "#address-cells " property of the
parent node.

decode-string

stack:
code:

(prop-addrl prop-lenl -- prop-addr2 prop-len2 str len)
21C

Decodes a string from the beginning of a property value array and returns the
remainder of the property value array and the string str len.

208

Writing FCode Programs for PCI

For example:

: show-model (--)
" model" get-my-property 0= if decode-string type 2drop then

decode-unit
stack: (addr len -- phys.lo ... phys.hi)
code: none

A static method that converts a text representation of a unit-address into a numerical
representation of a physical address within the address space defined by this device
node. The number of cells in the list phys.lo ... phys.hi is determined by the value
of the "#address-cells" property of the parent node.

default-font

stack: (-- addr width height advance minchar #glyphs)
code: 16A

Returns all the necessary information about the character font that is built into the boot
ROM. This font defines the appearance of every character to be displayed. To load this
font, simply pass these parameters to set-font |, with:

default-font set-font

The actual parameters returned by default-font are:
addr - The address of the beginning of the built-in font table
width - The width of each character in pixels
height - The height of each character in pixels
advance- The separation (in bytes) between each scan line entry
minchar- The ASCII value for the first character actually stored in the font table.

#glyphs - The total number of characters stored in the font table.

defer
stack: ("new-name< >" --) (E: -- 7??)
code: none

generates: new-token|named-token|external-token b(defer)

Creates a command new-name that is a defer word i.e. a word whose behavior can be
altered with to . new-name is initially created with execution behavior that indicates
that it is an uninitialized defer word. For example:

ok defer blob
ok blob
<--deferred word not initialized

Later, this behavior can then be altered to be that of another existing word by placing
that second word’s execution token on the stack and loading it into new-name with to .

Chapter 12 - Open Firmware Dictionary 209

For example:

[] foobar to blob

defer words are useful for generating recursive routines. For example:

defer hold2 \ Will execute action2
: actionl

hold2 (really action2)
: action2
actionl

"action2 to hold2

defer words can also be used for creating words with different behaviors depending
on your needs. For example:

defer .special (n --) \ Print a value, using special techniques
: print-em-all (--)

... .special

... .special

... .special

(.d prints in decimal
(.h prints in hexadecimal)
(.sp prints in a custom format)
: print-all-styles
[1.d to .special print-em-all
[1.h to .special print-em-all
['1.sp to .special print-em-all

In FCode source, defer cannot appear inside a colon definition.

See also: behavior , to

delete-characters

stack:
code:

(n--)
15E

Deletes n characters to the right of the cursor.

delete-characters is one of the defer words of the display device interface. The
terminal emulator package executes delete-characters when it has processed a
character sequence that requires the deletion of characters to the right of the cursor.
The cursor position is unchanged, the cursor character and the first n-1 characters to
the right of the cursor are deleted. All remaining characters to the right of the cursor,
including the highlighted character, are moved left by n places. The end of the line is
filled with blanks.

This word is initially empty, but must be loaded with an appropriate routine in order
for the terminal emulator to function correctly. This can be done with to , or it can be

210

Writing FCode Programs for PCI

loaded automatically with fbl-install or fb8-install (which loads

fbl-delete-characters or fb8-delete-characters , respectively).
See also: fb8-install , to

delete-lines

stack: (n--)

code: 160

Deletes n lines at and below the cursor line.

delete-lines is one of the defer words of the display device interface. The terminal
emulator package executes delete-lines when it has processed a character sequence
that requires the deletion of lines of text below the line containing the cursor. All lines
below the deleted lines are scrolled upwards by n lines, and n blank lines are placed at
the bottom of the active text area.

Use this word for scrolling, by temporarily moving the cursor to the top of the screen
and then calling delete-lines

This word is initially empty, but must be loaded with an appropriate routine in order
for the terminal emulator to function correctly. This can be done with to , or it can be

loaded automatically with fbl-install or fh8-install (which load fbl-delete-
lines or fb8-delete-lines , respectively).
See also: fb8-install , to

delete-property

stack: (name-str name-len --)
code: 21E

Deletes the property named by name-str name-len in the active package, if such a
property exists.

For example:

:unmap-me (--)
my-reg my-size " map-out" $call-parent
" address" delete-property

depth

stack: (--u)

code: 51
u is the number of entries contained in the data stack, not counting itself. Note that
when an FCode Program is called, there could be other items on the stack from the
calling program.
depth is especially useful for before/after stack depth checking, to determine if the
stack was corrupted by a particular operation.

lldepthll

This standard property is associated with display devices. The property value is an
integer (encoded with encode-int) that specifies the number of bits used to describe

Chapter 12 - Open Firmware Dictionary 211

each pixel of the display.

See also: property

dev

stack: ("device-specifier<eol>" --)

code: none
Makes the specified device node the active package by parsing device-specifier delimited
by the end of line. Perform the equivalent of find-device with device-specifier as its
argument.
For example:

ok dev device-specifier <eol>

See also: device-end

devalias

stack: ("{alias-name}< >{device-path}<eol>" --)

code: none
Creates a device alias, or displays the current alias(es).
If alias-name and device-path are specified, devalias creates a device alias named
alias-name representing device-path. If an alias with the same name already exists, the
new value supersedes the old.
If only alias-name is specified, devalias displays the device path corresponding to
alias-name (if this alias exists).
If nothing is specified after devalias, devalias displays all currently existing device
aliases.

device-end

stack: (--)

code: none

Unselects the active package leaving none selected.

device-name

stack: (strlen--)
code: 201

Creates a "name" property with the given string value. For example:

" AAPL,zebra" device-name

This is equivalent to:

" AAPL,zebra" encode-string " name" property

See also: "name" , property

212 Writing FCode Programs for PCI

device-type

stack: (strlen--)
code: 11A
This is a shorthand word for creating a "device_type" property. This property is

essential for any plug-in PCI device that will be used during booting, as it tells the boot
ROM which type of boot device it is. An example usage is:

" display" device-type

This is exactly equivalent to the following:

" display" encode-string " device_type" property

Note the spelling difference between the FCode command device-type (hyphen)

and the "device_type" property (underscore).
See also: "device_type" , property
"device_type"

This property declares the type of this plug-in device. The type need not be declared,
unless this device is intended to be usable for booting. If this property is declared,
using one of the following key values, the FCode program must follow the required
conventions for the specified device type. Used as:

" display" encode-string " device_type" property

Defined values for this property are "block" , "byte" |, "display” , "memory" ,
"network” , "pci* and "serial"

See also: device-type , property , Chapter 5 “Properties

diag-device
stack: (-- dev-str dev-len)
code: none

The value of this configuration variable is a string describing the default device-name
and any required filename to be used by boot if diagnostic-mode? is true .
dev-string is a device-specifier or a list of device-specifiers, as described in load .

The suggested default value is “net”.

diag-file
stack: (-- arg-str arg-len)
code: none

The value of this configuration variable is a string describing the default arguments to
be used by boot if diagnostic-mode? is true .

The suggested default value is “diag”.

Chapter 12 - Open Firmware Dictionary 213

diagnostic-mode?
stack: (-- diag?)
code: 120

diagnostic-mode? controls several aspects of machine function.

During booting, diagnostic-mode? controls the choice of boot device and boot file,

if not specified in the boot command. If diagnostic-mode? is true, the default boot
device is specified by diag-device and the default boot file is specified by
diag-file . If diagnostic-mode? is false, the default boot device is specified by

boot-device and the default boot file is specified by boot-file

During machine power-on, diagnostic-mode? controls the extent of system selftest
and controls the amount of informative messages displayed. If diagnostic-mode? is
true, more extensive tests are performed and more messages are displayed. The details
of selftest, however, are implementation-dependent.

FCode Programs can use diagnostic-mode? to control the extent of the selftests
performed. While the specifics of use are controlled by the FCode Program itself, the
recommended use is described in the preceding paragraph. In other words, if
diagnostic-mode? is true, more extensive tests are performed and more messages
are displayed.

For example:

diagnostic-mode?

if do-extended-tests
else do-normal-tests
then

FCode should not generate character output during probing unless
diagnostic-mode? is true , or unless an error is encountered. Error output during
probing typically goes to the system serial port.

diagnostic-mode? will return true if any of the following conditions are met:
m diag-switch? is true.

= A machine diagnostic switch (system-dependent) is ON.

m Other system-dependent indicators request extensive diagnostics.

See also: diag-switch?

diag-switch?
stack: (-- diag?)
code: none

This configuration variable is a boolean describing whether more extensive diagnostics
should be run. If diag-switch? is true, diagnostic-mode? returns true.

The suggested default value of diag-switch? is “false”.

Note that diag-switch? true implies diagnostic-mode? true, but diag-switch?
false does not imply diagnostic-mode? false. Other system-dependent mechanisms
can cause diagnostic-mode? to be true.

See also: diagnostic-mode?

214 Writing FCode Programs for PCI

digit

stack:

code:

dis

stack:

code:

+dis

stack:

code:

(char base -- digit true | char false)
A3

If the character char is a digit in the specified base, returns the numeric value of that
digit under true, else returns the character under false. Appropriate characters are hex
30-39 (for digits 0-9) and hex 61-66 (for digits a-f), depending on base.

For example:

: probe-slot (slot# --) ... ;
: probe-slots (addr cnt --)
bounds ?do
ic@ d# 16 digit if probe-slot else drop then
loop

(addr --)
none

Begins disassembling at the given address. The format of the disassembly, and the
conditions for stopping disassembly, are system-dependent.

See also: +dis

(--)

none
Continues disassembling where dis or +dis last stopped.

See also: dis

"disk-label"

This is the standard package that interprets the disk label including any “partitioning
information. This package is used by block device drivers.

The disk-label package uses the read and seek methods of the package that
open’d it. disk-label implements the following methods:

m open (-- okay?)
Prepare this device for subsequent use.
m close (--)
Close this previously-open’d device.
m load (addr -- size)
Load a client program from device to memory.

m oOffset (d-rel -- d.abs)
Convert a partition-relative disk position to an absolute position.

Chapter 12 - Open Firmware Dictionary 215

"display”

This is the standard property value of the "device_type" property for user output
devices with randomly-addressable pixels (i.e.graphic output display device devices).
"display" devices can be used for console output.

Devices of type "display” must implement the following methods:

= open
= close
= Write

Display the sequence of len characters beginning at addr, interpreting command
sequences as defined by Annex B of IEEE Standard 1275-1994.

m draw-logo

If an unexpected system reset can cause the display to become invisible (e.g. the video
is turned off) and the display can be restored to visibility without performing memory
mapping or memory allocation operations, the restore method should also be
implemented.

display devices may also implement additional device-specific methods.

display packages typically use the terminal emulator support package to process
ANSI X3.64 escape sequences for the write method. “Dumb” frame-buffer devices
typically use either the "fb1" or the "fb8" support package to implement the “Character
Map” defer words interface. More complicated display devices, such as those with
hardware acceleration, typically implement that interface directly.

display-status

stack:
code:

dl

stack:
code:

(n--)
121

Displays the results of some test. The method of display is system-dependent. This
FCode is obsolete and should not be used.

“dee el”
(-)

none
Downloads and execute Forth text, end with Control-D.

Receives text from the current input source and stores it in a buffer, until an EOT (0x04,
or control-D) character is received. Does not store the EOT character.

After reception, evaluates the contents of the buffer as with the eval command. The
buffer size is system-dependent and is at least 4096 characters.

dl is typically used with a serial line as the current input source. After issuing the dl
command, the user typically issues commands to another computer to cause the
desired Forth text (such as a text file) to be sent over the serial line, followed by the
EOT (0x04, or control-D) character.

fload commands that are embedded in the downloaded text will not be processed
correctly. See “Downloading Multiple Files with dl and fload” on page 28 for more
information.

See also: fload

216

Writing FCode Programs for PCI

dma-alloc

stack: (...size--virt)
code: none

Allocates size bytes of memory, contiguous within the direct-memory-access address
space of the device bus, suitable for direct memory access by a “bus master” device.
The memory is allocated according to the most stringent alignment requirements for
the bus. Returns the virtual address virt. That virtual address is suitable for CPU access
to the allocated region, but, in general, dma-map-in must be used to convert it to an
address suitable for direct memory access by the bus-master device.

The ellipsis in the stack diagram indicates that some memory-mapped buses may
require additional mapping space parameters. See the Open Firmware binding for the
bus in question. (In the case of the PCI bus, no additional parameters required.)

If the requested operation cannot be performed, a throw is called with an appropriate
error message, as with abort" . Consequently, out-of-memory conditions can be
detected and handled properly in the code with the phrase [] dma-alloc catch

Drivers will normally use the dma-alloc method of their parent:

" dma-alloc" $call-parent
" dma-map-in" $call-parent

For example:

: my-dma-alloc (--)
my-size " dma-alloc” $call-parent (vaddr)
to my-vaddr

See also: dma-map-in , dma-free , Appendix C, “PCI Bus Binding to Open Firmware”

dma-free

stack: (virt size --)

code: none
Frees size bytes of memory at virtual address virt that were previously allocated with
dma-alloc

dma-map-in

stack: (... virt size cacheable? -- devaddr)

code: none

Converts the virtual address range virt size that was previously allocated by the
dma-alloc method into an address suitable for DMA on the device bus. Returns this
address devaddr.

dma-map-in can also be used to map application-supplied data buffers for DMA use
on the bus, if possible.

The flag cacheable? should be nonzero if you would like to make use of caches for the
DMA buffer if they are available.

Immediately after dma-map-in has been executed, the contents of the address range as
seen by the processor (the processor’s “view”) is the same as the contents as seen by

Chapter 12 - Open Firmware Dictionary 217

the device that performs the DMA (the device’s “view”). After the DMA device has
performed DMA or the processor has performed a write to the range in question, the
contents of the address range as seen by the processor (the processor’s “view”) is not
necessarily the same as the contents as seen by the device that performs the DMA (the
device’s “view”). The two views can be made consistent by executing dma-map-out or
dma-sync .

The ellipsis in the stack diagram indicates that some memory-mapped buses may
require additional mapping space parameters. See the Open Firmware binding for the
bus in question. (In the case of the PCI bus, no additional parameters required.)

If the requested operation cannot be performed, a throw is called with an appropriate
error message, as with abort" . Consequently, out-of-memory conditions can be
detected and handled properly with the phrase [] dma-map-in catch

See also: dma-map-out , Appendix C, “PCI Bus Binding to Open Firmware”

dma-map-out
stack: (virt devaddr size --)
code: none

Frees the DMA mapping specified by virt devaddr size that was previously created with
dma-map-in . In addition, flushes all caches associated with that mapping (with

dma-sync).
dma-sync
stack: (virt devaddr size --)
code: none

Flushes any memory caches associated with the DMA mapping virt devaddr size.

The parameters virt devaddr and size need not be identical to the values previously used
with dma-map-in to obtain the memory cache.

dma-map-in and dma-map-out must map and unmap memory in identically-sized
pieces. However, dma-sync can work on smaller pieces within a given mapping. The
system will automatically round up the dma-sync parameters to the appropriate
synchronization boundary (typically a cache line boundary) which is not necessarily
the same as the mapping boundary (typically a page boundary).

do
stack: (C: -- dodest-sys)

(limit start --) (R: -- sys)
code: none

generates: b(do) +offset

Begins a counted loop in the form do...loop or do...+loop. The loop index begins at
start, and terminates based on limit. See loop and +loop for details on how the loop is
terminated. The loop is always executed at least once. For example:

83do i. loop \wouldprint34567
93do i. 2 +loop\would print 357

do may be used either inside or outside of colon definitions.

218

Writing FCode Programs for PCI

?do “guestion do”

stack: (C: -- dodest-sys)
(limit start --) (R: -- sys)
code: none

generates: b(?do) +offset

Begin a counted loop in the form ?do...loop or ?do...+loop . The loop index begins at
start, and terminates based on limit. See loop and +loop for details on how the loop is
terminated. Unlike do, if start is equal to limit the loop is executed zero times. For
example:

817?doi.loop \wouldprint1234567
217?doi.loop \would print1

11?doi.loop \would print nothing

11 doi.loop \wouldprint123456789...

?do can be used in place of do in nearly all circumstances. 2do may be used either
inside or outside of colon definitions.

does>
stack: (E: ... --?2??)
code: none

Sets the run-time behavior of a create ...does> construct.

draw-character
stack: (char --)
code: 157

A defer word that is called by the boot ROM'’s terminal emulator in order to display
a single character on the screen at the current cursor location.

This word is initially empty, but must be loaded with an appropriate routine in order
for the terminal emulator to function correctly. This can be done with to , or it can be

loaded automatically with fbl-install or fb8-install (which loads
fbl-draw-character or fb8-draw-character , respectively).
draw-logo
stack: (line# addr width height --)
code: 161

A defer word that is called by the system to display the power-on logo (the graphic
displayed on the left side during power-up, or by banner).

This word is initially empty, but must be loaded with an appropriate routine in order
for the terminal emulator to function correctly. This can be done with to , or it can be
loaded automatically with fb1-install or fb8-install (which load
fb1-draw-logo or fb8-draw-logo , respectively).

It is possible to pack a custom logo into the FCode ROM and then re-initialize
draw-logo to output the custom logo instead.

draw-logo is called by the system using the following parameters:

Chapter 12 - Open Firmware Dictionary 219

draw-logo
stack:
code:

drop

stack:
code:

2drop

stack:
code:

3drop

stack:
code:
generates:

dump

stack:
code:

line# - The text line number at which to draw the logo. For general use, see
Appendix B, “FCode Memory Allocation”.

addr - The address of the logo template to be drawn. In practice, this will always be
either the address of the oem-logo field in NVRAM, the address of a custom logo
in the FCode ROM, or the address of the built-in system logo. In either case, the
logo is a bit array of 64x64 (decimal) pixels (512 bytes). The most significant bit
(MSB) of the first byte represents the upper-left pixel; (MSB-1) represents the next
pixel to the right, and so on. A bit value of 1 means that pixel will be painted.

width - The width of the passed-in logo (in pixels).

height- The height of the passed-in logo (in pixels).

(line# addr width height --)
none

A package method that draws a logo on an output device. The arguments and
semantics of this method are identical to those of the draw-logo FCode Function.

is-install automatically creates an implementation of this method that executes the
draw-logo defer word.

See also: "display" , banner , draw-logo (FCode Function)

(x--)

46

Removes one item from the stack.

(x1x2--)
52

Removes two items from the stack.

(X1 x2x3--)
none
drop 2drop

Removes three items from the stack.

(addr len --)
none

Displays len bytes of memory starting at addr.

220

Writing FCode Programs for PCI

dup
stack:
code:

2dup

stack:
code:

3dup

stack:
code:
generates:

?dup
stack:
code:

else
stack:

code:
generates:

emit
stack:
code:

emit-byte
stack:
code:
generates:

“dupe”
(X--xx)
47

Duplicates the top stack item.

“two dupe”

(X1 x2--x1x2x1x2)
53

Duplicates the top two stack items.

“three dupe”

(X1 x2 x3 -- x1 x2 x3 x1 x2 x3)
none
2 pick 2 pick 2 pick

Duplicates the top three stack items.

“question dupe”
(x--0]xx)
50

Duplicates the top stack item unless it is zero.

(C: orig-sysl -- orig-sys2)
(--)
none
bbranch +offset b(>resolve)

Begin the else clause of an if ...else ...then statement. See if for more details.

(char --)
8f

A defer word that outputs the indicated ASCII character. For example, h# 41 emit
outputs an “A”, h# 62 emit outputs a “b”, h# 34 emit outputs a “4”.

(FCode# --)
none
n

An FCode-only command used to manually output a desired byte of FCode. Use it
together with tokenizer| as follows:

tokenizer[
44 emit-byte 20 emit-byte
Jtokenizer

Chapter 12 - Open Firmware Dictionary

221

encode+

stack:
code:

emit-byte would be useful, for example, if you wished to generate a new FCode
command that the tokenizer did not understand. This command should be used with
caution or else an invalid FCode Program will result.

See also: tokenizer[,]Jtokenizer

(prop-addrl prop-lenl prop-addr2 prop-len2 -- prop-addr3 prop-len3)
112

Merge two property value arrays into a single property value array. The two input
arrays must have been created sequentially with no intervening dictionary allocation
or other property value arrays having been created. This can be called repeatedly, to
create complex, multi-valued property value arrays for passing to property

For example, suppose you wished to create a property named myprop with the
following information packed sequentially:

"size" 2000 "vals" 3 128 40 22

This could be written in FCode as follows:

: encode-string,num (addr len number --)
>r encode-string
r> encode-int encode+

" size" 2000 encode-string,num

"vals" 3 encode-string,num encode+

128 encode-int encode+

40 encode-int encode+

22 encode-int encode+

" myprop" property

encode-bytes

stack: (data-addr data-len -- prop-addr prop-len)
code: 115
Encodes a byte array into a property value array. The external representation of a byte
array is the sequence of bytes itself, with no appended null byte.
For example:
my-idprom h# 20 encode-bytes " idprom" property
encode-int
stack: (quad -- prop-addr 4)
code: 111
Convert a 4-byte integer into a 4 byte property value array with the most significant
byte at the smallest address. Such an array is suitable for passing as a value to
property . For example:
1152 encode-int " hres" property
222 Writing FCode Programs for PCI

encode-phys

stack:
code:

(phys.lo ... phys.hi -- prop-addr prop-len)

113

Encodes a unit-address into a property value array by property encoding the list of
cells denoting a unit address in the order of phys.hi followed by the encoding of the

component that appears on the stack below phys.hi, and so on, ending with the
encoding of the phys.lo component.

The number of cells in the list phys.lo ... phys.hi is determined by the value of the
"#address-cells" property of the parent node.

For example:

my-address my-space encode-phys " resetloc" property

encode-string

stack: (str len -- prop-addr prop-len)

code: 114
Converts an ordinary string, such as created by ", into a property value array suitable
for property . For example:

" JBB,WMB,GRH" encode-string " authors" property

encode-unit

stack: (phys.lo ... phys.hi -- unit-str unit-len)

code: none
Converts phys.lo ... phys.hi, the numerical representation, to unit-string, the text string
representation of a physical address within the address space defined by this device
node. The number of cells in the list phys.lo ... phys.hi is determined by the value of the
"#address-cells” property of this node.
encode-unit s a static method.

endO

stack: (--)

code: 00
A word that marks the end of an FCode Program. This word must be present at the
end of your program or erroneous results may occur.
If you want to use end0 inside a colon definition, for example in a conditional clause,
use something like:

s exit-if-version2 fcode-revision h#30000 <if [']end0 execute then
endO
stack: (--)

A User Interface command to cause the command interpreter to ignore the remainder

Chapter 12 - Open Firmware Dictionary 223

endl

stack:
code:

endcase
stack:

code:
generates:

end-code

stack:
code:

endof
stack:

code:
generates:

of the input buffer and all subsequent lines from the same input source.

The optional User Interface semantics of this command duplicate the purpose, but not
the detailed behavior, of the FCode semantics. The detailed behavior differs because
the User Interface command interpreter processes text, while the FCode Evaluator
processes byte-coded FCode Programs.

(--)
FF

An alternate word for end0, to mark the end of an FCode Program. endO is
recommended.

endl is not intended to appear in source code. It is defined as a guard against mis-
programmed ROMs. Unprogrammed regions of ROM usually appear as all ones or all
zeroes. Having both 0x00 and OxFF defined as end codes stops the FCode interpreter if
it enters an unprogrammed region of a ROM.

(C: case-sys --)
(sel --)

none
b(endcase)

Marks the end of a case statement. See case for more details.

(C: code-sys --)
none

Ends the creation of a machine-code sequence. No additional assembly language code
is assembled.

code-sys is balanced by the corresponding code or label

(C: case-sysl of-sys -- case-sys2)
(-)

none

b(endof) +offset

Marks the end of an of clause within a case statement. See case for more details.

end-package

stack: (--)
code: none
Closes the device tree entry set up with begin-package by performing the following:
m Call finish-device to close the child device node.
m Set the working vocabulary to Forth.
m Call close-dev
224 Writing FCode Programs for PCI

environment?
stack: (str len -- false | value true)
code: none

Return system information based on input keyword. The exact set of recognized
keyword strings is implementation-dependent.

erase
stack: (addr len --)
code: none

generates: O fill

Sets len bytes of memory beginning at addr to zero. No action is taken if len is zero.

erase-screen

stack: (--)
code: 15A

A defer word that is called once during the terminal emulator initialization sequence
in order to completely clear all pixels on the display. This word is called just before
reset-screen , so that the user doesn’t actually see the framebuffer data until it has
been properly scrubbed.

This word is initially empty, but must be loaded with an appropriate routine in order
for the terminal emulator to function correctly. This can be done with to , or it can be

loaded automatically with fbl-install or fb8-install (which load
fbl-erase-screen or fb8-erase-screen , respectively).

eval

stack: (...strlen--???)

code: none

generates: evaluate

Synonym for evaluate

evaluate
stack: (...strlen--?2??)
code: CD

Takes a string from the stack (specified as an address and a length) and interprets the
characters in that string as if they were entered from the keyboard. The overall stack
effect depends on the commands being executed. For example:

" 4000 20 dump" evaluate

evaluate can be used to interpret the code contained in a Forth text file that has been
loaded into memory . For example:

ok 10000 buffer: filebuf

ok " /pcilisalfloppy: \framus.fth" open-dev (ihandle)
ok >r filebuf 10000 " read" r@ $call-method (#read)
ok r> close-dev filebuf swap evaluate

ok

Chapter 12 - Open Firmware Dictionary 225

even

stack:
code:

execute

stack:
code:

You can use evaluate |, like $find , to find and execute Forth commands that are not
FCodes.

The same cautions apply to evaluate as for $find in that programs executing Forth
commands are likely to encounter portability problems when moved to other systems.

(n--n | ntl)
none

Rounds to the nearest even integer >=n.

(... Xt=22?)
1D

Executes the word definition whose execution token is xt. An error condition exists if
xt is not an execution token.

For example:

: my-word (addr len --)
." Given string is: " type cr

" great” ['] my-word execute

execute-device-method

stack:
code:

"existing"

(... dev-str dev-len method-str method-len -- ... false | ??? true)
none

Executes the named method in the package named dev-string. dev-string is a device-
specifier. Returns false if the method could not be executed (i.e. the device-specifier is
invalid, or that device has no method with the given name, or execution of that
method resulted in an abort or throw). Otherwise, returns true above whatever
results were placed on the stack by the execution of the method.

See also: apply

This property defines the regions of virtual address space managed by the memory
management unit (MMU) in whose package this property is defined, without regard to
whether or not these regions are currently in use.

The property value is an arbitrary number of (virtual-address,len) pairs where:
m virtual-addr is one or more integers encoded with encode-int

m len is one or more integers, each encoded with encode-int

The encodings of virtual-addr and len are MMU-specific.

See also: "available" , map, modify , "reg" , translate , unmap

226

Writing FCode Programs for PCI

exit
stack: (--) (R: nest-sys --)
code: 33
Compiled within a colon definition. When encountered, execution leaves the current

word and returns control to the calling word specified by nest-sys. Must be preceded by
unloop if used within a do loop .

For example:

: probe-loop (addr--)
\ Generate a tight probe loop until any key is pressed.
begin dup |@ drop key? if drop exit then again

. find-value (test-value start-addr --)

\ Searches up to 100 locations looking for a test value.
100 bounds do (test-value)

i c@ over =if (test-value)

" Found at"i. cr drop unloop exit

then
loop (test-value)
.." not found" cr

See also: abort , leave , unloop

exit? “exit question”
stack: (-- done?)
code: none

Handles output pagination while providing user control. Returns true if the user has
requested the cessation of output from the current command.

exit? is used inside loops that might send many lines of output to the console. It is
typically called once for each line of output.

The precise behavior is implementation-dependent; a typical behavior follows:

m If the value contained in the #line variable is greater than a predetermined value
(typically returned by a word named lines/page) prompt the user with the
message:

More [<space>,<cr>,q] ?

and wait for a character to be typed on the console. If that character is “q” return
true. If that character is “<cr>" (carriage return) arrange for the next call to exit? to
prompt the user, and return false. If the character is neither “q” or “<cr>" set the
contents of #line to zero and return false.

m If a “q” character has been typed on the console input device since the last time that
exit? was called return true.

m If any other character has been typed, prompt for what to do next, as shown above,
and return false.

m The typical behavior described above has the following features (assuming that
output-generating commands call exit? once per line of output):

a) Output pauses at the end of each page of output, allowing the user to either stop

Chapter 12 - Open Firmware Dictionary 227

expect

stack:
code:

external

stack:
code:

further output (““g”), get one more line output before pausing again (“<cr>") or
continue with the next page of output (“<space>").

b) The user can stop further output at any time by typing “q”.

¢) The user can cause a pause before the end of a page by typing a character other
than “q”.

(addr len --)
8A

A defer word that receives a line of characters from the keyboard and stores them
into memory, performing line editing as the characters are typed. Displays all
characters actually received and stored into memory. The number of received
characters is stored in span.

The transfer begins at addr proceeding towards higher addresses one byte per character
until either a carriage return is received or until len characters have been transferred.
No more than len characters will be stored. The carriage return is not stored into
memory. No characters are received or transferred if len is zero.

For example:

h# 10 buffer: my-name-buff
“hello (--)
." Enter Your First name " my-name-buff h# 10 expect
" FirmWorks Welcomes " my-name-buff span @ type cr

We encourage the use of accept rather than expect .

(--)

none

After issuing external , all subsequent definitions are created so that names are later
compiled into RAM, regardless of the value of the NVRAM variable fcode-debug?
external is used to define the package methods that may be called from software
external to the package, and whose names must therefore be present.

external stays in effect until headers or headerless is encountered.

For example:

external
.open (--0k?)...;

external-token

stack: (--) (F: /ZFCode-string FCode#/ --)
code: CA
A token-type that is used to indicate that this word should always be compiled with
the name header present. Activated by external , all subsequent words are created
with external-token until deactivated with either headers or headerless . See
228 Writing FCode Programs for PCI

named-token for more details. This word should never be used in source code.

false
stack: (-- false)
code: none

generates: 0

Leaves the value for false (i.e. zero) on the stack.

fbl-blink-screen

stack: (--)
code: 174

The built-in default routine to blink or flash the screen momentarily on a generic 1-bit-
per-pixel framebuffer. This routine is loaded into the defer word blink-screen by
calling fbl-install

This routine is invalid unless the FCode Program has called fb1-install and has
initialized frame-buffer-adr to a valid virtual address.

This word is implemented simply by calling fbl-invert-screen twice. In practice,
this can be quite slow (around one full second). It is quite common for a framebuffer
FCode Program to replace fb1-blink-screen with a custom routine that simply
disables the video for 20 milliseconds or so. For example:

: my-blink-screen (--) video-off 20 ms video-on ;
fbl-install

[l my-blink-screen to blink-screen

fb1l-delete-characters
stack: (n--)
code: 177

The built-in default routine to delete n characters at and to the right of the cursor, on a
generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word

delete-characters by calling fbl-install
This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged, the cursor character and the next n-1 characters to
the right of the cursor are deleted, and the remaining characters to the right are moved
left by n places. The end of the line is filled with blanks.

fbl-delete-lines
stack: (n--)
code: 179

The built-in default routine to delete n lines, starting with the line below the cursor
line, on a generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer
word delete-lines by calling fbl-install

This routine is invalid unless the FCode Program has called fb1-install and

Chapter 12 - Open Firmware Dictionary 229

set-font and has initialized frame-buffer-adr to a valid virtual address.

The n lines at and below the cursor line are deleted. All lines above the cursor line are
unchanged. The cursor position is unchanged. All lines below the deleted lines are
scrolled upwards by n lines, and n blank lines are placed at the bottom of the active
text area.

fbl-draw-character
stack: (char --)
code;: 170

The built-in default routine for drawing a character on a generic 1-bit-per-pixel
framebuffer, at the current cursor location. This routine is loaded into the defer word
draw-character by calling fb1-install

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

If inverse? s true , then characters are drawn inverted (white-on-black). Otherwise
(the normal case) they are drawn black-on-white.

fbl-draw-logo
stack: (line# addr width height --)
code: 17A

The built-in default routine to draw the logo on a generic 1-bit-per-pixel framebuffer.
This routine is loaded into the defer word draw-logo by calling fbl-install

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

See draw-logo for more information on the parameters passed.

fbl-erase-screen
stack: (--)
code; 173

The built-in default routine to clear (erase) every pixel in a generic 1-bit-per-pixel
framebuffer. This routine is loaded into the defer word erase-screen by calling

fbl-install

This routine is invalid unless the FCode Program has called fb1-install and has
initialized frame-buffer-adr to a valid virtual address.

All pixels are erased (not just the ones in the active text area). If inverse-screen? is

true , then all pixels are set to 1, resulting in a black screen. Otherwise (the normal
case) all pixels are set to 0, resulting in a white screen.

fbl-insert-characters
stack: (n--)
code: 176

The built-in default routine to insert n blank characters to the right of the cursor, on a
generic 1-bit-per-pixel framebuffer. This routine is loaded into the defer word
insert-characters by calling fbl-install

This routine is invalid unless the FCode Program has called fb1-install and

230

Writing FCode Programs for PCI

set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged, but the cursor character and all characters to the
right of the cursor are moved right by n places. An error condition exists if an attempt
is made to create a line longer than the maximum line size (the value in #columns).

fbl-insert-lines

stack: (n--)
code: 178

The built-in default routine to insert n blank lines below the cursor on a generic 1-bit-
per-pixel framebuffer. This routine is loaded into the defer word insert-lines by
calling fb1-install

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position on the screen is unchanged. The cursor line is pushed down, but
all lines above it are unchanged. Any lines pushed off of the bottom of the active text
area are lost.

fbl-install
stack: (width height #columns #lines --)
code: 17B

This built-in routine installs all of the built-in default routines for driving a generic 1-
bit-per-pixel framebuffer. It also initializes most necessary value s needed for using
these default routines.

set-font must be called, and frame-buffer-adr initialized, before fb1-install

is called, because the char-width and char-height values set by set-font are
needed when fbl-install is executed.

fbl-install loads the following defer routines with their corresponding

fbl- (whatever) equivalents: reset-screen , toggle-cursor , erase-screen
blink-screen , invert-screen , insert-characters , delete-characters ,
insert-lines , delete-lines , draw-character , draw-logo.

The following value s are also initialized:

screen-width - set to the value of the passed-in parameter width (screen width in
pixels)

screen-height - set to the value of the passed-in parameter height (screen height
in pixels)

#columns - set to the smaller of the following two: the passed-in parameter
#columns, and the NVRAM parameter screen-#columns

#lines - set to the smaller of the following two: the passed-in parameter #lines, and
the NVRAM parameter screen-#rows

window-top - set to half of the difference between the total screen height
(screen-height) and the height of the active text area (#lines times
char-height)

Chapter 12 - Open Firmware Dictionary 231

window-left - set to half of the difference between the total screen width
(screen-width) and the width of the active text area (#columns times
charwidth), then rounded down to the nearest multiple of 32 (for performance
reasons)

Several internal value s used by various fbl- routine are also set.

fbl-invert-screen

stack: (--)

code: 175
The built-in default routine to invert every visible pixel on a generic 1-bit-per-pixel
framebuffer. This routine is loaded into the defer word invert-screen by calling
fbl-install
This routine is invalid unless the FCode Program has called fb1-install and has
initialized frame-buffer-adr to a valid virtual address.

All pixels are inverted (not just the ones in the active text area).

fbl-reset-screen

stack: (--)
code: 171

The built-in default routine to enable a generic 1-bit-per-pixel framebuffer to display
data. This routine is loaded into the defer word reset-screen by calling
fbl-install . (reset-screen is called just after erase-screen during the
terminal emulator initialization sequence.)

This word is initially a NOP. Typically, an FCode Program will define a hardware-
dependent routine to enable video, and then replace this generic function with:

: my-video-enable (--) ...:
fbl-install

['] my-video-enable to reset-screen

fbl-slide-up
stack: (n--)
code: 17C
This is a utility routine. It behaves exactly like fbl-delete-lines , except that it

doesn’t clear the lines at the bottom of the active text area. Its only purpose is to scroll
the enable plane for framebuffers that have 1-bit overlay and enable planes.

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

fb1l-toggle-cursor
stack: (--)
code: 172

The built-in default routine to toggle the cursor location in a generic 1-bit-per-pixel
framebuffer. This routine is loaded into the defer word toggle-cursor by calling

232 Writing FCode Programs for PCI

fbl-install . The behavior is to invert every pixel in the one-character-size space for
the current position of the text cursor.

This routine is invalid unless the FCode Program has called fb1-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

fb8-blink-screen

stack: (--)
code: 184

The built-in default routine to blink or flash the screen momentarily on a generic 8-bit-
per-pixel framebuffer. This routine is loaded into the defer word blink-screen by
calling fb8-install

This routine is invalid unless the FCode Program has called fb8-install and has
initialized frame-buffer-adr to a valid virtual address.

This word is implemented simply by calling fb8-invert-screen twice. In practice,
this can be very slow (several seconds). It is quite common for a framebuffer FCode
Program to replace fb8-blink-screen with a custom routine that simply disables
the video for 20 milliseconds or so. For example:

: my-blink-screen (--) video-off 20 ms video-on ;
fb8-install

[l my-blink-screen to blink-screen

fb8-delete-characters

stack: (n--)
code: 187

The built-in default routine to delete n characters to the right of the cursor, on a generic
8-bit-per-pixel framebuffer. This routine is loaded into the defer word delete-
characters by calling fb8-install

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged. The cursor character and the next n-1 characters to
the right of the cursor are deleted, and the remaining characters to the right are moved
left by n places. The end of the line is filled with blanks.

fb8-delete-lines
stack: (n--)
code: 189

The built-in default routine to delete n lines, starting with the line below the cursor
line, on a generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer

word delete-lines by calling fb8-install
This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The n lines at and below the cursor line are deleted. All lines above the cursor line are
unchanged. The cursor position is unchanged. All lines below the deleted lines are

Chapter 12 - Open Firmware Dictionary 233

scrolled upwards by n lines, and n blank lines are placed at the bottom of the active
text area.

fb8-draw-character
stack: (char --)
code;: 180

The built-in default routine for drawing a character on a generic 8-bit-per-pixel
framebuffer, at the current cursor location. This routine is loaded into the defer word
draw-character by calling fb8-install

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

If inverse? s true , then characters are drawn inverted (white-on-black). Otherwise
(the normal case) they are drawn black-on-white.

fb8-draw-logo
stack: (line# addr width height --)
code: 18A

The built-in default routine to draw the logo on a generic 8-bit-per-pixel framebuffer.
This routine is loaded into the defer word draw-logo by calling fb8-install

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

See draw-logo for more information on the parameters passed.

fb8-erase-screen
stack: (--)
code; 183

The built-in default routine to clear (erase) every pixel in a generic 8-bit-per-pixel
framebuffer. This routine is loaded into the defer word erase-screen by calling

fb8-install

This routine is invalid unless the FCode Program has called fb8-install and has
initialized frame-buffer-adr to a valid virtual address.

All pixels are erased (not just the ones in the active text area). If inverse-screen? is

true , then all pixels are set to 0xff, resulting in a black screen. Otherwise (the normal
case) all pixels are set to 0, resulting in a white screen.

fb8-insert-characters
stack: (n--)
code: 186

The built-in default routine to insert n blank characters to the right of the cursor, on a
generic 8-bit-per-pixel framebuffer. This routine is loaded into the defer word

insert-characters by calling fb8-install
This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged, but the cursor character and all characters to the
right of the cursor are moved right by n places. An error condition exists if an attempt

234

Writing FCode Programs for PCI

is made to create a line longer than the maximum line size (the value in #columns).

fb8-insert-lines
stack: (n--)
code;: 188

The built-in default routine to insert n blank lines below the cursor on a generic 8-bit-
per-pixel framebuffer. This routine is loaded into the defer word insert-lines by
calling fb8-install

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

The cursor position is unchanged. The cursor line is pushed down, but all lines above
it are unchanged. Any lines pushed off of the bottom of the active text area are lost.

fb8-install
stack: (width height #columns #lines --)
code: 18B

This built-in routine installs all of the built-in default routines for driving a generic 8-
bit-per-pixel framebuffer. It also initializes most necessary value s needed for using
these default routines.

set-font must be called, and frame-buffer-adr initialized, before fb8-install

is called, because the char-width and char-height values set by set-font are
needed when fb8-install is executed.

fb8-install loads the following defer routines with their corresponding

fb8- (whatever) equivalents: reset-screen , toggle-cursor , erase-screen
blink-screen , invert-screen , insert-characters , delete-characters ,
insert-lines , delete-lines , draw-character , draw-logo

The following values are also initialized:

screen-width - set to the value of the passed-in parameter width (screen width in
pixels)

screen-height - set to the value of the passed-in parameter height (screen height
in pixels)

#columns - set to the smaller of the following two: the passed-in parameter
#columns , and the NVRAM parameter screen-#columns

#lines - set to the smaller of the following two: the passed-in parameter #lines, and
the NVRAM parameter screen-#rows

window-top - set to half of the difference between the total screen height
(screen-height) and the height of the active text area (#lines times
char-height)

window-left - set to half of the difference between the total screen width
(screen-width) and the width of the active text area (#columns times
char-width), then rounded down to the nearest multiple of 32 (for performance
reasons)

Several internal value s are also set that are used by various fb8- routines.

Chapter 12 - Open Firmware Dictionary 235

fb8-invert-screen

stack:
code:

(--)

185

The built-in default routine to XOR (with hex 0xFF) every visible pixel on a generic 8-
bit-per-pixel framebuffer. This routine is loaded into the defer word invert-screen

by calling fb8-install

This routine is invalid unless the FCode Program has called fb8-install and has
initialized frame-buffer-adr to a valid virtual address.

All pixels are inverted (not just those in the active text area).

fb8-reset-screen

stack:
code:

(--)

181

The built-in default routine to enable a generic 8-bit-per-pixel framebuffer to display
data. This routine is loaded into the defer word reset-screen by calling
fb8-install . (reset-screen is called just after erase-screen during the
terminal emulator initialization sequence.)

This word is initially a NOP. Typically, an FCode Program will define a hardware-
dependent routine to enable video, and then replace this generic function with:

: my-video-enable (--) ... :
fb8-install

[l my-video-enable to reset-screen

fb8-toggle-cursor

stack:
code:

(--)

182

The built-in default routine to toggle the cursor location in a generic 8-bit-per-pixel
framebuffer. This routine is loaded into the defer word toggle-cursor by calling
fb8-install . The behavior is to XOR every pixel with OxFF in the one-character-size
space for the current position of the text cursor.

This routine is invalid unless the FCode Program has called fb8-install and
set-font and has initialized frame-buffer-adr to a valid virtual address.

fcode-debug?

stack:

(-- save-names?)

This configuration variable is a boolean specifying whether to preserve the names of
local FCodes created with named-token in the Forth dictionary. If fcode-debug? is
true, the name fields for FCodes with headers are preserved. If fcode-debug? s false,
discard those names fields.

The suggested default value of fcode-debug? is “false”.

236

Writing FCode Programs for PCI

fcode-end

stack: (--)
code: none

This tokenizer macro is used to mark the end of an FCode program. fcode-end causes
the tokenizer to:

m Generate the FCode for endO.

m Stop tokenizing the current program.

s Compute the checksum and length for the program and to update the checksum
and length fields in the program’s FCoder header.

fcode-revision

stack: (--n)
code: 87

Returns a 32-bit number identifying the version of the device interface. The high 16
bits is the major version number and the low 16 bits is the minor version number. The
revision of the device interface described by IEEE Standard 1275-1994 is “3.0”. In a
system compatible with that specification, fcode-revision will return 0x0003.0000.

For example:

: exit-if-not-1275-1994 (--)
fcode-revision h# 30000 < if [] endO execute then

fcode-versionl

stack: (--)
code: none

This tokenizer macro is used to start FCode programs intended to be compatible with
early OpenBoot systems. That being the case, this macro will seldom be used with PCI
devices.

fcode-versionl generates the FCode header for an FCode program (based upon
tokenizer switches). If the default tokenizer switches are used, fcode-versionl
begins the header with the versionl FCode.

fcode-version2
stack: (--)
code: none
This tokenizer macro causes the tokenizer to:

m Prepare to tokenize subsequent source text.
m Output the FCode for startl
s Output an FCode header.

The length and checksum fields of the FCode header are filled in by the fcode-end
tokenizer macro.

Chapter 12 - Open Firmware Dictionary 237

ferror
stack: (--)
code: FC

Displays an “Unimplemented FCode” error message and stops FCode interpretation at
the completion of the function whose evaluation resulted in the execution of ferror
All unimplemented FCode numbers resolve to ferror in Open Firmware.

The intended use of ferror s to determine whether or not a particular FCode is
implemented, without checking the FCode version number.

For example:

: implemented? (xt -- flag) [1] ferror <> ;
. my-peer (prev -- next)
[T peer implemented? if

peer
else
." peer is not implemented" cr
then
field
stack: (E: addr -- addr+offset) (offset size “new-name<>" -- offset+size)
code: none

generates: new-token|named-token|external-token b(field)

struct and field are used to create named offset pointers into a structure. For each
field in the structure, a name is assigned to the location of that field (as an offset from
the beginning of the structure).

The structure being described is:

\ size Bytes 0-1
\ flags Bytes 2-5
\ bits Byte 6

\ key Byte 7

\ fullname Bytes 8-17
\initials Bytes 8-9

\ lastname Bytes 10-17
\ age Bytes 18-19

The field definitions are shown below. (The numbers in parentheses show the stack
after each word is created.)

struct (0)

2 field size (2) \equivalentto: :size 0+;

4 field flags (6) \equivalentto: :flags 2+;

1field bits (7) \equivalentto: :bits 6 +;

1 field key (8) \equivalentto: :key 7+

0 field fullname (8) \equivalentto: :fullname 8 +;

2 field initials (10) \ equivalent to: : initials 8 +;

8 field lastname (18) \ equivalent to: :lastname 10 +;
2 field age (20) \equivalentto: :age 18 +;
constant /record () \equivalentto: 20 constant/record

238 Writing FCode Programs for PCI

fill
stack:
code:

find
stack:
code:

$find
stack:
code:

Typical usage of these defined words would be:

Irecord buffer: myrecord \ Create the "myrecord" buffer

myrecord flags |@ \ get flags data
myrecord key c@ \ get key data
myrecord size w@ \ get size data
Irecord \ get total size of the array

Note that struct is primarily a documentation aid that leaves the initial value of the
structure’s size (i.e. 0) on the stack.

(addr len byte --)
79

Sets len bytes of memory beginning at addr to the value byte . No action is taken if
len =0.

(pstr -- xt n | pstr 0)
none

Finds the command described by the counted string pstr . If found, returns -1 (if non-
immediate) or +1 (if immediate) on top of the command’s execution token. If not
found, returns 0 on top of pstr .

(name-str name-len -- xt true | name-str name-len false)
CB

Takes a string from the stack searches the current search order for it. During normal
FCode evaluation, the search order consists of the vocabulary containing the visible
methods of the current device node, followed by the Forth vocabulary.

If the word is not found, the original string is left on the stack, with a false on top of the
stack. If the word is found, the execution token of that word is left on the stack with
true on top of the stack.

$find is an escape hatch, allowing an FCode Program to perform any function that is
available in the Open Firmware User Interface but that is not defined as part of the
standard FCode interface.

Use $find with caution! Different systems or even different versions of Open
Firmware may implement different subsets of the User Interface. If your FCode
Program depends on a User Interface word, it might not work on some systems.

Example of use:

" root-info" $find (addr len false | xt true)

if execute \ if found, then do the function
else (‘addr len) type ." was not found!" cr
then

Chapter 12 - Open Firmware Dictionary 239

find-device
stack: (dev-str dev-len --)
code: none

Makes the device node specified by dev-string the active package.

If dev-string is the string "..", the active package is set to the parent of the currently
active package. Otherwise, the active package is set using dev-string as the device-
specifier.

If the specified device is not found, abort is executed.

find-device is similar to dev, except that its argument is a string on the stack instead
of text parsed from the input buffer, allowing find-device to be used within a
definition, with a literal string argument that is compiled into the definition.

For example:

" device-alias" find-device

See also: device-end

find-method
stack: (method-str method-len phandle -- false | xt true)
code: 207

Locates the method named by method-str method-len within the package phandle.
Returns false if the package has no such method, or xt and true if the operation
succeeds. Subsequently, xt can be used with call-package

For example:

: tftp-load-avail? (-- exist?)
" obp-tftp" find-package if (phandle)
"load" rot find-method if (xt)
drop true exit

then
then
false
find-package
stack: (name-str name-len -- false | phandle true)

code: 204

Locates a package whose name is given by the string name-str name-len. If the package
can be located, returns its phandle and true. Otherwise returns false.

The name is interpreted relative to the /packages device node. For example, if
name-str name-len represents the string "disk-label” , the package in the device tree
at “/packages/disk-label ” will be located.

If there are multiple packages with the same name (within the /packages node), the
phandle for the most recently created one is returned.

240 Writing FCode Programs for PCI

For example:

: tftp-load-avail? (-- exist?)
" obp-tftp" find-package if (phandle)
"load" rot find-method if (xt)
drop true exit

then
then
false
finish-device
stack: (--)
code: 127
The two words finish-device and new-device let a single FCode Program declare

more than one entry into the device tree. This capability is useful when a single PCI
card contains two or more essentially independent devices, to be controlled by two or
more separate operating system device drivers.

Typical usage:

fcode-version2 \ begin a new device tree entry
...driver#l...

finish-device \ terminate device tree entry#1
new-device \begin a new device tree entry
...driver#2

finish-device \terminate device tree entry#2
new-device \begin a new device tree entry
...driver#3...

fcode-end \ terminate device tree entry#3

There is an implicit new-device call at the beginning of an FCode Program (at

versionl or startl), and an implicit finish-device call at the end of an FCode
Program (at end0). Thus, FCode Programs that only define a single device and driver
will never need to call finish-device or new-device

fload

stack: ([filename<cr>] --)

code: none

This command allows FCode text programs to be broken into function blocks for better
clarity, portability and re-use. It behaves similarly to the #include statement in the C
language. Arbitrary nesting of files with fload is allowed i.e. an fload ’d file may
include fload commands.

When fload is encountered, the Tokenizer continues tokenizing the FCode found in
the file filename. When the file filename has been tokenized, tokenizing resumes on the
file that called filename with fload

For example:

fload my-disk-package.fth

Chapter 12 - Open Firmware Dictionary 241

Note - fload commands won’t work when downloading text in source-code form
using dl .

There are several ways to overcome this problem:

m Manually merge the files into one larger text file and download the merged file with
dl.

m Create a “load file” and use the load file in conjunction with dl . (See “Downloading
Multiple Files with dl and fload” on page 28 for a detailed explanation of this
technique.)

m Tokenize the files first and then download and execute the FCode in binary form.

fm/mod

stack: (dn--rem quot)

code: none
Divides d by n and returns rem and quot.

>font

stack: (char -- addr)

code: 16E
This routine converts a character value (ASCII 0-OxFF) into the address of the font table
entry for that character. For the normal, built-in font, only ASCII values 0x21-0x7E
result in a printable character, other values will be mapped to a font entry for “blank”.
This word is only of interest if you are implementing your own character-drawing
routines.
Note — >font will generate invalid results unless set-font has been called to
initialize the font table to be used.

fontbytes

stack: (-- bytes)

code: 16F
A value , containing the interval between successive entries in the font table. Each
entry contains the next scan line bits for the desired character. Each scan line is
normally 12 pixels wide, and is stored as one bit per pixel, thus taking 1 1/2 bytes per
scan line. The standard value for fontbytes is 2, meaning that the next scan line
entry is 2 bytes after the previous one (the last 1/2 byte is wasted space).
This word must be set to the appropriate value if you wish to use any fbl- or fb8-
utility routines or >font . This can be done with to , but is normally done by calling
set-font
The standard value for fontbytes is one of the parameters returned by
default-font

242 Writing FCode Programs for PCI

forth

stack: (--)
code: none

Make Forth the context vocabulary.

frame-buffer-adr

stack: (--addr)
code: 162

This value returns the virtual address of the beginning of the current framebuffer
memory. It must be set to an appropriate virtual address (using to) in order to use any
of the fbl1- or fb8- utility routines. It is suggested that this same value variable be
used in any of your custom routines that require a framebuffer address, although of
course you are free to create and use your own variable if you wish.

Generally, you should only map in the framebuffer memory just before you are ready
to use it, and unmap it if it is no longer needed. Typically, this means you should do

your mapping in your “install” routine, and unmap it in your “remove” routine (see

is-install and is-remove). Here’s some sample code:

h# 2.0000 constant /frame \# of bytes in frame buffer
h# 40.0000 constant foffset \ Location of frame buffer

: video-map (--)
my-address foffset + /frame map-pci to frame-buffer-adr
:video-unmap (--)
frame-buffer-adr /frame free-virtual
-1 to frame-buffer-adr \ Flag accidental accesses to a
\ now-illegal address

: power-on-selftest (--)
video-map
(test video memory)
video-unmap

power-on-selftest

: my-install (--)
video-map

> my-remove (--)
video-unmap

[l my-install is-install
[l my-remove is-remove

Note — United States Patent No. 4,633,466, "Self Testing Data Processing System with
Processor Independent Test Program”, issued December 30, 1986 may apply to some or
all elements of Open Firmware selftest. Anyone implementing Open Firmware should

Chapter 12 - Open Firmware Dictionary 243

free-mem

stack:
code:

take such steps as may be necessary to avoid infringement of that patent and any other
applicable intellectual property rights.Consequently, the above example selftest is only
intended to illustrate the concept of mapping a resource immediately before use, and
of unmapping a resource immediately after use.

(a-addr len --)
8C

Frees up len memory allocated by alloc-mem . The arguments a-addr and len must be
the same as those used in a previous alloc-mem command.

For example:

0 value my-string \ Holds address of temporary

. .upc-string (addr len --) \ convert to uppercase and print.
dup alloc-mem to my-string (addrlen)
tuck my-string swap move (len)
my-string over bounds ?do i c@ upcic! loop (len)
my-string over type (len)
my-string swap free-mem

free-virtual

stack: (virt size --)

code: 105
Destroys an existing mapping and any "address” property.
If the package associated with the current instance has an "address" property whose
first value encodes the same address as virt, delete that property. In any case, execute
the parent instance’s map-out method with virt size as its arguments.

fregisters

stack: (--)

code: none

Displays floating-point registers (if present). The exact set of registers displayed, and
the format, is system-dependent.

get-inherited-property

stack:
code:

(name-str name-len -- true | prop-addr prop-len false)
21d

Locates, within the package associated with the current instance or any of its parents,
the property whose name is name-addr name-len. If the property exists, returns the
property value array prop-addr prop-len and false. Otherwise returns true.

The order in which packages are searched is the current instance first, followed by its
immediate parent, followed by its parent’s parent, and so on. This is useful for
properties with default values established by a parent node, with the possibility of a

244

Writing FCode Programs for PCI

particular child node “overriding” the default value.

For example:

: clock-frequency (-- val.addr len false | true)
" clock-frequency" get-inherited-property

get-msecs
stack: (--n)
code: 125

Returns the current value in a free-running system counter. The number returned is a
running total, expressed in milliseconds. You can use this for measuring time intervals
(by comparing the starting value with the ending value). No assumptions should be
made regarding the absolute number returned; only relative interval comparisons are
valid.

No assumptions should be made regarding the precision of the number returned. In
some systems, the value is derived from the system clock, which typically ticks once
per second. Thus, the value returned by get-msecs on such a system will be seen to
increase in jumps of 1000 (decimal), once per second.

For a delay timer of millisecond accuracy, see ms.

get-my-property
stack: (name-str name-len -- true | prop-addr prop-len false)
code: 21A

Locates, within the package associated with the current instance, the property named
by name-addr name-len. If the property exists, returns the property value array val-addr
val-len and false. Otherwise returns true.

For example:

: show-model-name (--)
" model" get-my-property if (val.addr len)
." model property is missing "
else ()
. model name is " type
then () cr

get-package-property
stack: (name-str name-len phandle -- true | prop-addr prop-len false)
code: 21F

Locates, within the package phandle, the property named by name-addr name-len. If the
property exists, returns the property value array prop-addr prop-len and false. Otherwise

Chapter 12 - Open Firmware Dictionary 245

returns true.

For example:

: show-model-name (--)
my-self ihandle>phandle (phandle)
" model" rot get-package-property 0= if (val.addr len)
. model name is " type cr
else ()
. model property is missing " cr
then ()

get-token
stack: (fcode# -- xt immediate?)
code: DA

Returns the execution token xt of the word associated with FCode number fcode# and a

flag immediate? that is true if and only if that word will be executed (rather than

compiled) when the FCode Evaluator encounters its FCode number while in
compilation state.

go

stack: (--)

code: none

Executes or resumes execution of a program in memory by restoring the processor

state from the saved-program-state memory area and beginning/resuming the

execution of the machine-code program.

Resume execution at the address saved in the saved-program-state program

counter register. This will normally contain the initial value for a newly-loaded

program, or the resumption address for a suspended program. However, the saved
program counter register can be altered by the user, causing the program to resume

(when go is executed) from an arbitrary address.

This command has no effect unless state-valid contains true .

go can be used in conjunction with other commands in one of several ways:

m After load (which also initializes saved-program-state), go executes the
program just downloaded.

m After a program is suspended by entering the implementation-dependent “abort-
sequence” (which saves the processor state in saved-program-state), go
resumes execution of the suspended program.

m When testing a program with breakpoints, and after a breakpoint has been
encountered (which saves the processor state in saved-program-state), go
resumes execution of the program being tested.

gos
stack: (n--)
code: none

Executes go n times.

246 Writing FCode Programs for PCI

h# “aych number”

stack: ([number< >] --n)
code: none
generates: b(lit) xx-byte xx-byte xx-byte xx-byte

Causes the compiler/Zinterpreter to interpret the immediately following number as a
hexadecimal number (base sixteen), regardless of any previous settings of hex,
decimal or octal . Only the immediately following number is affected. The value of
base is unchanged.

For example:

decimal
h# 100 (equals decimal 256)
100 (equals decimal 100)

See also: d#, o#.

.h “dot aych”
stack: (n--)
code: none

generates: base @ swap d# 16 base ! . base !

Displays n in hex (using .) The value of base is not permanently affected.

headerless
stack: (--)
code: none

Causes all subsequent definitions to be created in FCode without the name field (the
“head”). (See named-token and new-token .) This is sometimes done to save space in
the final FCode ROM, or possibly to make it more difficult to reverse-engineer an
FCode Program.

All such headerless words can be used normally within the FCode Program, but
cannot be called interactively from the User Interface for testing and development
purposes.

Unless ROM space and/or dictionary space is a major consideration, try not using
headerless words, because they make debugging more difficult.

headerless remains in effect until headers or external is encountered.

For example:

headerless
h# 3 constant reset-scsi

headers
stack: (--)
code: none

Causes all subsequent definitions to be saved with the name field (the “head”) intact.
This is the initial default behavior.

Chapter 12 - Open Firmware Dictionary 247

"height"”

help

stack:

here

stack:
code:

hex
stack:
code:
generates:

Note that even normal FCode words (with heads) cannot be called interactively from
the User Interface unless the NVRAM parameter fcode-debug? has been set to true
before a system reset.

headers remains in effect until headerless or external is encountered.

For example:
headers
ent@ (--w)

transfer-count-lo rbo@
transfer-count-hi rbo@
bwjoin

This standard property is associated with display devices. The property value is an
integer (encoded with encode-int) that specifies the number of displayable pixels in
the “y” dimension of the display.

See also: property

("{name}<eol>" --)
Provides information for the specified category or command.

If name is a specific command, lists help for that command, if available. Otherwise,
displays an implementation-dependent message. For example:

ok help command-name

If name is a category, lists all help messages for commands in that category, or a list of
sub-categories. For example;:

ok help category-name

If name is omitted, general help and a list of available categories is provided. The
number and names of categories/subcategories are implementation dependent.

(-- addr)
AD

here returns the address of the next available dictionary location.

(--)
none
b(lit) 16 base !

If used outside of a definition, commands the tokenizer program to interpret
subsequent numbers in hex (base 16). If used within a definition, changes the value in

248

Writing FCode Programs for PCI

hold

stack:
code:

hop
stack:
code:

hops
stack:
code:

stack:
code:

base affecting later numeric output when the FCode Program is executed.

See also: base

(char --)
95

Inserts char into a pictured numeric output string. Typically used between <# and #>.

For example:

:.32(n--)
base @ >r hex
<# #### ascii.hold # # # # #> type

r> base !
space
(-)
none

hop is one of the breakpoint commands. After a breakpoint has been encountered, hop
executes a single instruction, or an entire subroutine call.

hop behaves similarly to step except that, if the instruction to be executed is a
subroutine call, hop executes the entire subroutine before stopping instead of just the
call instruction.

If the execution of that subroutine results in encountering another breakpoint, the
result is implementation-dependent.

Execute hop n times.

(-- index) (R: loop-sys -- loop-sys)
19

index is a copy of the loop index of the immediately-enclosing do or ?do loop.
Indeterminate results will be obtained if i is used elsewhere.

For example:

: simple-loop (start len --)
bounds ?do i .h cr loop

Chapter 12 - Open Firmware Dictionary 249

if

stack: (C: -- orig-sys)
(do-next? --)
code: none

generates: b?branch +offset

Execute the immediately-following code if do-next? is true. Used in the form:

do-next? if...else...then

or

do-next? if...then

If do-next? is true, the words following if are executed and the words following else
are skipped. The else part is optional. If do-next? is false, words from if through
else , or from if through then (when no else is used), are skipped.

ihandle>phandle

stack: (thandle -- phandle)

code: 20B
Returns the phandle of the package from which the instance ihandle was created. This is
often used with get-package-property to read the properties of the package

corresponding to a given ihandle.

For example:

: show-parent (--)
my-parent ihandle>phandle " name" rot
get-package-property 0= if
" my-parent is " type cr

then
immediate
stack: (-)
code: none

Declares the previous definition as “immediate”.

>in
stack: (-- a-addr)
code: none
A variable containing the offset of the next input buffer character.
init-program
stack: (--)
code: none

Initializes saved-program-state to the system-dependent initial program state

250 Writing FCode Programs for PCI

required for beginning the execution of a client program.

input
stack: (dev-str dev-len --)
code: none
Selects the specified device for console input by searching for a device node matching
the pathname or device-specifier given by dev-str dev-len.
m If such a device is found, search for its read method.
m If the read method is found, open the device, as with open-dev .
m If the open succeeds, execute the device’s install-abort method, if any.
m If any of these steps fails, display an appropriate error message and return without
performing the steps following the one that failed.
If there is a console input device, as indicated by a nonzero value in the stdin
variable, execute the console input device’s remove-abort method and close the
console input device. Set stdin to the ihandle of the newly opened device, making it
the new console input device.
For example:
ok " device-alias" input
input-device
stack: (-- dev-str dev-len)

The value of this configuration variable is a string describing the device-specifier of the
device to be established as the default console input device by install-console

The suggested default value is “keyboard”.

For example:

ok setenv input-device device-alias <eol>

insert-characters

stack: (n--)
code: 15D

insert-characters is one of the defer words of the display device interface. The
terminal emulator package executes insert-characters when it has processed a
character sequence that calls for opening space for characters to the right of the cursor.
Without moving the cursor, insert-characters moves the remainder of the line to
the right, thus losing the n rightmost characters in the line, and fills the n vacated
character positions with the background color.

This word is initially empty, but must be loaded with an appropriate routine in order
for the terminal emulator to function correctly. This can be done with to , or it can be
loaded automatically with fb1-install or fb8-install (which loads
fbl-insert-characters or fb8-insert-characters , respectively).

Chapter 12 - Open Firmware Dictionary 251

insert-lines

stack:
code:

(n-)
15F

insert-lines is one of the defer words of the display device interface. The terminal
emulator package executes insert-lines when it has processed a character sequence
that calls for opening space for lines of text below the cursor. Without moving the
cursor, insert-lines moves the cursor line and all following lines down, thus losing
the n bottom lines. and fills the n vacated lines with the background color.

This word is initially empty, but must be loaded with an appropriate routine in order
for the terminal emulator to function correctly. This can be done with to , or it can be
loaded automatically with fbl-install or fb8-install (which load fbl-insert-
lines or fb8-insert-lines , respectively).

install-abort

stack:
code:

(--)

none

Instructs the device driver to begin periodic polling for a keyboard abort sequence. If a
keyboard abort sequence is subsequently encountered, abort is executed.

This command is executed when the device is selected as the console input device.

install-console

stack: (--)

code: none
Activates the console function and selects the input and output devices as follows:
a) Activate the console so that subsequent input (e.g. key) and output (e.g. emit) will

use the devices selected by input and output
b) Execute output with the value returned by output-device
c) Execute input with the value returned by input-device
d) If the above code failed and there is a fallback device to be used for console
functions, select that device as the console device.

install-console may take other system-dependent actions to insure that a console
device is available in the event of a failure, and may display messages indicating that
such action has been taken.

instance

stack: (--)

code: Co
Modifies the next occurrence of value , variable |, defer or buffer: to create
instance-specific data instead of static data. Re-allocates the data each time a new
instance of this package is created.
For example:

-1 instance value my-chip-reg
252 Writing FCode Programs for PCI

.instruction

stack: (--)
code: none

Displays the address where the last breakpoint occurred and the instruction that would
have executed next if the breakpoint had not been there. The instruction-display
format is system-specific.

interpose
stack: (addr len phandle --)
code: 12B

Schedule the package identified by phandle’ for interposition, with the string addr len as
its arguments.

If a package is currently scheduled for interposition when interpose is executed, the
result is undefined (i.e. an Open Firmware implementation need not support multiple
simultaneous interposition attempts).

Note — This function must be executed only during the creation of an instance chain
(i.e. during the execution of a package’s open method during pathname resolution in
open-dev context, as in clauses (f2), (k1iii) and (m2) of section 4.3.1 of IEEE Standard
1275-1994.

"interrupts”

This property specifies the interrupt level(s) used by this device and possibly other

appropriate information (such as interrupt vectors). The level given is the bus-specific
(local) level, not the CPU level. (The operating system driver translates the local level
to the system level. This enables the FCode driver to be portable across platforms. See

interrupts"” on page 73.) The actual format of the data is bus-specific; see the
appropriate 1275 machine-specific binding document for details.

The property value is an arbitrary number of (bus-specific) interrupt specifiers each
typically encoded with encode-int

See also: "interrupts" in Chapter 5 “Properties”

“intr"
This property specifies SBus interrupt level(s) and vector(s) used by this device.
This property is included in this glossary because of the possibility that, even on
systems that nominally do not support SBus, SBus devices might be used via a bus-to-
bus bridge.
For complete details, see IEEE Standard 1275-1994.

inverse?

stack: (-- white-on-black?)

code: 154

This value is part of the display device interface. The terminal emulator package sets
inverse? to true when the escape sequences that it has processed have indicated
that subsequent characters are to be shown with foreground and background colors

Chapter 12 - Open Firmware Dictionary 253

exchanged, and to false , indicating normal foreground and background colors,
otherwise.

The fbl- and fb8- frame buffer support packages draw characters with foreground
and background colors exchanged if inverse? is true , and with normal foreground
and background colors if inverse? s false

inverse? affects the character display operations draw-character
insert-characters , and delete-characters , but not the other operations such
as insert-lines , delete-lines and erase-screen

inverse-screen? should be monitored as needed if your FCode Program is
implementing its own set of framebuffer primitives.

See also: inverse-screen?

inverse-screen?

stack: (-- black?)

code: 155
This value is part of the display device interface. The terminal emulator package sets
inverse-screen? to true when the escape sequences that it has processed have
indicated that the foreground and background colors are to be exchanged for
operations that affect the background, and to false , indicating normal foreground
and background colors, otherwise.
The fbl- and fb8- frame buffer support packages perform screen drawing operations
other than character drawing operations with foreground and background colors
exchanged if inverse-screen? is true , and with normal foreground and
background colors is false.
inverse-screen? affects background operations such as insert-lines ,
delete-lines and erase-screen , but not character display operations such as
draw-character , insert-characters and delete-characters
When inverse-screen? and inverse? are both true, the colors are exchanged over
the entire screen, and subsequent characters are not highlighted with respect to the
(inverse) background. For exchanged screen colors and highlighted characters, the
setting are inverse-screen? true and inverse? false
inverse-screen? should be monitored as needed if your FCode Program is
implementing its own set of framebuffer primitives.

invert

stack: (x1--x2)

code: 26
X2 is the one’s complement of x1 i.e. all the one bits in x1 are changed to zero, and all
the zero bits are changed to one.
For example:

: clear-lastbit (--)
my-reg rl@ 1 not and my-reg rl!
See also 0=.
254 Writing FCode Programs for PCI

invert-screen

stack: (--)

code: 15C
invert-screen is one of the defer words of the display device interface. The
terminal emulator package executes invert-screen when it has processed a

character sequence that calls for exchanging the foreground and background colors
(e.g. changing from black-on-white to white-on-black).

invert-screen changes all pixels on the screen so that pixels of the foreground color
are given the background color, and vice versa, leaving the colors that will be used by
subsequent text output unaffected.

This word is initially empty, but must be loaded with an appropriate routine in order
for the terminal emulator to function correctly. This can be done with to , or it can be

loaded automatically with fbl-install or fb8-install (which load fbl-invert-
screen or fb8-invert-screen , respectively).
io
stack: (dev-str dev-len --)
code: none
Selects the indicated device for console input and output by executing input followed
by output with dev-str dev-len as arguments in both cases. For example:
ok " device-alias" io
is-install
stack: (xt--)
code: 11C

Creates open, write , draw-logo and restore methods for display devices. xt is the
execution token of a routine whose stack diagram is (--), and that initializes the
display device.

For any PCI framebuffer that is to be used by the boot ROM before or during booting,
is-install declares the FCode procedure that should be used to install (i.e.
initialize) that framebuffer. Note that this is distinct from any once-only power-on
initialization that should be performed during the probing process itself.

The is-install routine and is-remove routine should comprise a matched pair
that may be performed alternately as many times as needed. Typically, the
is-install routine performs mapping functions, enables PClI memory and/or 1/0

space accesses and performs some initialization. Typically, the is-remove performs
any cleanup functions and then does a complementary disabling of the appropriate

Chapter 12 - Open Firmware Dictionary 255

address space(s) and unmaps the existing mappings.

A partial, typical code example follows:

fcode-version2

: map-devices (--) \ Map register and buffer
map-register
map-buffer

s install-me (--) \ Do this to start using this device

map-devices
initialize-devices
fb8-install \ Install default defer word behaviors

: remove-me (--) \ Do this to stop using this device
reset-buffers
unmap-devices

[1install-me is-install \ Declare "install" routine
[l remove-me is-remove \ Declare "remove" routine
[1test-me is-selftest \ Declare "selftest" routine

fcode-end

See also: “is-install Actions” on page 140

is-remove
stack: (xt--)
code: 11D

Creates a close method for display devices that should de-allocate a framebuffer that
is no longer going to be used. Typical de-allocation would include unmapping memory
and clearing buffers. For example:

fcode-version2

:remove-me (--) \Do this to stop using this device
reset-buffers
unmap-devices

[1install-me is-install \ Declare "install" routine
[remove-me is-remove \ Declare "remove" routinea
[1test-me is-selftest \ Declare "selftest" routine

fcode-end

The routine loaded with is-remove should form a matched pair with the routine
loaded with is-install . See is-install for more details.

256 Writing FCode Programs for PCI

is-selftest
stack: (xt--)
code: 11E

Creates a selftest method for display devices that will perform a self test of the
framebuffer. For example:

fcode-version2

:test-me (--fail?) \ self test method

[1install-me is-install \ Declare "install" routine
[remove-me is-remove \ Declare "remove" routine
[1test-me is-selftest \ Declare "selftest" routine

fcode-end

This declaration is typically performed in the same place in the code as is-install
and is-remove

The self test routine should return a status parameter on the stack indicating the results
of the test. A zero value indicates that the test passed. Any nonzero value indicates that
the self test failed, but the actual meaning for any nonzero value is not specified.

(memory-test-suite returns a flag meeting these specifications.)

selftest is not automatically executed. For automatic testing, devices should
perform a quick sanity check as part of the install routine. See “selftest (-- error#)”
on page 53.

(is-user-word)
stack: (E:...--???) (name-str name-len xt --)
code: 214

Creates a Forth word (not a package method) whose name is given by name-str
name-len and whose behavior is given by the execution token xt which must refer to a
static method. This allows an FCode Program to define new User Interface commands.

For example:

" xyz-abort" ' my-abort (is-user-word)

stack: (--index) (R: sys -- sys)
code: 1A

index is a copy of the loop index of the next outer do or ?do loop. Indeterminate results

Chapter 12 - Open Firmware Dictionary 257

will be obtained if i is used elsewhere. For example:

100 do
33 20 do
j. .\' Returns a value in the range 0 to 9
loop

loop

Usually, do loops should not be nested this deeply inside a single definition. Forth
programs are generally more readable if inner loops are defined inside a separate

word.
key
stack: (-- char)
code: 8E
A defer word that reads the next ASCII character from the keyboard. If no character
has been typed since key or expect was last executed, key waits until a new
character is typed. All valid ASCII characters can be received. Control characters are
not processed by the system for any editing purpose. Characters received by key are
not displayed.
For example:
: continue? (-- continue?)
." Want to Continue? Enter Y/N" key dup emit
dup ascii Y = ascii y rot = or
See also: key?
key? “key question”
stack: (-- pressed?)
code: 8D
A defer word returning true if a character has been typed on the keyboard since the
last time that key or expect was executed. The keyboard character is not consumed.
Use key? to make simple, interruptible infinite loops:
begin ... key? until
The contents of the loop will repeat indefinitely until any key is pressed.
See also: key
keyboard

The suggested default value for the input-device configuration variable.

258 Writing FCode Programs for PCI

Il “e| store”

stack: (quad gaddr --)
code: 73

The 32-bit value quad is stored at location gaddr. gaddr must be 32-bit aligned.

See also: rl!
I, “e|l comma”
stack: (quad --)
code: D2

Compile a 32-bit number into the dictionary. The dictionary pointer must be
2-byte-aligned.

For example:

\ to create an array containing integers 40004000 23 45 6734
create my-array 40004000 |, 231, 451, 6734 1,

@ “el fetch”
stack: (gaddr -- quad)
code: 6E

Fetch the 32-bit number stored at gaddr. gaddr must be 32-bit aligned.

See also: rl@
/l “per el”
stack: (--n)
code: 5C

n is the number of address units to a 32-bit word, typically 4.

*
stack: (nul--nu2)
code: 68
nu?2 is the result of multiplying nul by /I . This is the portable way to convert an index
into a byte offset.
<@
stack: (gaddr --n)
code: 242
Fetch quadlet from gaddr, sign-extended.
This function is only available on 64-bit implementations.
la+
stack: (addrl index -- addr2)
code: 60

Increments addrl by index times the value of /I . This is the portable way to increment

Chapter 12 - Open Firmware Dictionary 259

lal+

stack:
code:

label
stack:

code:

Ibflip

stack:
code:

Ibflips

stack:
code:

an address.

(addrl -- addr2)
64

Increments addrl by the value of /I . This is the portable way to increment an address.

(E: -- addr)
(C: "new-name< >" -- code-sys)
none

Begins creation of a machine-code sequence called new-name. Interprets the following
commands as assembler mnemonics.

Commands created by label leave the address of the code on the stack when
executed.

As with code, label is present even if the assembler is not installed. In this case,
machine-code must be entered into the dictionary explicitly by value i.e. with: ¢, , w,,
I, or,.The machine-code sequence is terminated by the c; or end-code commands.

For example:

ok label new-name
ok ... assembler mnemonics ...
ok end-code

Later used as:

new-name (machine-code-addr)

code-sys is balanced by the corresponding c; or end-code .

(quadl -- quad?)
227

Reverse the bytes within a 32-bit datum.

(gaddr len --)
228

Reverse the bytes within each 32-bit datum in the given region.

The region begins at gaddr and spans len bytes. The behavior is undefined if len is not a
multiple of /I .

260

Writing FCode Programs for PCI

Ibsplit
stack:
code:

Icc

stack:
code:

leave
stack:
code:
generates:

?leave
stack:
code:
generates:

(quad -- bytel.lo byte2 byte3 byte4.hi)
7E

Splits a 32-bit datum into four bytes. All but the least significant 8 bits of each stack
result are zero.

(charl -- char2)
82

char2 is the lower case version of charl. If charl is not an upper case letter, it is
unchanged. For example:

ok ascii M Icc emit
m
ok

See also: upc

(--) (R: loop-sys --)
none
b(leave)

May only be used within a do or ?do loop. Transfers execution to just past the next
loop or +loop . The loop is terminated and loop control parameters are discarded.

leave may appear within other control structures that are nested within the do loop
structure. More than one leave may appear within a do loop.

To leave the word containing the do or ?do loop (not just the loop itself), use the
phrase unloop exit instead of leave .

For example:

: search-pat (pat addr len -- found?)
rot false swap 2swap (false pat addr len)
bounds ?do (flag pat)
i @ over = if drop true swap leave then
loop
drop

See also: exit , unloop

(exit? --) (R: sys --)
none
if leave then

If exit? is true (nonzero), ?leave transfers control to just beyond the next loop or
+loop . The loop is terminated and loop control parameters are discarded. If exit? is
zero, no action is taken. May only be used within a do or ?do loop.

Chapter 12 - Open Firmware Dictionary 261

?leave may appear within other control structures that are nested within the do loop
structure. More than one ?leave may appear within a do loop.

For example:

: show-mem (vaddr --) \ display h# 10 bytes

dup h# 9 u.r 5 spaces h# 10 bounds do ic@ 3 u.r loop
:.mem (vaddr size --)

bounds ?do i show-mem key? ?leave h# 10 +loop

left-parse-string

stack:
code:

line#

stack:
code:

#line

stack:
code:

(str len char -- R-str R-len L-str L-len)
240

Splits the input string at the first occurrence of delimiter char. For example:

" test;in;g" ascii ; left-parse-string

would leave the address and length of two strings on the stack:
“in;g 7 and “test ”

The delimiter character may be any ASCII character. Note that if the delimiter is not
found within the string, the effect is as if the delimiter was found at the very end. For
example:

" testing" ascii g left-parse-string

L1

would leave on the stack “” and “testing

(- line#)
152
A value , set and controlled by the terminal emulator, that contains the current cursor

line number. A value of 0 represents the topmost line of available text space — not the
topmost pixel of the framebuffer.

This word should be monitored as needed if your FCode Program is implementing its
own set of framebuffer primitives.

For example:

: set-line (line --) 0 max #lines 1- min to line# ;

See also: window-top

(-- a-addr)
94

A variable containing the number of output lines since the last user interaction

262

Writing FCode Programs for PCI

i.e. since the last ok prompt. #line is incremented whenever cr executes. The
value in this variable is used to determine when to pause during long display
output, such as dump. Its value is reset each time the ok prompt displays.

See also: exit?

"linebytes"

linefeed

stack:
code:
generates:

#lines

stack:
code:

literal
stack:

code:

load

stack:
code:

This standard property is associated with display devices. The property value is an
integer (encoded with encode-int) that specifies the number of pixels in a single scan
line of the display.

See also: property

(-- OX0A)
none
b(lity 00 00 00 OX0A

Leaves the ASCII code for the linefeed character (i.e. Control-J) on the stack.

(-- rows)
150

#lines is a value that is part of the display device interface. The terminal emulator
package uses it to determine the height (number of rows of characters) of the text
region that it manages. The fb1- and fb8- frame buffer support packages also use it
for a similar purpose.

The value of #lines must be set to the desired height of the text region. This can be

done with to , or it can be handled automatically as one of the functions performed by
fbl-install or fb8-install . The value set by fbx-install is the smaller of the
passed #lines parameter and the screen-#rows NVRAM parameter.

For example:

: set-line (line --) 0 max #lines 1- min to line# ;

(C:x1--)
(--x1)
none

Compiles a number. When later executed, leaves the number on the stack.

("{device-specifier< >} {arguments}<eol>" --)
none

The User Interface provides a load method which can, in turn, select a source device
and use that device’s load method to load the specified program into memory. If the
device-specifier and/or arguments are not provided to load on the command line, load

uses defaults as described below. The parsing, loading and default argument selection
processes are described below.

Chapter 12 - Open Firmware Dictionary 263

Parameter Parsing:
load finds the first, space-delimited argument, first-arg.

m If first-arg is the empty string, load sets device-specifier to the default device and
arguments to the default arguments as specified below, and proceeds with the
loading process as specified below.

m If first-arg begins with the “/”” character, or if it is the name of a defined devalias,
load sets device-specifier to first-arg. load then skips leading space delimiters and
sets arguments to the remainder of the command line.

m Otherwise, load sets device-specifier to the default device and arguments to the
portion of the command line beginning at first-arg and continuing to the end of the
line (including first-arg itself).

Loading Process:

If the client interface is implemented, load saves arguments and the device-path
corresponding to device-specifier so they may be retrieved later via the client interface.

Using open-dev , load opens the package specified by device-specifier, thus obtaining
an ihandle. If unsuccessful, load executes the equivalent of abort , thus stopping the
loading process. Otherwise load uses $call-method to execute the load method of
that ihandle, passing the system-dependent default load address to that load method
as its argument. load then uses close-dev to close that ihandle.

If the device’s load method succeeds, and the beginning of the loaded image is a valid
client program header for the system, load allocates memory at the address and of the
size specified in that header, moves the loaded image to the address, and performs the
function of init-program to initialize saved-program-state so that a subsequent
go command will begin execution of that program.

Default Device and Default Arguments:

The default arguments are given by the value of boot-file if diagnostic-mode ?is
false . Otherwise the default arguments are given by the value of diag-file

The default device is given by the value of boot-device if diagnostic-mode? is
false . Otherwise the default device is given by the value of diag-device.

Either boot-device or diag-device may contain a list of device-specifiers
separated by spaces. If that list contains only one entry, that entry is the default device.
If that list contains more than one entry, the system attempts to open, as with
open-dev , each specified device in turn, beginning with the first entry in the list and
proceeding to the next-to-last entry. If an open succeeds, the device is closed, as with
close-dev , and that device-specifier becomes the default device (it will be
subsequently opened again by the loading process). If the last entry is reached without
any prior successful opens, the last entry becomes the default device, without having
been opened as part of the default device selection process.

For example:

ok load device-specifier arguments

See also: boot

264

Writing FCode Programs for PCI

load

stack: (addr -- len)
code: none

A device’s load method can be used to load a client program from the device into
memory beginning at address addr. load returns len, the size in bytes of the program
that was loaded. The package containing load must be open before load is executed.

If the device can contain several such programs, the instance-arguments (as returned
by my-args) can be used in a device-dependent manner to select the particular
program.

load-base
stack: (--addr)
This platform-specific configuration variable is an integer specifying the default load

address for client programs when using the load method. The default value is
implementation dependent.

"local-mac-address"

This property specifies the 48-bit IEEE 802.3-style MAC address assigned to the device
represented by the package, of device type "network" , containing this property. The
absence of this property indicates that the device does not have a permanently-
assigned MAC address.

The property value is an array of six bytes encoded with encode-bytes

For example:

create my-mac-address 8¢, 0¢, 20c, 0c, 14 c, 5e c,
my-mac-address 6 encode-bytes " local-mac-address" property

In many systems, the MAC address is not associated with the individual network
devices, but instead with the system itself. In such cases, the system-wide MAC
address applies to all the network interfaces on that system, and individual network
device nodes might not have local-mac-address properties. In other cases,
especially with plug-in network interface cards that are intended for use on a variety of
different systems, the manufacturer of the card assigns a MAC address to the card,
which is reported via the "local-mac-address” property. A system is not obligated
to use that assigned MAC address if it has a system-wide MAC address.

See also: "network" , "mac-address" , mac-address
loop
stack: (C: dodest-sys --)

(--) (R: loop-sysl -- <nothing> | loop-sys2)
code: none

generates: b(loop) -offset

Terminates a do or ?do loop. Increments the loop index by one. If the index was
incremented across the boundary between limit-1 and limit, the loop is terminated and
loop control parameters are discarded. When the loop is not terminated, execution
continues just after the corresponding do or ?do.

Chapter 12 - Open Firmware Dictionary 265

For example, the following do loop:

8 0 do...loop

terminates when the loop index changes from 7 to 8. Thus, the loop will iterate with
loop index values from 0 to 7, inclusive.

loop may be used either inside or outside of colon definitions.

+loop

stack: (C: dodest-sys --)
(n--) (R: loop-sysl -- <nothing> | loop-sys2)

code: none

generates: b(+loop) -offset
Terminates a do or ?do loop. Increments the loop index by n (or decrements the index
if n is negative). If the index was incremented (or decremented) across the boundary
between limit-1 and limit the loop is terminated and loop control parameters are
discarded. When the loop is not terminated, execution continues just after the
corresponding do or ?do.
The following do loop:

8 0 do...2 +loop
terminates when the loop index crosses the boundary between 7 and 8. Thus, the loop
will iterate with loop index values of 0, 2, 4, 6.
By contrast, a do loop created as follows:
0 8 do...-2 +loop

terminates when the loop index crosses the boundary between -1 and 0. Thus, the loop
will iterate with loop index values of 8, 6, 4, 2, 0.
+loop may be used either inside or outside of colon definitions.

Ipeek

stack: (gaddr -- false | quad true)

code: 222
Tries to read the 32-bit word at address gaddr. Returns quad and true if the access was
successful. A false return indicates that a read access error occurred. gaddr must be 32-
bit aligned.

Ipoke

stack: (quad gaddr -- okay?)

code: 225
Tries to write quad at address gaddr. Returns true if the access was successful. A false
return indicates a read access error. gaddr must be 32-bit aligned.
Note - Ipoke may be unreliable on bus adapters that “buffer” write accesses.

266 Writing FCode Programs for PCI

stack:
code:

Ishift

stack:
code:

Iwflip

stack:
code:

Iwflips

stack:
code:

Iwsplit
stack:
code:

Ixjoin
stack:
code:

stack:
code:

(--)

none

Displays the names of the active package’s children.

(x1u--x2)
27

Shifts x1 left by u bit-places. Zero-fills the low bits.

(quadl -- quad2)
226

Swaps the doublets within a quadlet.

(gaddr len --)
237

Swaps the order of the 16-bit words within each 32-bit word in the memory buffer
gaddr len. gaddr must be four-byte-aligned. len must be a multiple of /I .

For example:

ok h# 12345678 8000 !
ok 8000 4 Iflips

ok 80001@ .h
56781234

(quad -- wil.lo w2.hi)
7C

Splits the 32-bit value quad into two 16-bit words. All but the least significant 16 bits of
each stack result are zero.

(quad.lo quad.hi -- 0)
243

Join 2 quadlets to form an octlet.The high-order bits of each of the quadlets are
ignored.

This function is only available on 64-bit implementations.

(n1 n2 -- d.prod)
none

Performs a signed multiply with a double-number product.

Chapter 12 - Open Firmware Dictionary 267

mac-address

stack: (-- mac-str mac-len)
code: 1A4

Usually used only by the "network™ device type, this FCode returns the value for the
Media Access Control, or MAC address, that this device should use for its own address.
The data is encoded as a byte array, generally 6 bytes long.

The value returned by mac-address is system-dependent.

See also: "mac-address” , "local-mac-address” , and "network” in Chapter 5
“Properties” and Chapter 8 “Network Devices”.

"mac-address”

This property specifies the 48-bit IEEE 802.3-style MAC address that was last used by
the device represented by the package, of device type "network" , containing this
property. This property is created by the open method of a "network” device.

The property value is an array of six bytes encoded with encode-bytes

This property is typically used by client programs that need to determine which
network address was used by the network interface from which the client program was
loaded.

make-properties

stack: (--)
code: none

This User Interface word is intended to be used for debugging FCode within the
context of begin-package...end-package . Executing this word creates the default
PCI bus properties for the current instance from information contained in the PCI
Configuration Space header. This word should be executed before evaluating the
FCode for the node.

map
stack: (phys.lo ... phys.hi virt len mode ... --)
code: none

Creates an address translation associating virtual addresses beginning at virt and
continuing for len bytes with consecutive physical addresses beginning at phys.lo ...
phys.hi. The physical address format is the same as that of the /memory node. mode ...
is an MMU-dependent parameter (typically, but not necessarily, one cell) denoting
additional attributes of the translation, for example access permissions, cacheability,
mapping granularity, etc. If all mode cells have the value -1, an MMU dependent
default mode is used. If there are already existing address translations within the
region delimited by virt and len, the result is undefined.

If the operation fails for any reason, map uses throw to signal the error.

See also: claim , modify , release |, translate

268 Writing FCode Programs for PCI

map-in
stack: (phys.lo ... phys.hi size -- virt)
code: none

Creates a mapping associating the range of physical addresses beginning at phys.lo ...
phys.hi and extending for size bytes within this device’s physical address space with a
processor virtual address. Returns that virtual address virt.

The number of cells in the list phys.lo ... phys.hi is determined by the value of the
"#address-cells" property of the node containing map-in .

For example, to map the registers of a PCI device with:

m A register field at 10.0000-10.00ff in memory space that is controlled by the first 32-
bit base address register.

m A register field at 20.0000-20.037f in 1/0 space that is controlled by the second 32-bit
base address register.

= A non-relocatable field at O-fff in 1/0 space.

use the following:

my-address 10.0000 0 d+ my-space 0200.0010 or 100
" map-in" $call-parent to mem-virt

my-address 20.0000 0 d+ my-space 0100.0014 or 380
" map-in" $call-parent to io-virt

my-address my-space h# 8100.0000 or 1000

" map-in" $call-parent to non-reloc-virt

Note — Although the third register field is non-relocatable, it is still necessary to map
the address range to obtain a virtual address.

Note - It is not necessary to map the configuration registers since they can be directly
addressed by using my-space and the config -xx family of methods.

If map-in cannot perform the requested operation, throw is called with an
appropriate error message. Therefore, out-of-memory conditions can be detected and
handled properly with the phrase: ['] map-in catch

See also: config-l@ , map-low , map-out , my-space

map-low
stack: (phys.lo ... size -- virt)
code: 130

Creates a mapping associating the range of physical addresses beginning at phys.lo ...
my-space and extending for size bytes within this device’s physical address space with
a processor virtual address. Return that virtual address virt.

Equivalent to:

my-space swap " map-in" $call-parent

The number of cells in the list phys.lo ... is one less than the number determined by the

Chapter 12 - Open Firmware Dictionary 269

value of the "#address-cells " property of the parent node.

If the requested operation cannot be performed, throw is called with an appropriate
error message.

Out-of-memory conditions can be detected and handled with the phrase:
[l map-low catch

See also: map-out

map-out
stack: (virt size --)
code: none
Destroys the mapping set up by a previous map-in at virtual address virt, of length
size bytes.
See also: free-virtual , map-in
mask
stack: (-- a-addr)
code: 124
This variable defines which bits out of every 32-bit word will be tested by
memory-test-suite . To test all 32-bits, set mask to all ones with:
ffff.ffff mask !
To test only the low-order byte out of each word, set the lower bits of mask with:
0000.00ff mask !
Any arbitrary combination of bits can be tested or masked.
max
stack: (nln2--nln2)
code: 2F

Returns the greater of n1 and n2.

"max-frame-size"

This property, when declared in "network" devices, indicates the maximum packet
length (in bytes) that the physical layer of the device can transmit at one time. This
value can be used by client programs to allocate buffers of the appropriate length.

Used as:

4000 encode-int " max-frame-size" property

270 Writing FCode Programs for PCI

max-transfer

stack:
code:

"memory"

(-- max-len)
none

Returns the size in bytes of the largest single transfer that this device can perform,
rounded down to a multiple of block-size

This is the standard property value of the "device_type" property for memory
devices. Devices of type "memory" must implement the following methods:

m claim

m release

See IEEE Standard 1275-1994 for more details.

See also: alloc-mem , "available" , claim , "reg" , release , "#size-cells"

memory-test-suite

stack:
code:

min
stack:
code:

mod

stack:

code:

(addr len -- fail?)
122

Performs a series of tests on the memory beginning at addr for len bytes. If any of the
tests fail, failed? istrue and a failure message is displayed on a system-dependent
diagnostic output device.

The actual tests performed are machine specific and often vary depending on whether
diagnostic-mode? is true or false . Typically, if diagnostic-mode? istrue ,a
message is sent to the console output device giving the name of each test.

The value stored in mask controls whether only some or all data lines are tested.

For example:

: test-result (--)
frame-buffer-adr my-frame-size memory-test-suite (failed?)
encode-int “ test-result” property

See also: diag-switch?

(nln2--nln2)
2E

Returns the lesser of n1 and n2.

(n1n2--rem)
22

rem is the remainder after dividing nl by the divisor n2. rem has the same sign as n2 or
is zero. An error condition results if the divisor is zero.

Chapter 12 - Open Firmware Dictionary 271

*/mod

“star slash mod”

stack: (nln2n3--rem quot)
code: none
Calculates n1 * n2/ n3 and returns the remainder and quotient. The inputs, outputs,
and intermediate products are all 32-bit. rem has the same sign as n3 or is zero. An
error condition results if the divisor is zero.
/mod “slash mod”
stack: (nln2--rem quot)
code: 2A
rem is the remainder and quot is the quotient of n1 divided by the divisor n2. rem has
the same sign as n2 or is zero. An error condition results if the divisor is zero.
model
stack: (strlen--)
code: 119
This is a shorthand word for creating a "model” property. By convention, "model”
identifies the model name/number for a PCI card, for manufacturing and field-service
purposes. A sample usage would be:
"INTL,501-1415-1" model
This is equivalent to:
"INTL,501-1415-1" encode-string " model" property
The "model" property is useful to identify the specific piece of hardware (the PCI
card), as opposed to the "name" property (since several different but functionally-
equivalent cards would have the same "name" property, thus calling the same
operating system device driver).
See also: property , "model" in Chapter 5 “Properties”.
"model"
This property specifies the model name and number (including revision level) for this
device in a manufacturer-dependent string. The format of the text string is arbitrary,
although in conventional usage the string begins with the name of the device’s
manufacturer as with the "name" property.
Although there is no standard interpretation for the value of the "model" property, a
specific device driver might use it to learn, for instance, the revision level of its
particular device.
For example:
" AAPL,1416-02" encode-string " model" property
See also: property , model
272 Writing FCode Programs for PCI

modify

stack: (virt len mode ... --)

code: none
Modifies the existing address translations for virtual addresses beginning at virt and
continuing for len bytes to have the attributes specified by mode ... (whose format
depends upon the package).
If the operation fails for any reason, uses throw to signal the error.
See also: claim , map, release |, translate , unmap

move

stack: (' src_addr dest_addr len --)

code: 78
len bytes starting at src_addr (through src_addr+len-1 inclusive) are moved to address
dest_addr (through dest_addr+len-1 inclusive). If len is zero then nothing is moved.
The data are moved such that the len bytes left starting at address dest_addr are the
same data as was originally starting at address src_addr. If src_addr > dest_addr then the
first byte of src_addr is moved first, otherwise the last byte (src_addr+len-1) is moved
first. Thus, moves between overlapping fields are properly handled.
move will perform 16-bit, 32-bit or possibly even 64-bit operations (for better
performance) if the alignment of the operands permits. If your hardware requires
explicit 8-bit or 16-bit accesses, you will probably wish to use an explicitly-coded
do ... loop instead.

ms

stack: (n--)

code: 126
Delays all execution for at least n milliseconds, by executing an empty delay loop for
an appropriate number of iterations. The maximum allowable delay will vary from
system to system, but is guaranteed to be valid for all values up to at least 1,000,000
(decimal). No other CPU activity takes place during delays invoked with ms, although
generally this is not a problem for FCode drivers since there is nothing else to do in the
meantime anyway. If this word is used excessively, noticeable delays could result.
For example:

: probe-loop-wait (addr --)
\ wait h# 10 ms before doing another probe at the location
begin dup |@ drop h# 10 ms key? until drop

my-address

stack: (-- phys.lo ...)

code: 102

Returns the low component(s) of the device’s probe address, suitable for use with the
map-in method, and with reg and encode-phys . The returned number, along with
my-space , encodes the address of location 0 of this device in a bus-specific format.

The number of cells in the list phys.lo ... is one less than the number determined by the

Chapter 12 - Open Firmware Dictionary 273

value of the "#address-cells" property of the parent node.

The Open Firmware ROM automatically sets my-address to the correct value before
each slot is probed. Usually, this value is used to calculate the location(s) of the device
registers, which are then saved as the property value of the "reg" property and later
accessed with my-unit

For example for a PCI device:

fcode-version2
" audio" encode-string " name" property
my-address my-space encode-phys \ PCI Configuration Space
0 encode-int encode+ 0 encode-int encode+

" reg" property
end0

my-args
stack: (-- arg-str arg-len)
code: 202
Returns the instance argument string arg-str arg-len that was passed to the current
instance when it was created, if the argument string exists. Otherwise returns with a
length of 0.
For example:
ok "/obio:TEST-ARGS" open-dev to my-self my-args type
TEST-ARGS
ok unselect-dev " /obio:MORE-ARGS" select-dev my-args type
MORE-ARGS
my-parent
stack: (-- ihandle)
code: 20A
Returns the ihandle of the instance that opened the current instance. For device driver
packages, the relationships of parent/child instances mimic the parent/child
relationships in the device tree.
For example for an SBus device:
: show-parent (--)
my-parent ihandle>phandle " name" rot
get-package-property 0= if
" my-parent is " type cr
then
my-self
stack: (-- ihandle)
code: 203
A value word that returns the current instance’s ihandle. If there is no current instance,
274 Writing FCode Programs for PCI

the value returned is zero.

For example:

: show-model-name (--)
my-self ihandle>phandle (phandle)
" model" rot get-package-property 0= if (val.addr,len)
. model name is " type cr

else ()
. model property is missing " cr
then ()
my-space
stack: (-- phys.hi)
code: 103

Returns the high component of the device’s probe address representing the device
space that this card is plugged into. The meaning of the returned value is bus-specific.

For example for an SBus device:

fcode-version2
" audio" encode-string " name" property
my-address h# 130.0000 + my-space h# 8 reg

fcode-end

See my-address for more details.

my-unit
stack: (-- phys.lo ... phys.hi)
code: 20D

Returns the unit address phys.lo ... phys.hi of the current instance. The unit address is
set when the instance is created, as follows:

m If the node-name used to locate the instance’s package contained an explicit unit-
address, that is the instance’s unit address. This handles the case of a “wildcard”
node with no associated "reg" property.

m Otherwise, if the device node associated with the package from which the instance
was created contains a "reg" property, the first component of its "reg" property
value is the instance’s unit address.

m Otherwise, the instance’s unit address is 0 0.

The number of cells in the list phys.lo ... phys.hi is determined by the value of the
"#address-cells" property of the parent node.

/n “per en”

stack: (--n)
code: 5D

The number of address units in a cell.

Chapter 12 - Open Firmware Dictionary 275

In*
stack:

generates:

na+

stack:
code:

nal+
stack:

generates:

"name"

“per en star”

(nul--nu2)
cells

Synonym for cells

“en ay plus”

(addrl index -- addr2)
61

Increments addrl by index times the value of /n .

na+ should be used in preference to wa+ or la+ when the intent is to address items
that are the same size as items on the stack.

“en ay one plus”

(addrl -- addr2)
cell+

Synonym for cell+

This property specifies the manufacturer’s name and device name of the device. All
device nodes must publish this property. The "name" property can be used to match a
particular operating system device driver with the device.

The property value is an arbitrary string. Any combination of one to 31 printable
characters is allowed, except for “@”, “:” or “/”. The string may contain at most one
comma. Embedded spaces are not allowed.

IEEE Standard 1275-1994 specifies three different formats for the manufacturer’s name
portion of the property value where two of those formats are strongly preferred.

For United States companies that have publicly listed stock, the most practical form of
name is to use the company’s stock symbol (e.g. AAPL for Apple Computer, Inc.). This
option is also available to any company anywhere in the world provided that there is
no duplication of the company’s stock symbol on either the New York Stock Exchange
or the NASDAQ exchange. If a non-U.S. company’s stock is traded as an American
Depository Receipt (ADR), the ADR symbol satisfies this requirement. A prime
advantage of this form of manufacturer’s name is that such stock symbols are very
human-readable.

An alternative is to obtain an organizationally unique identifier (OUI) from the IEEE
Registration Authority Committee. This is a 24-bit number that is guaranteed to be
unique world-wide. Companies that have obtained an OUI would use a sequence of
hexadecimal digits of the form “ONNNNNN” for the manufacturer’s name portion of
the property. This form of name has the disadvantage that the manufacturer is not
easily recognizable.

Each manufacturer may devise its own format for the device name portion of the
property value.

An example usage is:

" INTL,bison-printer" encode-string " name" property

276

Writing FCode Programs for PCI

The device-name command may also be used to create this property.

See also: device-name |, property , "name" in Chapter 5 “Properties”.

named-token

stack: (--) (F: /FCode-string FCode#/ --)
code: B6

Creates a new, possibly-named FCode function. named-token should never be used
directly in source code.

negate
stack: (nl--n2)
code: 2C
n2 is the negation of nl. This is equivalent to O swap - .
"network"
This is the standard property value of the "device_type" property for network
devices with IEEE 802 packet formats.
Devices of type "network” must implement the following methods:
= open
m close
= read
The read method receives (non-blocking) a network packet placing at most the first
len bytes into memory at addr, returning either the number of bytes actually received
(not placed into memory) or -2 if no packet is currently available.
Note - In general, -2 indicates no data was available at the time read was done and -1
indicates that an error occurred. Zero is generally used only for devices where data
arrives in records, packets or other such container, and indicates that a valid but empty
container was received.
= write
The write method transmits the network packet of len bytes from memory at addr,
returning the number of bytes actually transmitted. The caller must supply the
complete packet including the MAC header with source and destination address.
= load
A network package may implement additional device-specific methods.
See also: "address-bits" , "max-frame-size"
new-device
stack: (--)
code: 11F

Creates a new node in the device tree as a child of the active package and makes the
new node the active package. Also creates a new instance and attaches that instance to
the instance currently identified by my-self (i.e. the new node’s parent node).

Chapter 12 - Open Firmware Dictionary 277

Subsequently, newly-defined Forth words become the methods of the node created by
new-device and newly-defined data items (such as types variable , value |,
buffer: and defer) are allocated and stored with the new instance.

new-device is used for creating multiple devices in a single FCode Program.

See also: finish-device , begin-package
new-token
stack: (--) (F: /FCode#/ --)
code: B5

Creates a new unnamed FCode function. new-token should never be used directly in
source code.

next-property

stack:
code:

nip
stack:
code:

(previous-str previous-len phandle -- false | name-str name-len true)
23D

Returns the name of the property following previous-string of phandle.

Locates with the property list of the package specified by phandle, the first property if
previous-len is zero, or the property following the property specified by previous-string
otherwise. If such a property exists, name-string is returned underneath true .
Otherwise, false is returned (i.e. if there are no more properties, or if previous-string
specifies a property which does not exist in phandle).

A sequence of invocations of next-property with the same phandle value, beginning
with previous-len equal to zero, and passing the name-string result of the previous
invocation as the previous-string argument to the next invocation, continuing until
false is returned will provide the complete list of properties of the package phandle.

However, the order in which the properties are returned is undefined (e.g. the first
property defined is not necessarily the first property returned). Consequently, if a new
property is defined in the phandle package in the middle of the process of extracting all
of the properties of the package phandle, the newly defined property may or may not be
returned.

(x1x2--x2)
4D

Removes the second item on the stack.

nodefault-bytes

stack:
code:

(maxlen "new-name< >" --) (E: -- addr len)
none

Creates a custom configuration variable of size maxlen. nodefault-bytes creates a
configuration variable whose data is of type byte-array. As with other built-in byte-
array configuration variables, these user-created configuration variables can be set
with setenv (restricted to printable characters) or $setenv and can be displayed with
printenv . However, set-default and set-defaults have no effect on user-
created configuration variables.

Although the values of user-created configuration variables persist across system

278

Writing FCode Programs for PCI

resets, Open Firmware must be “reminded” of their existence after every system reset
in order for them to be accessed. Furthermore, the nodefault-bytes commands
creating them must be executed in the same order each time. For these reasons,
nodefault-bytes is usually executed from the NVRAM script.

If nodefault-bytes fails, throw is called with an appropriate error message.
Consequently, out-of-memory conditions may be detected and handled properly with
the phrase: ['] nodefault-bytes catch

For example:

ok 100 nodefault-bytes new-name
ok setenv new-name " foo"
new-name = 22 20 60 6f 6f

ok printenv new-name

new-name = 22 20 60 6f 6f

noop
stack: (--)
code: 7B
Does nothing. This can be used to provide short delays or as a placeholder for patching
in other commands later.
noshowstack
stack: (.o -..0)
code: none
Turns off showstack (i.e. automatic stack display).
The system default is noshowstack
See also: showstack
not
stack: (x1--x2)

generates: invert
Synonym for invert

See also: 0=

not-last-image
stack: (--)
generates: nothing

A FirmWorks extension to the tokenizer. Executing not-last-image prior to
executing pci-header causes the PCI header’s “indicator” field to be set to 0
indicating the presence of a following image in the PCI Expansion ROM.

See also: pci-header , pci-header-end

Chapter 12 - Open Firmware Dictionary 279

$number
stack: (addr len -- true | n false)
code: A2

A numeric conversion primitive that converts a string to a number, according to the
current base value. An error flag is returned if an inconvertible character is

encountered.
For example:
ok hex
ok " 123f" $number .s
123f 0
ok "123n" $number .s
ffffffff
>number
stack: (d1 strl lenl -- d2 str2 len2)
code: none
Converts strl lenl into a number on a digit-by-digit basis according to the value in
base . As each digit is converted, d1 is multiplied by the value of base and the newly-
converted digit is added to d1.
See also: $number
nvalias
stack: ("alias-name< >device-specifier<eol>" --)
code: none

Creates the following command line in the script:
devalias alias-name device-specifier

If the script already contains a devalias line with the same alias name, that entry is
deleted and replaced with the new entry at the same location in the script. Otherwise,
the new entry is placed at the beginning of the script.

If there is insufficient space in the script for the new devalias command, a message is
displayed to that effect and the operation is aborted without modifying the script.

If the script was successfully modified, the new devalias command is executed
immediately, creating a new memory-resident alias.

If the script is currently being edited (i.e. nvedit has been executed, but has not been
completed with either nvstore or nvquit), the operation is aborted with an error
message before taking any other action.

If the script was successfully modified, but use-nvramrc? is false , use-nvramrc?
is set to true .

For example:

ok nvalias alias-name /full/pathname

280 Writing FCode Programs for PCI

$nvalias

stack: (name-str name-len dev-str dev-len --)

code: none

Performs the same function as nvalias , except that parameters are stack strings. The
alias name is specified by name-string. The device-specifier is specified by dev-string.

For example:

ok " new-alias

device-specifier" $nvalias

nvedit
stack: (--)
code: none

nvedit operates on a temporary buffer. If data remains in the temporary buffer from a
previous nvedit , editing will resume with those previous contents. If not, nvedit

will read the contents of the script into the temporary buffer and begin editing the
temporary buffer.

Editing continues until Control-C is typed, at which moment editing ceases and
normal operation of the command interpreter is resumed. The contents of the
temporary buffer are not automatically saved to the script; the nvstore command
must be executed afterwards to save the buffer into the script.

The following table lists the command keystrokes used to edit the NVRAM script.

Table 37

NVRAM Script Editor Keystroke Commands

Keystroke

Description

Control-B

Moves backward one character.

Escape B

Moves backward one word.

Control-F

Moves forward one character.

Escape F

Moves forward one word.

Control-A

Moves backward to beginning of line.

Control-E

Moves forward to end of line.

Control-N

Moves to the next line of the script editing buffer.

Control-P

Moves to the previous line of the script editing buffer.

Return
(Enter)

Inserts a newline at the cursor position and advances to the next line.

Control-O

Inserts a newline at the cursor position and stays on the current line.

Control-K

Erases from cursor to end of line, storing erased characters in a save buffer. If at
the end of a line, joins the next line to the current line (i.e. deletes the newline).

Delete

Erases previous character.

Backspace

Erases previous character.

Control-H

Erases previous character.

Escape H

Erases from beginning of word to just before the cursor, storing erased characters
in a save buffer.

Control-W

Erases from beginning of word to just before the cursor, storing erased characters
in a save buffer.

Control-D

Erases next character.

Chapter 12 - Open Firmware Dictionary 281

Table 37 NVRAM Script Editor Keystroke Commands (Continued)

Keystroke Description

Escape D Erases from cursor to end of the word, storing erased characters in a save buffer.

Control-U Erases entire line, storing erased characters in a save buffer.

Control-Y Inserts the contents of the save buffer before the cursor.

Control-Q Quotes next character (allows you to insert control characters).

Control-R Retypes the line.

Control-L Displays the entire contents of the editing buffer.

Control-C Exits the script editor, returning to the Open Firmware command interpreter. The
temporary buffer is preserved, but is not written back to the script. (Use nvstore
afterwards to write it back.)

nvquit

stack: (--)

code: none
Prompts for confirmation of the user’s intent to carry out this function. If confirmation
is obtained, discards the nvedit temporary buffer. Otherwise, takes no further action.

nvramrc

stack: (-- data-addr data-len)

code: none
Returns the location and size of the NVRAM script. The size of the script region is
system dependent.
While it is possible to alter the contents of the script with setenv or $setenv , use of
the script editor, nvedit , is preferred.
The contents of the script are cleared by set-defaults . Under some circumstances
cleared contents can be recovered with nvrecover
The commands in the script are interpreted during system start-up only if
use-nvramrc? is true .
See also: nodefault-bytes , hvedit , use-nvramrc?

nvrecover

stack: (--)

code: none
Attempts to recover the contents of the script if they have been lost as a result of the
execution of set-default or set-defaults . Enters the script editor as with the
nvedit command.
In order for nvrecover to succeed, nvedit must not have been executed between the
time that the script contents were lost and the time that nvrecover is executed.

nvrun

stack: (--)

code: none
Executes the contents of the nvedit temporary buffer.

282 Writing FCode Programs for PCI

nvstore

stack: (--)
code: none

Copies the contents of the nvedit temporary buffer into the script. The nvedit
temporary buffer is then cleared. Use after nvedit to save the results of an editing
session into the script.

nvunalias
stack: ("alias-name< >" --)
code: none
Delete non-volatile device alias from the script.
If the script contains a devalias command line with the same name as alias-name,
deletes that command line from the script. Otherwise, leaves the script unchanged. If
the script is currently being edited (i.e. nvedit has been executed, but has not been
completed with either nvstore or nvquit), aborts with an error message before
taking any other action.
For example:
ok nvunalias alias-name
$nvunalias
stack: (name-str name-len --)
code: none
Deletes the specified non-volatile device alias from the script. Similar to nvunalias
except that the alias name is specified by name-string.
For example:
ok " alias-name" $nvunalias
o# “oh number”
stack: ([number< >]--n)

generates: b(lit) xx-byte xx-byte xx-byte xx-byte

Interprets the next number in octal (base 8), regardless of any previous settings of hex,
decimal or octal . Only the immediately following number is affected; the default
numeric base setting is unchanged. For example:

hex

o# 100 (equals decimal 64)
o# 100 (equals decimal 64)
100 (equals decimal 256)

See also: d#, h#

"obp-tftp"

This standard package implements the Internet Trivial File Transfer Protocol (TFTP) for

Chapter 12 - Open Firmware Dictionary 283

use in network booting. The package is typically used by network device drivers.

The obp-tftp package uses the read and write methods of the package that opened
it and implements the following methods:

m open (-- okay?)
Prepare this device for subsequent use.
m close (--)
Close this previously-open’d device.
m |oad (addr -- size)
Load a client program from device to memory.

octal

stack: (--)

code: none
If octal is encountered by the tokenizer in FCode Source outside a definition, the
tokenizer sets its numeric conversion radix to eight.
If octal is encountered by the tokenizer in FCode Source inside a definition, the
tokenizer appends the following sequence to the FCode Program that is being created:
8 base ! This affects numeric output when the FCode Program is later executed.
See also: base

oem-banner

stack: (-- text-str text-len)

code: none

The value of this configuration variable is a string containing the custom banner text,
the display of which is controlled by the configuration variable oem-banner? .

The suggested default value is an empty string.

oem-banner?

stack: (-- custom?)

code: none
This configuration variable is a boolean specifying whether to display a custom
message instead of the normal system-dependent messages. If oem-banner? is true ,
banner displays the value of oem-banner . If oem-banner? is false , banner
displays the normal system-dependent messages.
The suggested default value of oem-banner? is false

oem-logo

stack: (-- logo-addr logo-len)

code: none
This configuration variable contains a 512 byte array which holds a bit map of a
custom logo. The custom logo is displayed if the configuration variable oem-logo? is
true .
The logo is a 512-byte field, representing a 64x64-bit logo bit map. Each bit controls one

284 Writing FCode Programs for PCI

pixel. The most significant bit of the first byte controls the upper-left corner pixel. The
next bit controls the next pixel to the right and so on.

oem-logo is unaffected by set-default or set-defaults

oem-logo cannot receive arbitrary data with setenv , but $setenv can be used to set
its value. For example:

(logo-addr logo-len) " oem-logo" $setenv

The suggested default value is all zeroes.

oem-logo?

stack: (-- custom-logo?)

code: none
This configuration variable is a boolean specifying whether to display a custom logo
instead of the normal system-dependent logo. If oem-logo? is true , banner displays
the value of oem-logo . If oem-logo? is false , banner displays the normal system-
dependent logo.
The suggested default value of oem-logo? is false

of

stack: (C: case-sysl -- case-sys2 of-sys)
(sel of-val -- sel | <nothing>)

generates: b(of) +offset
Begins the next test clause in a case statement. See case for more details.

off

stack: (a-addr --)

code: 6B
Sets the 32-bit contents at a-addr to false (i.e. zero).

offset

stack: (d.rel -- d.abs)

code: none

This method of the Disk Label Support Package converts a partition-relative disk
position to an absolute position. d.rel is a double-number disk position, expressed as
the number of bytes from the beginning of the partition that was specified in the
arguments when the support package was opened. d.abs is the corresponding double-
number disk position, expressed as the number of bytes from the beginning of the disk.
If no partition was specified when the support package was opened, a system-
dependent default partition is used.

If the Disk Label Support Package does not support disk partitioning, d.abs is equal to
d.rel.

Chapter 12 - Open Firmware Dictionary 285

offsetl6

stack: (--)
code: CcC

Instructs the tokenizer program, and the boot ROM, to expect all further branch offsets
to be 16-bit values. This word is automatically generated by some current tokenizers.

Once offsetl6 is executed, the offset size remains 16 bits for the duration of the
FCode Program; it cannot be set back to 8 bits. Multiple calls of offsetl6 have no
additional effect. offsetl6 is only useful within an FCode Program that begins with
versionl . All other starting tokens (start0 , startl , start2 , and start4)
automatically set the offset size to 16 bits.

See also: fcode-version2

on

stack: (a-addr --)

code: 6A
Set the 32-bit contents at a-addr to true (i.e. ffffffff).

open

stack: (-- okay?)

code: none
Prepares this device for subsequent use. Typical behavior is to allocate any special
resource requirements it needs, map the device into virtual address space, initialize the
device and perform a brief “sanity test” to ensure that the device appears to be
working correctly.
Returns true if open was successful, false if not.
When a device’s open method is called, that device’s parent has already been opened
(and so on, up to the root node, which has no parent), so this open method can call its
parent’s methods, for instance to create mappings within the parent’s address space.

open-dev

stack: (dev-str dev-len -- ihandle | 0)

code: none

Opens the device specified by dev-string. Returns ihandle if successful, or 0 if not. Opens
each node of the device tree in turn, starting at the top. The current instance and the
active package are not changed.

For example:

" device-alias" open-dev

See also: my-self

open-package
stack: (‘arg-str arg-len phandle -- ihandle | 0)
code: 205

Creates an instance of the package identified by phandle, saves in that instance an

286 Writing FCode Programs for PCI

argument string specified by arg-str arg-len, and invokes the package’s open method.
The parent instance of the new instance is the instance that invoked open-package

Returns the instance handle ihandle of the new instance if it can be opened. It returns 0
if the package could not be opened, either because that package has no open method
or because its open method returned false indicating an error. In this case, the current
instance is not changed.

For example:

: test-tftp-open (-- ok?)
" obp-tftp" find-package if (phandle)
0 0 rot open-package if true else false then
else
false
then

See also: close-package

$open-package

stack: (arg-str arg-len name-str name-len -- ihandle | 0)
code: 20F
Similar to using find-package open-package except that if find-package fails, 0

is returned immediately, without calling open-package

The name is interpreted relative to the /packages device node. For example, if
name-str name-len represents the string "disk-label” , the package in the device tree
at “/packages/disk-label ” will be located.

If there are multiple packages with the same name (within the /packages node), the
most recently created one is opened.

For example:

0 0 " obp-tftp" $open-package (ihandle)

See also: close-package

"lopenprom"”

The standard node describing the system’s Open Firmware. The value of the "name"
property of this node is “openprom . The remaining standard properties of this node
are:

= model
m relative-addressing

Other system-dependent properties may also be present.

"/options"

The standard node containing the system’s configuration variables. The value of the
"name" property of this node is “options ”

The names of the remaining properties of this node are the names of the configuration
variables. The values of the remaining properties of this node are the current settings

Chapter 12 - Open Firmware Dictionary 287

or

stack:
code:

#out

stack:
code:

output

stack:
code:

of the configuration variables.

Client programs may examine and change the values of these properties with the
Client Interface’s getprop , nextprop and setprop services, thus examining and
changing the values of the corresponding configuration variables. Similarly, users may
examine and change them with printenv , setenv , and $setenv .

(x1x2--x3)
24

x3 is the bit-by-bit inclusive-or of x1 with x2.

(-- a-addr)
93
A variable containing the current column number on the output device. This is

updated by emit , cr and some other words that modify the cursor position. It is used
for display formatting.

For example:

: to-column (column --) #out @ - 1 max spaces ;

(dev-str dev-len --)
none

Selects the specified device for console output as follows:

m Searches for a device node matching the pathname or device-specifier given by
dev-str dev-len.

If such a device is found, search for its write method.

If the write. method is found, open the device with open-dev .

If the open succeeds, execute the device’s install-abort method, if any.

If any of these steps fails, display an appropriate error message and return without
performing the steps following the one that failed.

If there is a console output device, as indicated by a non-zero value in the stdout
variable, output executes the current console output device’s remove-abort method
and closes the console output device. output then sets stdout to the ihandle of the
newly opened device, making it the new console output device.

For example:

" device-alias" output

output-device

stack: (-- dev-str dev-len)
code: none
The value of this configuration variable is a string specifying the console output device
to be established by install-console. dev-string is a device-specifier, containing either a
288 Writing FCode Programs for PCI

full device-path or a pre-defined device alias.
The suggested default value is “screen”.

For example:

ok setenv output-device device-alias

over

stack: (X1 x2--x1x2x1)

code: 48
The second stack item is copied to the top of the stack.

2over

stack: (X1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)

code: 54
Copies the third and fourth stack items to the stack top.

pack

stack: ('str len addr -- pstr)

code: 83
Stores the string specified by str len as a packed string at the location addr returning
pstr (which is the same address as addr). The byte at address pstr is the length of the
string and the string itself starts at address pstr+1. A packed string can contain at most
255 characters.
Packed strings are generally not used in FCode. Virtually all string operations are in
the addr len format.
For example:

h# 20 buffer: my-packed-string
" This is test string " my-packed-string pack

"/packages"
The standard node containing the system’s support packages (both standard and
system-specific). The value of the "name" property of this node is “packages ”
The children of this node are general-purpose support packages not attached to any
particular hardware device. The “physical address space” defined by this node is the
trivial one i.e. all addresses are the same (0,0). Its children are distinguished by name
alone.
For example, the disk-label support package is located in the device tree at
/packages/disk-label

"page-size"

This /mmu property defines the virtual address space page size.

The property value is an integer specifying the number of bytes in the smallest

Chapter 12 - Open Firmware Dictionary 289

mappable region of virtual address space. For example:

d# 4096 encode-int " page-size" property

parse
stack: (delim "text<delim>" -- str len)
code: none
Parses text from the input buffer, delimited by delim. For example:
. dir" ("pattern” --) [char] " parse $dir ;
parse-2int
stack: ('str len -- val.lo val.hi)
code: 11B
Converts a “hi,lo” string into a pair of values according to the current value in base .
If the string does not contain a comma, val.lo is zero and val.hi is the result of
converting the entire string. If either component contains non-numeric characters,
according to the value in base, the result is undefined.
For example:
ok " 4,ff001200" parse-2int .s
ff001200 4
ok " 4" parse-2int .s
04
parse-word
stack: ("text< >" -- str len)
code: none
Parses text from the input buffer, delimited by white space after skipping any leading
spaces. str is the address (within the input buffer) and len is the length of the selected
string. If the parse area was empty, the resulting string has a zero length.
password
stack: (--)
code: none
Prompts the user (twice) to enter a new password, terminated by end-of-line. Does not
echo the password on the screen as it is typed. The password length is zero to eight
characters in length. Ignores any additional characters (more than eight).
If the entered password is the same both times, stores the new password string in
security-password . Note that security-mode must be set to enable password
protection.
290 Writing FCode Programs for PCI

patch

stack: ("new-name< >old-name< >word-to-patch< >" --)
code: none

In the compiled definition of word-to-patch, changes the first occurrence of old-name to
new-name. Works properly even if old-name and/or new-name are numbers.

For example:

ok : patch-me testOdo i.cr loop;
ok patch 555 test patch-me
ok see patch-me
: patch-me
h#555 0 do
i.cr
loop

See also: (patch)

(patch)
stack: (new-n1 num1? old-n2 num2? xt --)
code: none
Change contents of command indicated by xt.
In the compiled definition of the command indicated by xt, changes the first occurrence
of old-n2 to new-nl. new-n1 and old-n2 can each be either an execution token or a literal
number. The flag num1? is true if new-nl is a literal number. If false, it indicates that
new-nl is an execution token. The flag num2? is interpreted similarly.
For example:
ok :patch-me 5550do i.cr loop;
ok ['] new-name false 555 true ['] patch-me (patch)
ok see patch-me
: patch-me
new-name 0 do
i.cr
loop
See also: patch
peer
stack: (phandle -- phandle.sibling)
code: 23C

peer returns the phandle phandle.sibling of the package that is the next child of the
parent package phandle.

If there are no more siblings, peer returns 0.

If phandle is 0, peer returns phandle of the root node.

Chapter 12 - Open Firmware Dictionary 291

Together with child , peer lets you enumerate (possibly recursively) the children of a
particular device. A common application would be for a device driver to use child to
determine the phandle of a node’s first child, and use peer multiple times to
determine the phandles of the node’s other children. For example:

: my-children (--)
my-self ihandle>phandle child (first-child)
begin ?dup while dup . peer repeat

pci-header

stack:
generates:

(vendor-id device-id class-code --)
PCI Expansion ROM header

A FirmWorks extension to the tokenizer. Executing pci-header results in the creation
of a PCI Expansion ROM header. In addition to filling in the header’s “vendor ID”,
“device ID” and “class code” fields with the values supplied by its stack arguments,
pci-header puts a default value of 0 into the “pointer to vital product data” field,
puts a default “1” in the “revision level” field and sets the “indicator” field to a default
value of 1 indicating that this is the last image in the ROM. pci-header = must be
paired with pci-header-end to create a complete PCI Expansion ROM header.

The macros set-rev-level , set-vpd-offset , and not-last-image are provided
to override the default values used by pci-header

See also: fcode-end |, pci-header-end |, not-last-image , set-rev-level ,
set-vpd-offset

pci-header-end

stack:
generates:

pick
stack:
code:

(--)
“image length” field of PCI Expansion ROM header

A FirmWorks extension to the tokenizer. pci-header-end computes the correct value
for the “image-length” field of the PCI Expansion ROM header by rounding up the
result of dividing the length in bytes of the PCI Expansion ROM FCode image by 512.
pci-header-end places this result in the “image length” field. pci-header = must
have been previously executed to create the PCI Expansion ROM header.

See also: fcode-end , pci-header , not-last-image , set-rev-level ,
set-vpd-offset

(xu...x1x0u--xu...x1x0xu)
4E

Copies xu, the u+1-th stack value, not including u itself, where the remaining stack
items have indices beginning with 0. u must be between 0 and two less than the total
number of elements on the stack (including u).

0 pick is equivalenttodup (nl--nlnl)
1 pick is equivalentto over (nln2--nln2nl)
2 pick is equivalent to (nln2n3--n1n2n3nl)

For the sake of readability, the use of pick should be minimized.

292

Writing FCode Programs for PCI

postpone

stack: (C: [old-name< >] --)
(...--7??7)
code: none

Can be used only within definitions to delay the execution of the following word,
regardless of whether or not that word is “immediate”. postpone affects only the
behavior of the word that follows it.

: end-if (C: orig-sys --) (E: --) postpone then ; immediate

printenv

stack: ("{param-name}<eol>" --)

code: none
If param-name is missing, displays the current and default values of all configuration
variables. Otherwise, displays the current and default values of the configuration
variable given whose name is param-name.

probe-all

stack: (--)

code: none
Searches for plug-in devices on the system-dependent set of expansion buses, creating
device nodes for devices that are located.
Undesirable results, such as duplicate device nodes for the same device, might occur if
probe-all is executed more than once. It is normally executed automatically during
system start-up following the evaluation of the script, but this automatic execution is
disabled if banner or suppress-banner is executed from the script.

probe-self

stack: (‘arg-str arg-len reg-str reg-len fcode-str fcode-len --)

code: none

Evaluates FCode, as a child of this node.

fcode-string is a unit-address text string representing the location of the FCode Program
for the child device.

reg-string is a probe-address text string representing the location of the child device
itself.

arg-string is a instance-arguments text string providing the arguments for the child
(which can be retrieved within the child’s FCode Program with my-args .)

probe-self first checks to see if there is an FCode Program at the indicated location
(perhaps by mapping the device and using cpeek to ensure that the device is present
and that the first byte is a valid FCode start byte). If so, probe-self

m Performs the function of new-device (thus creating a new device node)
m Interprets the FCode Program
m Performs the function of finish-device

If a valid FCode Program cannot be located at the indicated address, probe-self
does not create a new device node.

Chapter 12 - Open Firmware Dictionary 293

Successful completion of probe-self ~ will be indicated by the presence of a new
device node containing a "name" property. If the evaluation of the FCode Program
fails in some way, the new device node might be empty (containing no properties or
methods.)

.properties
stack: (--)
code: none

pro perty
stack:
code:

Displays names and values of the properties of the active package.

(prop-addr prop-len name-str name-len --)
110

Creates a new property with the specified name and previously prop-encoded value. If
there is a current instance, creates the property in the package from which the current
instance was created. Otherwise, if there is an active package, creates the property in
the active package. If there is neither a current instance nor an active package, the
result is undefined.

If a property with the specified name already exists in the active package in which the
property would be created, replace its value with the new value.

Properties provide a mechanism for an FCode Program to pass information to an
operating system device driver. A property consists of a property name string and a
property value array. The name string gives the name of the property, and the value
array gives the value associated with that name. For example, a framebuffer may wish
to declare a property named "hres" (for horizontal resolution) with a value of 1152.

The property command requires two arrays on the stack — the value array and the
name string. The name string is an ordinary Forth string, such as any string created
with " . This string should be written in lower case, since the property name is stored
only after converting uppercase letters, if any, to lower case. For example:

" A21-b" encode-string " New_verSION" property

is stored as if entered

" A21-b" encode-string " new_version" property

The value array, however, must be in the property value array format. See Chapter 5
“Properties” for more information on creating property value arrays.

All properties created by an FCode Program are stored in a “device tree” by Open
Firmware. This tree can then be queried by an operating system device driver, using
the Client Interface’s getprop or nextprop services.

The FCode Program and the operating system device driver may agree on any
arbitrary set of names and values to be passed, with virtually no restrictions. Several
property names, though, are reserved and have specific meanings. For many of them, a
shorthand command also exists that makes the property declaration a bit simpler.

294

Writing FCode Programs for PCI

pwd

stack:

code:

quit

stack:

code:

r>

stack:

code:

r@

stack:

code:

stack:

code:

For example:

" AAPL,new-model" encode-string model

See also: "name" , device-name , model, reg and Chapter 5 “Properties” for more
information.

(--)

none

Displays the device-path that names the active package.

(-)R: ...)

none

Aborts program execution.

“are from”
(-x)(Rix-)
31

Removes x from the return stack and places it on the stack. See >r for restrictions on
the use of this word.

For example:

: copyout (bufaddrlen--len) >r swap r@ move r>;

“are fetch”
(-x)(R:x--x)
32

Places a copy of the top of the return stack on the stack.

For example:

: copyout (bufaddrlen --len) >r swap r@ move r>;

See >r for more details.

“dot are”

(nsize --)

9E

Converts n using the value of base and then displays it right-aligned in a field size

digits wide. Displays a leading minus sign if n is negative. A trailing space is not
displayed.

If the number of digits required to display n is greater than size, displays all the digits
required with no leading spaces in a field as wide as necessary.

Chapter 12 - Open Firmware Dictionary 295

>r

stack:
code:

"ranges”

For example:

: formatted-output (--)
my-length h# 8 .r ." length" cr
my-width h# 8 .r ." width" cr
my-depth h# 8 .r ." depth” cr

“to are”
(x--)(Ri-x)
30

Removes x from the stack and places it on the top of the return stack.

The return stack is a second stack, occasionally useful as a place to temporarily place
numeric parameters i.e. to “get them out of the way” for a little while. For example:

: encode-intr (int-level vector --)
>r shus-intr>cpu encode-int r> encode-int encode+

However, since the return stack is also used by the system for transferring control from
word to word (and by do loops), improper use of >r or r> is guaranteed to crash your
program. Some restrictions that must be observed are:

= All values placed on the return stack within a colon definition must be removed
before the colon definition is exited by normal termination, exit or throw , or else
the program will crash.

= No values from the return stack should be removed from within a colon definition
unless they were placed there within that definition.

m Entering a do loop automatically places values onto the return stack. Therefore,

= Values placed on the return stack before the loop was started will not be
accessible from within the loop.

= Values placed on the return stack within the loop must be removed before loop ,
+loop , or leave is encountered.

= The loop indices i orj will no longer be valid when additional values have been
placed on the return stack within the loop.

Buses such as SBus and VMEbus, whose children can be accessed with CPU load and
store operations (as opposed to buses such as SCSI or IPI, whose children are accessed
with a command protocol) require a way to define the bus-specific relationship
between the physical address spaces of the parent and child nodes. The "ranges"
property provides this capability.

The value of the "ranges" property describes the correspondence between the
physical address space defined by a bus node (the “child address space”) and the
physical address space of that bus node’s parent (the “parent address space”).

For a detailed description, see "ranges" on page 78.

296

Writing FCode Programs for PCI

rb!

stack:
code:

rb!

stack:

rb@

stack:
code:

rb@

stack:

read

stack:
code:

“are bee store”

(byte addr --)
231

Stores an 8-bit byte to a device register at addr with identical bit ordering as the input
stack item. Data is stored with a single access operation and flushes any intervening
write buffers, so that the data reaches its final destination before the next FCode
method is executed.

For example:

: my-stat! (byte --) my-stat rb! ;

“are bee store”
(byte addr --)

This optional User Interface function behaves identically to the FCode version of rb! .

“are bee fetch”
(addr -- byte)
230

Fetches byte from the device register at addr. Data is read with a single access operation.
The result has identical bit ordering as the original register data.

For example:

s my-stat@ (-- byte) my-stat rb@ ;

“are bee fetch”
(addr -- byte)

This optional User Interface function behaves identically to the FCode version of rb@.

(addr len -- actual)
none

Reads at most len bytes from the device into the memory buffer beginning at addr.
Returns actual, the number of bytes actually read. If actual is zero or negative, the read
operation did not succeed.

Devices of the following types place additional requirements on their read method:

= network

The read method receives (non-blocking) a network packet placing at most the first
len bytes into memory at addr, returning either the number of bytes actually received
(not placed into memory) or -2 if no packet is currently available.

Chapter 12 - Open Firmware Dictionary 297

= serial

The read method receives a number of bytes equal to the minimum of len and the
number of bytes available for immediate reception from the device, and places those
bytes in memory at addr, returning either the number of bytes actually read or -2 if
no bytes are currently available from the device.

For some devices, the seek method sets the position for the next read .

read-blocks
stack: (addr block# #blocks -- #read)
code: none

Reads #blocks records of length block-size bytes from the device (starting at device
block block#) into memory (starting at addr). Returns #read, the number of blocks
actually read.

If the device is not capable of random access (e.g. a sequential access tape device),
block# is ignored.

recurse

stack: (...—-???)

code: none
Compiles a recursive call to the command being compiled.

recursive

stack: (--)

code: none
Makes the current definition visible for a recursive call.
Normally, when a colon definition is being compiled, its name is not visible in the
dictionary until the definition is completed. That way a call to that same name finds
the previous version of a definition, not the one in progress. recursive makes the
current definition visible so that subsequent uses of its name compile recursive calls to
itself.

reg

stack: (phys.lo ... phys.hi size --)

code: 116
This is a shorthand word for declaring the "reg" property on buses whose
#size-cells property is one. Typical usage for an SBus device:

my-address 40.0000 + my-space 20 reg

This declares that the device registers are located at offset 40.0000 through 40.001f

298 Writing FCode Programs for PCI

in this slot. The following code would accomplish the same thing:

my-address 40.0000 + my-space encode-phys
20 encode-int encode+

" reg" property

Note that if you need to declare more than one block of register addresses or if the
parent’s #size-cells property is not equal to one, encode-phys , encode-int and
encode+ must be used repeatedly to build the prop-encoded array that is passed to
the property method to create the "reg" property.

For example, reg cannot be used to create the "reg" property for PCI devices since at
least three entries are required for PCI devices and since #size-cells is two for PCI.

See also: property , "reg" in Chapter 5 “Properties”.

"reg"

This standard property specifies the range of addressable regions on the device. The
"reg" property represents the physical address, within its parent node’s address
space, of the device associated with the node and also the amount of physical address
space consumed by that device. In general, the "reg" property of a node can contain
several phys.lo ... phys.hi size specifications representing several disjoint ranges of
physical address space.

In the specific case of PCI, phys.lo ... phys.hi for the PCI Configuration Space header can
be generated with my-address and my-space , and size is always zero. For other
addressable regions, phys.hi must be modified to include the number of the associated
base address register, the type of memory space (i.e. memory or 1/0) and any other
relevant information defined for phys.hi by the PCI Bus Binding to IEEE Standard 1275-
1994,

As specified in the binding, the order of the pairs should be:

= An entry describing the Configuration Space for the device.

m An entry for each active base address register (BAR), in Configuration Space order,
describing the entire space mapped by that BAR.

= An entry describing the Expansion ROM BAR, if the device has an Expansion ROM.

m An entry for each non-relocatable addressable resource.

For example, to declare a PCI device with:

m A register field at 10.0000-10.00ff in memory space that is controlled by the first 32-
bit base address register.

m A register field at 20.0000-20.037f in 1/0 space that is controlled by the second 32-bit
base address register.

= A 128Kbyte PCI Expansion ROM.
= A non-relocatable field at O-fff in 1/0 space.

use the following:

my-address my-space encode-phys \ Config space regs
0 encode-int encode+ 0 encode-int encode+

my-address 10.0000 0 d+ my-space 0200.0010 or \ Memory space
encode-phys encode+ \ BAR at 0x10

0 encode-int encode+ 100 encode-int encode+

Chapter 12 - Open Firmware Dictionary 299

my-address 20.0000 0 d+ my-space 0100.0014 or \ I/O space

encode-phys encode+ \ BAR at 0x14

0 encode-int encode+ 380 encode-int encode+

my-address my-space h# 0200.0030 or \ PCI Expansion ROM
encode-phys encode+ \ memory space
0 encode-int encode+ h# 2.0000 encode-int encode+

my-address my-space h# 8100.0000 or \ Non-relocatable
encode-phys encode+ \ memory space
0 encode-int encode+ h# 1000 encode-int encode+

" reg" property

For a detailed description, see "reg" on page 81.

.registers
stack: (--)
code: none

Displays the register values that were in effect when the program state was saved (i.e.
when the program was suspended). The exact set of registers displayed, and the
format, is system-dependent.

"relative-addressing"

The presence of this standard property indicates that each device node address is
relative (i.e. local to the address space defined by the node’s parent). The absence of
the property indicates that device node’s addresses are absolute addresses within the
system-wide address space.

release
stack: (virtlen --)
code: none

Free (release) addressable resource.

Frees len bytes of the addressable resource managed by the package containing this
method, beginning at the address virt, making it available for subsequent use.

See also: claim , alloc-mem , "available" , free-mem

remove-abort
stack: (--)
code: none

Instructs the device driver to cease periodic polling for a keyboard abort sequence.
Executed when the console input device is changed from this device to another.

repeat

stack: (C: orig-sys dest-sys --)
(--)

generates: bbranch -offset b(>resolve)

Terminates a begin ...while ...repeat conditional loop. See while for more details.

300 Writing FCode Programs for PCI

reset

stack: (--)
code: none

Puts this device into a quiescent state. The definition of “quiescent” is device-specific.
This method is used primarily for permanently-installed devices (which are therefore
not probed) that do not automatically assume a quiescent state after a system reset.

The reset method is not invoked by any standard Open Firmware functions, but may
be explicitly executed for particular “problem” devices in particular Open Firmware
implementations.

reset-all
stack: (--)
code: none

Reset the machine as if a power-on reset had occurred.

This command is used to initiate a system power-on reset, thus re-initializing the
hardware state and Open Firmware’s data structures as if a power-on reset had
occurred.

reset-screen

stack: (--)
code: 158

reset-screen is one of the defer words of the display device interface. The terminal
emulator package executes reset-screen when it has processed a character sequence
that calls for resetting the display device to its initial state. reset-screen puts the
display device into a state in which display output is visible (e.g. enable video).

This word is initially empty, but must be loaded with an appropriate routine in order
for the terminal emulator to function correctly. This can be done with to , or it can be

loaded automatically with fbl-install or fb8-install (which load
fbl-reset-screen or fb8-reset-screen , respectively). These words are NOPs,
so it is very common to first call fox-install and then to override the default setting

for reset-screen with:

[1 my-video-on to reset-screen

restore
stack: (--)
code: none

Restores a device to a usable state after an unexpected reset.

On some systems, unexpected system errors result in a bus reset that turns off some
devices, but does not necessarily destroy the machine state necessary for debugging
the error. In such systems, the system-dependent firmware handler for that reset
condition may execute the restore methods of the console input and output devices,
in order to re-enable those devices for user interaction and subsequent debugging.

Chapter 12 - Open Firmware Dictionary 301

resume

stack: (--)
code: none
resume is one of the source-level debugger control words. After the “f” keystroke is
used with the stepper to enter a “subordinate interpreter”, resume is used to exit back
to the stepper.
return
stack: (--)
code: none
return is one of the breakpoint commands. After a breakpoint has been encountered
within a subroutine, return can be used to continue execution until the return from
the subroutine.
ring-bell
stack: (--)
code: none
Causes the device to emit a brief audible sound (beep).
See also: blink-screen
rl! “are el store”
stack: (quad gaddr --)
code: 235
Stores a 32-bit word to a device register at gaddr with identical bit ordering as the input
stack item. gaddr must be 32-bit aligned. Data is stored with a single access operation
and flushes any intervening write buffers, so that the data reaches its final destination
before the next FCode method is executed.
For example:
:my-reg! (n--) my-regrll;
rl! “are el store”
stack: (quad gaddr --)
This optional User Interface function behaves identically to the FCode version of rl!
r@ “are el fetch”
stack: (gaddr -- quad)
code: 234
Fetches a 32-bit word from the device register at gaddr. gaddr must be 32-bit aligned.
Data is read with a single access operation. The result has identical bit ordering as the
original register data.
For example:
:my-reg@ (--n) my-reg rl@ ;
302 Writing FCode Programs for PCI

r@

stack:

roll

stack:
code:

rot

stack:
code:

-rot

stack:
code:

2rot

stack:
code:

rshift

stack:
code:

rw!

stack:
code:

“are el fetch”
(gaddr -- quad)

This optional User Interface function behaves identically to the FCode version of rl@.

(xu ... x1x0u--xu-1...x1x0xu)
4F

Removes the u+1-th stack value, not including u itself, where the remaining stack items
have indices beginning with 0. The u-th stack item is then placed on the top of the
stack, moving the remaining items down one position. u must be between 0 and two
less than the total number of elements on the stack (including u).

0 roll is a null operation

1roll is equivalent to swap (nln2--n2nl)

2 roll is equivalenttorot (nl1n2n3--n2n3nl)

3 roll is equivalent to (n1n2n3n4-n2n3n4nl)

For the sake of readability and performance, minimize your use of roll

“rote”
(X1 x2x3--x2x3x1)
4A

Rotates the top three stack entries, bringing the deepest to the top.

“minus rote”
(X1 x2 x3 --x3x1x2)
4B

Rotates the top three stack entries in the direction opposite from rot , putting the top
number underneath the other two.

“two rote”
(X1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
56

Rotates the top three pairs of numbers, bringing the third pair to the top of the stack.

(x1u--x2)
28

Shifts x1 right by u bit-places while zero-filling the high bits.

*“are double you store”

(w waddr --)
233

Stores a 16-bit word to a device register at waddr with identical bit ordering as the
input stack item. waddr must be 16-bit aligned. Data is stored with a single access
operation and flushes any intervening write buffers, so that the data reaches its final

Chapter 12 - Open Firmware Dictionary 303

destination before the next FCode method is executed.

For example:

: my-count! (w --) my-count rw! ;

rw! “are double you store”
stack: (w waddr --)
This optional User Interface function behaves identically to the FCode version of rw! .
rw@ “are double you fetch”
stack: (waddr -- w)
code: 232
Fetches a 16-bit word from the device register at waddr. waddr must be 16-bit aligned.
Data is read with a single access operation. The result has identical bit ordering as the
original register data.
For example:
> my-count@ (-- w) my-count rw@ ;
rw@ “are double you fetch”
stack: (waddr -- w)
This optional User Interface function behaves identically to the FCode version of rv@
rx! “are ecks store”
stack: (0 oaddr --)
code: 22F
Stores a 64-bit word to a device register at oaddr with identical bit ordering as the input
stack item. oaddr must be 64-bit aligned. Data is stored with a single access operation
and flushes any intervening write buffers, so that the data reaches its final destination
before the next FCode method is executed.
This function is only available on 64-bit implementations.
rx! “are ecks store”
stack: (0 oaddr --)
This optional User Interface function behaves identically to the FCode version of rx! .
This function is only potentially available on 64-bit implementations.
304 Writing FCode Programs for PCI

X@

stack:
code:

X@

stack:

S

stack:
generates:

S.

stack:
generates:

#s

stack:
code:

stack:
code:

“are ecks fetch”

(oaddr --0)
22E

Fetches a 64-bit word from the device register at oaddr. oaddr must be 64-bit aligned.
Data is read with a single access operation. The result has identical bit ordering as the
original register data.

This function is only available on 64-bit implementations.

“are ecks fetch”
(oaddr --0)

This optional User Interface function behaves identically to the FCode version of rx@.

This function is only potentially available on 64-bit implementations.

([text<">] -- text-str text-len)
b(") len-byte xx-byte xx-byte ... xx-byte

Gather the immediately-following string delimited by " . Return the location of the
string text-str text-len.

Since an implementation is only required to provide two temporary buffers, a program
cannot depend on the system’s ability to simultaneously maintain more than two
distinct interpreted strings. Compiled strings do not have this limitation, since they are
not stored in the temporary buffers.

(n--)
(.) type space

Displays the absolute value of n in a free-field format according to the current value of
base . Displays a trailing space and, if n is negative, a leading minus sign. Even if the
base is hexadecimal, n will be printed in signed format

See also: .
(ud--00)
C8

Converts the remaining digits in pictured numeric output.

()
oF

Displays the contents of the data stack (using .) according to base . The top of the
stack appears on the right. The contents of the stack are unchanged.

Chapter 12 - Open Firmware Dictionary 305

For example:

ok 123.s
123

ok ...
321

sbus-intr>cpu

stack:
code:

screen

(sbus-intr# -- cpu-intr#)
131

Convert the SBus interrupt level (1-7) to the CPU interrupt level. The mapping
performed will be system-dependent.

This word is included because of the possibility that, even on systems that nominally
do not support SBus, SBus devices might be used via a bus-to-bus bridge.

A device alias. If the value of screen is not previously specified, the system will create
screen using as its value the path of the first device of type display that was found
during the probing process. If the output-device configuration variable is set to
screen , this process results in auto-configuration of the console output device.

screen is the suggested default value for the output-device configuration variable.

screen-#columns

stack:
code:

(--n)

none

This configuration variable is an integer specifying the maximum number of columns
on the console output device. Standard display packages use this value to determine
the width in characters of their text region. If the device is incapable of displaying that
many columns, the device restrictions prevail.

The suggested default value of screen-#columns s 80.

screen-height

stack: (-- height)

code: 163
A value , containing the total height of the display (in pixels). It can also be
interpreted as the number of “lines” of memory.
screen-height is an internal value used by the fb1- and fb8- frame buffer support
packages. In particular, this value is used in fbx-invert , fbx-erase-screen , fox-
blink-screen and in calculating window-top . fbl-install and fb8-install
set it to the value of their height argument.
This function is included for historical compatibility. There is little reason for an FCode
Program to use it. In fact, “standard” FCode Programs are forbidden from altering its
value directly.

306 Writing FCode Programs for PCI

screen-#rows

stack:
code:

(--n)

none

This configuration variable is an integer specifying the maximum number of rows on
the console output device. Standard display packages use this value to determine the
height in text lines of their text region. If the device is incapable of displaying that
many rows, the device restrictions prevail.

The suggested default value of screen-#rows is 24.

screen-width

stack:
code:

s>d
stack:
code:

(-- width)
164

A value , containing the width of the display (in pixels). It can also be interpreted as
the number of pixels (in memory) between one screen location and the next location
immediately below it. The latter definition takes precedence if there is a conflict (e.g.
there are unused/invisible memory locations at the end of each line).

screen-width is an internal value used by the fb1- and fb8- frame buffer support
packages. fbl-install and fb8-install set it to their width argument.

This function is included for historical compatibility. There is little reason for an FCode
Program to use it. In fact, “standard” FCode Programs are forbidden from altering its
value directly.

(n--d)
none

Converts a number to a double number.

security-#badlogins

stack:
code:

(--n)

none

This configuration variable is an integer containing the total count of invalid security
access attempts. This counter is incremented by one, whenever a bad password is
entered when attempting to enter the command interpreter while security-mode is
set (to either commandmode or full mode).

The value in security-#badlogins is not affected by the set-default or
set-defaults commands.

There is no suggested default value for security-#badlogins

security-mode

stack:
code:

(--n)

none

This configuration variable contains the level of security access protection. When
security is in effect, user knowledge of a password is required to allow use of most
commands through the command interpreter.

Chapter 12 - Open Firmware Dictionary 307

The following keywords denote the security levels:

Table 38 security-mode Settings

Keyword Description
none No security, no password required.
command Requires password entry to execute any command except for go, boot (default

device and default file), or automatic boot after system power-on or boot call.

full Requires password entry to execute any command except for go command.
Automatic booting is disabled, machine will not automatically re-boot after a
power failure.

For example:

ok setenv security-mode full

The value of security-mode is not affected by the set-default or set-defaults
commands.

There is no suggested default value for security-mode

It is not possible to determine the level of security protection from within a program,
as the value n returned by this command cannot be related unambiguously to the
security level keywords.

security-password

stack: (-- password-str password-len)
code: none

The value of this configuration variable is a string specifying the security password
text string. The value of security-password is normally set with the password
command, although setenv can also be used.

The value of security-password is not be displayed when printenv is executed.
The value of security-password is not affected by the set-default or
set-defaults commands.

There is no suggested default value for security-password

see
stack: ("old-name< >" --)
code: none

Decompiles the Forth command old-name.

For example:

ok see see
. see
"I (see) catch if
drop
then

308 Writing FCode Programs for PCI

(see)

stack: (xt--)
code: none
Decompiles the Forth command whose execution token is xt.
For example:
ok ['] see (see)
. see
"I (see) catch if
drop
then
seek
stack: (pos.lo pos.hi -- status)
code: none
Sets the device position at which the next read or write will take place. The position is
specified by a pair of numbers pos.lo pos.hi, whose interpretation depends on the device
type. status is -1 if the operation fails and either zero or one if it succeeds.
select
stack: ("device-specifier< >" --)
code: none
A User Interface extension provided by some implementations (e.g. FirmWorks/Sun).
Creates an instance chain for the device specified by device-specifier.
See also: “Using select” on page 37.
select-dev
stack: (dev-str dev-len --)
code: none
A User Interface extension provided by some implementations (e.g. FirmWorks/Sun).
Creates an instance chain for the device specified by dev-str dev-len.
See also: “Using select-dev” on page 35.
selftest
stack: (-- 0 | error-code)
code: none

Note — United States Patent No. 4,633,466, "Self Testing Data Processing System with
Processor Independent Test Program"”, issued December 30, 1986 may apply to some or
all elements of Open Firmware selftest. Anyone implementing Open Firmware should
take such steps as may be necessary to avoid infringement of that patent and any other
applicable intellectual property rights.

Chapter 12 - Open Firmware Dictionary 309

Performs the selftest for this device. Returns 0 if successful or a device-specific nonzero
error-code if an error is detected. The complexity of this test will typically be much
greater than that of the test performed when open is called.

This method is typically invoked by the user commands test or test-all , via
execute-device-method . Consequently, the package’s open method has not
necessarily been executed before selftest is invoked. (execute-device-method
does not call open, but it is possible for the device to have already been previously
opened.) selftest should leave the device in a state similar to that before selftest
was executed. Therefore, selftest is responsible for establishing any device state
necessary to perform its function prior to starting the tests and for releasing any
resources that were allocated during the process after completing the tests.

The extent of the testing performed by selftest can be made to be dependent upon
the value returned by diagnostic-mode? ; if so, more extensive testing should be
performed when diagnostic-mode? return true .

selftest-#megs

stack:
code:

"serial"

(~n)

none

This configuration variable is an integer specifying the maximum number of
megabytes of memory that should be tested by the selftest routine of the "memory"
node (i.e. the node whose device-path is /memory). In most systems that memory test
is automatically executed after the secondary diagnostics. (Some smaller portion of
memory is usually tested by POST, as well.) selftest-#megs controls the extent of
memory selftest. If diagnostic-mode? is true , the system may ignore the value of
selftest-#megs

The suggested default value of selftest-#megs is 1.

This is the standard property value of the "device_type" property for byte-oriented
devices such as a serial port.

Devices of type "serial" must implement the following methods:

open
close
read

The read method receives a number of bytes equal to the minimum of len and the
number of bytes available for immediate reception from the device, and places those
bytes in memory at addr, returning either the number of bytes actually read or -2 if
no bytes are currently available from the device.

= Write
install-abort
remove-abort

If a device of type "serial" can cause the display to become invisible (e.g. the video
is turned off) in the case of an unexpected system reset, and if the display can be
restored to visibility without performing memory mapping or memory allocation
operations, the package should implement the restore method.

If a device of type "serial" has an audible annunciator that is activated by some
action other than sending an ASCII BEL character then the package should implement

310

Writing FCode Programs for PCI

the ring-bell method.

A package with this "device_type" property value may implement additional
device-specific methods.

See also: character-set

set-args

stack: (arg-str arg-len unit-str unit-len --)

code: 23F
Sets the address and arguments of a new device node.
unit-string is a text string representation of a physical address within the address space
of the parent device. set-args translates unit-string to the equivalent numerical
representation by executing the parent instance’s decode-unit method, and sets the
current instance’s probe-address (i.e. the values returned by my-address and my-
space) to that numerical representation.
set-args then copies the string arg-string to instance-specific storage, and arranges
for my-args to return the address and length of that copy when executed from the
current instance.
set-args is typically used just after new-device . new-device creates and selects a
new device node, and set-args sets its probe-address and arguments. Subsequently,
the device node’s properties and methods are created by interpreting an FCode
Program with byte-load or by interpreting Forth source code.
The empty string is commonly used as the arguments for a new device node. For
example:

00" 3" set-args

set-default

stack: ("param-name<eol>" --)

code: none

Sets the specified configuration variable to its default value.

For example:

ok set-default auto-boot?

Some configuration variables are unaffected by set-default , as noted in individual
configuration variable command descriptions.

set-defaults

stack: (--)
code: none

Resets most configuration variables to their default values.

Some configuration variables are unaffected by set-defaults , as noted in individual
configuration variable command descriptions.

Chapter 12 - Open Firmware Dictionary 311

setenv

stack: ("nv-param< >new-value<eol>" --)
code: none
Sets the configuration variable nv-param to the value specified by new-value.
If new-value is the empty string, setenv displays an error message and returns.
Otherwise, it performs the equivalent of $setenv with string arguments denoting
nv-param and new-value.
For example:
ok setenv auto-boot? true
ok setenv oem-banner The nEw TeXt looks Just like this!
See also: $setenv
$setenv
stack: (data-addr data-len name-str name-len --)
code: none
Sets the configuration variable name-string to the value specified by data-addr data-len.
$setenv interprets the new value according to the configuration variable’s
configuration variable data type. If the given value string is not suitable for that data
type, $setenv displays an error message. Otherwise, $setenv sets the configuration
variable to the new value, truncating it to fit the available space (if necessary), and then
displays the new value.
For example:
ok " new-value" " nv-name" $setenv
See also: setenv
set-font
stack: (addr width height advance min-char #glyphs --)
code: 16B
This routine declares the font table to be used for printing characters on the screen.
This routine must be called if you wish to use any of the fb1- or fb8- utility routines
or >font
Normally, set-font s called just after default-font . default-font leaves the
exact set of parameters needed by set-font on the stack. This approach allows your
FCode Program to inspect and/or alter the default parameters if desired. See
default-font for more information on these parameters.
set-rev-level
stack: (revision --)
generates: value of “revision-level” field of PCI Expansion ROM header
A FirmWorks extension to the tokenizer. set-rev-level sets the value used by
pci-header-end when creating the “revision level” field of the PCI Expansion ROM.
set-rev-level must be executed prior to pci-header
312 Writing FCode Programs for PCI

See also: fcode-end , pci-header , pci-header-end , not-last-image ,
set-vpd-offset

set-vpd-offset

stack: (addr --)
generates: value of “pointer to vital product data” field of PCI Expansion ROM header

A FirmWorks extension to the tokenizer. set-vpd-offset sets the value used by
pci-header-end when creating the “pointer to vital product data” field of the PCI
Expansion ROM. set-vpd-offset must be executed prior to pci-header
See also: fcode-end , pci-header , pci-header-end |, not-last-image :
set-rev-level

set-token

stack: (xt immediate? fcode# --)

code: DB

Assigns the FCode number fcode# to the FCode function whose execution token is xt,
with compilation behavior specified by immediate? as follows:

m If immediate? is zero, then the FCode Evaluator will execute the function’s execution
semantics if it encounters that FCode number while in interpretation state, or
append those execution semantics to the current definition if it encounters that
FCode number while in compilation state.

m |f immediate? is nonzero, the FCode Evaluator will execute the functions’s FCode
Evaluation semantics anytime it encounters that FCode number.

show-devs
stack: ("{device-specifier}<eol>" --)
code: none

Shows the full device path for each device in the sub-tree of the device tree underneath
the node specified by device-specifier.

If device-specifier is the empty string (i.e. there is nothing on the command line
following show-devs), shows all system devices.

showstack
stack: (.. ..0)
code: none

Displays the entire stack, with a format similar to the .s command, just before each ok
prompt.

This feature can be turned off with the noshowstack command. The system default is
noshowstack

See also: noshowstack

Psift
stack: (text-addr text-len --)
code: none

Display all command-names containing text-string.

Chapter 12 - Open Firmware Dictionary 313

Searches the current vocabulary and displays the names of all commands which
include text-string as part of the command-name. Upper and lower-case distinctions
are ignored. This command is useful for finding all commands of a particular “type” or
for finding any command where the name is only partially known.

For example:

ok " spaces" $sift

In vocabulary hidden
(1e10e90) .spaces

In vocabulary forth
(1e0d990) spaces (1e0302c) backspaces
(1e02fec) spaces

See also: sifting order

sifting
stack: ("text< >" --)
code: none
Display all command-names containing text.
For example:
ok sifting spaces
In vocabulary hidden
(1e10e90) .spaces
In vocabulary forth
(1e0d990) spaces (1e0302c) backspaces
(1e02fec) spaces
See also: $sift
sign
stack: (n--)
code: 98
If n is negative, appends an ASCII “-” (minus sign) to the pictured numeric output
string. Typically used between <# and #>. See (.) for a typical usage.
"#size-cells"
This standard property applies to bus nodes. The property value is an integer encoded
with encode-in t and specifies the number of cells that are used to encode the size
field of a child’s "reg" format property. A missing "#size-cells" property signifies
the default value of one. Plug-in devices should use the value specified for their bus
and, if unspecified, should use the default value of one.
For PCI, "#size-cells" is 2 which reflects PCI’s 64-bit address space.
314 Writing FCode Programs for PCI

sm/rem

stack:
code:

source

stack:
code:

space
stack:
generates:

spaces

stack:
generates:

span
stack:
code:

startO

stack:
code:

(dn--rem quot)
none

Divides d by n returning rem and quot. rem carries the sign of d or is zero. quot is the
guotient rounded towards zero.

(--addrlen)
none

Returns the location and size of the input buffer.

(--)

bl emit

Displays a single ASCII space character.

(ent--)
0 max 0 ?do space loop

Displays cnt ASCII space characters. Nothing is displayed if cnt is zero.

(-- a-addr)
88

A variable containing the count of characters actually received and stored by the last
execution of expect .

For example:

h# 10 buffer: my-name-buff
hello (--)
." Enter Your First name " my-name-buff h# 10 expect
" FirmWorks Welcomes " my-name-buff span @ type cr

(-)
FO

startO may only be used as the first byte of an FCode Program. startO

m Sets the spread value to 0 causing the FCode Evaluator to read successive bytes of
the current FCode Program from the same address.
Establishes the use of 16-bit branches.
Reads an FCode header from the current FCode Program and either discards it or
uses it to verify the integrity of the current FCode program in an implementation-
dependent manner.

For portability, the preferred way to begin an FCode program in source form is with

Chapter 12 - Open Firmware Dictionary 315

startl

stack:
code:

start2

stack:
code:

start4

stack:
code:

the fcode-version2 tokenizer macro. This macro causes the tokenizer to begin the
FCode binary with the appropriate start byte and an FCode header.

See also: fcode-version2 , startl |, start2 , start4 , versionl

()
F1

startl may only be used as the first byte of an FCode Program. startl

m Sets the spread value to 1 causing the FCode Evaluator to read successive bytes of
the current FCode Program from addresses one address unit apart.
Establishes the use of 16-bit branches.
Reads an FCode header from the current FCode Program and either discards it or
uses it to verify the integrity of the current FCode program in an implementation-
dependent manner.

For portability, the preferred way to begin an FCode program in source form is with
the fcode-version2 tokenizer macro. This macro causes the tokenizer to begin the
FCode binary with the appropriate start byte and an FCode header.

See also: fcode-version2 , start0 |, start2 , start4 , versionl

()
F2

start2 may only be used as the first byte of an FCode Program. start2

m Sets the spread value to 2 causing the FCode Evaluator to read successive bytes of
the current FCode Program from addresses two address units apart.

m Establishes the use of 16-bit branches.
Reads an FCode header from the current FCode Program and either discards it or
uses it to verify the integrity of the current FCode program in an implementation-
dependent manner.

For portability, the preferred way to begin an FCode program in source form is with
the fcode-version2 tokenizer macro. This macro causes the tokenizer to begin the
FCode binary with the appropriate start byte and an FCode header.

See also: fcode-version2 , start0 |, startl , start4 , versionl

()
F3

start4 may only be used as the first byte of an FCode Program. start4

m Sets the spread value to 4 causing the FCode Evaluator to read successive bytes of
the current FCode Program from addresses four address units apart.
Establishes the use of 16-bit branches.
Reads an FCode header from the current FCode Program and either discards it or
uses it to verify the integrity of the current FCode program in an implementation-
dependent manner.

For portability, the preferred way to begin an FCode program in source form is with

316

Writing FCode Programs for PCI

the fcode-version2 tokenizer macro. This macro causes the tokenizer to begin the
FCode binary with the appropriate start byte and an FCode header.

See also: fcode-version2 , start0 , startl , start2 , versionl
state
stack: (-- a-addr)
code: DC
A variable containing true if the system is in compilation state.
state-valid
stack: (-- a-addr)
code: none
A variable containing true if saved-program-state is valid. state-valid is set
to true by init-program and by actions that result in the saving of program state.
saved-program-state must be valid in order for execution with go to perform
properly.
status
stack: (--)
code: none
status is a defer word, initially vectored to noop, which can be used to modify the
user interface prompt to display whatever additional information the user wishes to
see.
For example:
ok hex:showbase (--) ."("base@ .d.")";
ok []showbase to status
(16) ok [] noop to status
ok
"status"

If this standard property is present, the value is a string indicating the status of the
device, as follows:

Table 39 "status" Property Value Descriptions

"status” Description
"okay" The device is believed to be operational.
"disabled"” The device represented by this node is not operational, but it

might become operational in the future (e.g. an external switch
is turned off, or something isn’t plugged in.)

"fail" The device represented by this node is not operational because
a fault has been detected, and it is unlikely that the device will
become operational without repair. No additional failure details
are available.

Chapter 12 - Open Firmware Dictionary 317

Table 39 (Continued)"status” Property Value Descriptions

"status" Description

"fail-xxx" The device represented by this node is not operational because
a fault has been detected, and it is unlikely that the device will
become operational without repair. “xxx” is additional human-
readable information about the particular fault condition that
was detected.

The absence of the "status" property means that the operational status is unknown
or okay.

stdin

stack: (-- a-addr)

code: none
A variable containing the ihandle of the console input device.

"stdin"
This property appears in the /chosen node. The property value is an integer encoded
with encode-int containing the ihandle of the console input device.

stdout

stack: (-- a-addr)

code: none
A variable containing the ihandle of the console output device.

"stdout"”
This property appears in the /chosen node. The property value is an integer encoded
with encode-int containing the ihandle of the console output device.

step

stack: (--)

code: none
step is one of the breakpoint commands. After a breakpoint has been encountered,
step resumes client program execution as with go, but only executes one instruction.
The effect is as if breakpoints were established at the possible successors to that
instruction and then automatically removed when the breakpoint is handled.

.step

stack: (--)

code: none
.step is adefer word that is executed whenever a single step occurs. The default
behavior is .instruction
For example, to display registers at every single step:

ok [1] .registers to .step
318 Writing FCode Programs for PCI

See also: defer

stepping
stack: (--)
code: none

Sets “step mode” for Forth source-level debugging. This mode allows interactive step-
by-step execution of the command being debugged. “Step mode” is the default.

While in “step mode”, before the execution of each command called by the debugged
command, the user is prompted for one of a number of keystrokes. See debug for a list
of these keystrokes.

steps
stack: (n--)
code: none
Executes step n times.
struct
stack: (--0)

generates: 0O

Initializes a struct ...field structure by leaving a zero on the stack to define the
initial offset. See field for details.

suppress-banner

stack: (--)
code: none

If executed within the NVRAM script, suppresses the automatic execution of the
following Open Firmware start-up sequence:

= probe-all
= install-console
= banner

suppress-banner is useful for modifying the standard startup sequence. For a usage
example, see “Patching FCode of a Plug-in Card” on page 22.

See also: banner , oem-banner , oem-banner? , oem-logo , oem-logo? , probe-all

suspend-fcode

stack: (--)
code: 215

Tells the FCode interpreter that the device identification properties for the active
package have been declared, and that the interpreter may postpone interpreting the
remainder of the package if it so chooses.

If the FCode interpreter postpones (suspends) interpretation, it saves the state of the
interpretation process so that interpretation can continue later. Attempts to open a
suspended package cause the FCode interpreter to resume and complete the
interpretation of that package before executing the package’s open method.

Chapter 12 - Open Firmware Dictionary 319

For example:

fcode-version2
" INTL,my-name" namea
" INTL,my-model" encode-string " model" property
suspend-fcode

fcode-end

This feature is intended to save memory space and reduce the system start-up time by
preventing the compilation of FCode drivers that are not actually used.

swap

stack: (x1x2--x2x1)

code: 49
Exchanges the top two stack items.

2swap

stack: (X1 X2 x3 x4 -- x3 x4 x1 x2)

code: 55
Exchanges the top two pairs of stack items.

sym

stack: ("name< >"--n)

code: none
Returns the value of the client program symbol name. If name cannot be resolved to a
symbol, sym performs an abort . Otherwise, sym returns the symbol value n
corresponding to name.

sym>value

stack: (addr len -- addr len false | n true)

code: none
This defer word is executed when the symbolic debugger needs to translate a symbol
name into its corresponding value. If sym>value is present, the Forth interpreter
attempts to perform such translation if a word is neither found in the normal
dictionary search nor recognized as number. The translation is also attempted by sym.
If a symbol whose name matches the string given by addr len is defined, sym>value
returns the corresponding symbol value and true. Otherwise, sym>value returns its
addr len arguments and false.
The default action for sym>value , when no symbol table is present, is to return addr
len and false. A program can provide a symbol table and install a command into
sym>value with to to search that symbol table.
See also: value>sym

320 Writing FCode Programs for PCI

sync
stack: (--)
code: none

Flushes the system file buffers after a program interrupt.
Equivalent to: callback sync <eol>

The suggested callback behavior of the sync command is to flush the system’s file
buffers. sync is often used after a client program has been forcibly interrupted by
aborting to Open Firmware.

test
stack: ("device-specifier<eol>" --)
code: none
If the device node specified by device-specifier has a selftest method, test invokes it
with execute-device-method . Otherwise, test displays an error message.
For example:
ok test device-alias
test-all
stack: ("{device-specifier}<eol>" --)
code: none
test-all visits each node in the sub-tree of the device tree at and below the specified
node, or below the root node if no node is specified. For each node with a selftest
method, test-all invokes that selftest routine using execute-device-method
The system may choose not to test certain active devices that it believes are “unsafe” to
test while active.
For example:
ok test-all device-alias
then
stack: (C: orig-sys --)

(--)

generates: b(>resolve)

Terminates an if ...then oranif ...else ...then conditional structure. See if for

more details.
throw
stack: (... error-code -- ??? error-code | ...)
code: 218

If error-code is 0, drops error-code and exits.

If error-code is non-zero, pops the exception frame, restores the value of my-self
restores the input source, adjusts the stack depth as specified by the exception frame,
pushes error-code on top of the stack, and transfers control to just beyond the catch

Chapter 12 - Open Firmware Dictionary 321

till
stack:
code:

to

stack:
generates:

that pushed the exception frame.

If error-code is non-zero and there is no exception frame on the exception stack, the
behavior is as follows:

If error-code is -1, abort is performed.

If error-code is -2, abort" is performed.

Otherwise, the system may display an implementation-dependent message giving
information about the condition associated with the throw code error-code, and
abort is performed.

See catch for an example of use.

(addr --)
none
till is one of the breakpoint commands. till adds the specified address to the

breakpoint list and resumes execution.

till is equivalent to: +bp go

(param [old-name< >] --)
b(to) old-FCode#

Changes the contents of a value or a defer word:

number to name (for a value)
xt to name (for a defer word)

toggle-cursor

stack:
code:

(--)

159

toggle-cursor is one of the defer words of the display device interface. The
terminal emulator package executes toggle-cursor when it is about to process a
character sequence that might involve screen drawing activity, and executes it again
after it has finished processing that sequence. The first execution removes the cursor
from the screen so that any screen drawing will not interfere with the cursor, and the
second execution restores the cursor, possibly at a new position, after the drawing
activity related to that character sequence is finished. toggle-cursor is also called
once during the terminal emulator initialization sequence.

If the text cursor is on, toggle-cursor turns it off. If the text cursor is off,
toggle-cursor turns it on. (On a bitmapped display, a typical implementation of this
function inverts the pixels of the character cell to the right of the current cursor
position.)

toggle-cursor is initially empty, but must be loaded with an appropriate routine in
order for the terminal emulator to function correctly. This can be done with to , or it
can be loaded automatically with fbl-install or fb8-install (which load
fbl-toggle-cursor or fb8-toggle-cursor , respectively).

If the display device hardware has internal state (for example color map settings) that
might have been changed by external software without firmware’s knowledge, that

322

Writing FCode Programs for PCI

hardware state should be re-established to the state that the firmware driver requires
when the cursor is toggled to the “off” state (which indicates that firmware drawing
operations are about to begin). This situation can occur, for example, when an
operating system is using a display device, but that operating system uses firmware
text output services from time to time, e.g. for critical warning messages.

See also: to , fbl-install , fb8-install
tokenizer|
stack: (--)
code: none

This is a tokenizer command that ends FCode byte generation and begins
interpretation of the following text as tokenizer commands (up to the closing
Jtokenizer). A tokenizer[...Jtokenizer sequence may be used anywhere in an
FCode Program, either within any definition or outside of definitions.

One plausible use for tokenizer| would be to generate debugging text during the
tokenizing process. (A cr flushes the text from the output buffer immediately, which is
useful if the tokenizer crashes.) For example:

tokenizer[.(step a) cr]tokenizer

tokenizer[.(step b) cr Jtokenizer

emit-byte can be used with tokenizer[to output a desired byte of FCode. This
would be useful, for example, if you wished to generate a new FCode command that
the tokenizer did not understand. For example:

tokenizer[1 emit-byte 27 emit-byte]tokenizer
\ manually output finish-device fcode

Jtokenizer
stack: (--)
code: none

Ends a tokenizer-only command sequence. See tokenizer|

tracing
stack: (--)
code: none

Sets “trace mode” for Forth source-level debugging. This mode causes execution of the
word being debugged to be traced, showing the name and stack contents for each
command called by the debugged command. Tracing continues until stepping is
executed or a system reset takes place.

See also: debug

Chapter 12 - Open Firmware Dictionary 323

-trailing

stack: (strlenl -- str len2)
code: none
Removes any trailing spaces from a string.
translate
stack: (virt -- false | phys.lo ... phys.hi mode ... true)
code: none
If a valid virtual to physical address translation exists for the virtual address virt,
translate returns the physical address phys.lo ... phys.hi, the translation mode mode
... (typically, but not necessarily, one cell) and true. Otherwise, translate returns
false. The physical address format is the same as that of the "memory" node (i.e. the
node whose ihandle is given by the value of the /Zchosen node’s "memory" property).
The interpretation of mode ... is MMU-dependent.
true
stack: (--true)
generates: -1
Leaves the value for the true flag (which is -1) on the stack.
tuck
stack: (X1 x2--x2x1x2)
code: 4C
Copies the top stack item underneath the second stack item.
type
stack: (text-str text-len --)
code: 90
A defer word that transfers text-len characters to the output beginning with the
character at address text-str and continuing through text-len consecutive addresses. No
action is taken if text-len is zero.
For example:
h# 10 buffer: my-name-buff
hello (--)
." Enter Your First name " my-name-buff h# 10 expect
" FirmWorks Welcomes " my-name-buff span @ type cr
The output will go either to a framebuffer or to a serial port depending on which is
enabled.
u# “you number”
stack: (ul--u2)
code: 99
The remainder of ul divided by the value of base is converted to an ASCII character
324 Writing FCode Programs for PCI

u#>

stack:

code:

u#s

stack:

code:

u*

stack:

code:

stack:

code:

u<

stack:

code:

u<=

stack:

code:

and appended to the output string with hold . u2 is the quotient and is maintained for
further processing. Typically used between <# and #>.

“you number greater than”
(u--strlen)
97

Pictured numeric output conversion is ended dropping u. str is the address of the
resulting output array. len is the number of characters in the output array. str and len
together are suitable for type . See (.) and (u.) for typical usages.

“you number ess”

(ul--u2)

9A

ul is converted, appending each resultant character into the pictured numeric output
string until the quotient is zero (see: #). A single zero is added to the output string if ul

was initially zero. Typically used between <# and #>. See (.) and (u.) for typical
usages.

This word is equivalent to calling # repeatedly until the number remaining is zero.

“you star”

(ul u2 -- uprod)
none

Multiplies ul by u2 yielding uprod, all unsigned.

“you dot”

(u--)
9B

Displays u as an unsigned number in a free-field format according to the value in
base . A trailing space is also displayed.

For example:

ok hex-1u.
i

(ul u2 -- unsigned-less?)
40

Returns true if ul is less than u2 where ul and u2 are treated as unsigned integers.

(ul u2 -- unsigned-less-or-equal?)
3F

Returns true if ul is less than or equal to u2 where ul and u2 are treated as unsigned
integers.

Chapter 12 - Open Firmware Dictionary 325

u>

stack: (ul u2 -- unsigned-greater?)
code: 3E
Returns true if ul is greater than u2 where ul and u2 are treated as unsigned integers.
u>=
stack: (ul u2 -- unsigned-greater-or-equal?)
code: 41
Returns true if ul is greater than or equal to u2 where ul and u2 are treated as
unsigned integers.
(u.)
stack: (u--strlen)
generates: <# u#s u#>
This is a numeric conversion primitive used to implement display words such as u. .
It converts an unsigned number into a string according to the value in base .
For example:
ok hex d# -12 (u.) type
fffffff4
u2/ “you two slash”
stack: (x1--x2)
code: 58
X2 is the result of x1 logically shifted right one bit. A zero is shifted into the vacated
sign bit.
For example:
ok -2u2/.s
Tfffffff
um* “you em star”
stack: (ul u2 -- ud.prod)
code: D4
Multiplies two unsigned 32-bit numbers yielding an unsigned 64-bit product.
For example:
ok hex33u*x.s
90
ok 4 ffff.ffff u*x .s
fffffffc 3
See also: um/mod, d+, d-
326 Writing FCode Programs for PCI

um/mod “you em slash mod”

stack: (ud u -- urem uquot)
code: D5

Divides an unsigned 64-bit number by an unsigned 32-bit number yielding an
unsigned 32-bit remainder and quotient

See also: um*, d+, d-

u/mod “you slash mod”
stack: (ul u2 -- urem uquot)
code: 2B

rem is the remainder and quot is the quotient after dividing ul by u2. All values and
arithmetic are unsigned. All values are 32-bit.

For example:

ok -15u/mod.s

0 33333333
unaligned-I!
stack: (quad addr --)
code: none

Stores a quadlet quad to addr without requiring alignment.

unaligned-l@
stack: (addr -- quad)
code: none

Fetches a quadlet quad from addr without requiring alignment.

unaligned-w!
stack: (w addr --)
code: none

Stores a doublet w to addr without requiring alignment.

unaligned-w@

stack: (addr -- w)
code: none

Fetches doublet w from addr without requiring alignment.

unloop
stack: (--) (R: loop-sys --)
code: 89

Used within do or ?do loops to discard loop control parameters prior to calling exit

Chapter 12 - Open Firmware Dictionary 327

For example:

: find-value (test-value start-addr --)

\ Searches up to 100 locations looking for a test value.
100 bounds do (test-value)

i c@ over =if (test-value)

."Found at"i. cr drop unloop exit

then
loop (test-value)
.." not found" cr

See also: exit , leave

unmap
stack: (virtlen --)
code: none

Invalidates any existing address translation for the region of virtual address space
beginning at virt and continuing for len bytes. unmap does not free either the virtual
address space (as with the release standard method) or any physical memory that
was associated with virt.

If the operation fails for any reason, unmap uses throw to signal the error.

unselect-dev

stack: (--)
code: none

A User Interface extension provided by some implementations (e.g. FirmWorks/Sun).

Destroys the instance chain whose ihandle is stored in my-self , clears my-self and
deactivates the active package leaving no active package. Used to reverse the effect of
select , select-dev , begin-select or begin-select-dev

See also: “Using select-dev” on page 35.

until

stack: (C: dest-sys --)
(done? --)

generates: b?branch -offset
Marks the end of a begin ...until conditional loop. When until is encountered,
done? is removed and tested. If done? is true, the loop is terminated and execution

continues just after the until . If done? is false, execution jumps back to just after the
corresponding begin .

For example:

: probe-loop (‘addr --)
\ generate a tight 'scope loop until a key is pressed.
begin dup |@ drop key? until drop

328 Writing FCode Programs for PCI

upc

stack: (charl -- char2)

code: 81
char2 is the upper case version of charl. If charl is not a lower case letter, it is left
unchanged.
For example:

: continue? (-- continue?)
" Want to Continue? Enter Y/N" key dup emit

upc ascii Y =
See also: Icc
u.r “you dot are”
stack: (usize--)

code: 9C

u is converted according to the value of base and then displayed as an unsigned
number right-aligned in a field size digits wide. A trailing space is not displayed.

If the number of digits required to display u is greater than size, all the digits are
displayed with no leading spaces in a field as wide as necessary.

For example:

: formatted-output (--)
my-base h# 8 u.r ." base" cr
my-offset h# 8 u.r ." offset" cr

use-nvramrc?
stack: (-- enabled?)

This configuration variable is a boolean specifying whether the NVRAM script should
be evaluated at system start-up. If use-nvramrc? s true, the script is evaluated. If
use-nvramrc? s false, the script is not evaluated.

The suggested default value of use-nvramrc? s false

user-abort
stack: (... -)(R:...--)
code: 21

Used within an alarm routine to signify that the user has typed an abort sequence.
When alarm finishes, instead of returning to the program that was interrupted by the
execution of alarm , it enters the Open Firmware command interpreter by calling
abort .

Chapter 12 - Open Firmware Dictionary 329

value

stack:
generates:

For example:

: test-dev-status (-- error?) ... ;
: my-checker (--) test-dev-status if user-abort then ;
s install-abort (--) [] my-checker d# 10 alarm ;

(E: -- x) (X "new-name< >" --)
new-token|named-token|external-token b(value)

Creates and initializes a value with the name new-name. When later executed,
new-name leaves its value on the stack. The value of new-name can be changed with to .

For example:

ok 123 value foo foo .
123

ok 456 to foo foo .
456

Open Firmware uses value items widely. We encourage the use of value instead of
variable . A value acts identically to a constant in that it leaves its value on the
stack when executed; a variable must be fetched to obtained its value. But, unlike a
constant , the contents of a value can be changed. By consistently using value (as
opposed to intermixing value and variable), your code will be cleaner and you will
not have to wonder whether a given datum should be stored with ! or to , or whether
or not you need to use @.

In FCode Source, value cannot appear inside a colon definition.

value>sym “value to sym”

stack:
code:

(nl--nlfalse | n2 addr len true)
none

Defer word to resolve symbol values.

This defer word is executed when the symbolic debugger needs to translate a symbol
value into its corresponding name. If value>sym is present, the disassembler attempts
to perform such a translation to display the symbolic representations of the addresses
that it displays. The translation is also attempted by .adr .

If the symbol table contains a symbol whose value is sufficiently close to, but not
greater than, the value nl1, value>sym returns the string addr len representing the
name of that symbol, the non-negative difference n2 between the symbol value and n1,
and true. Otherwise, value>sym returns nl and false.

The default action for value>sym , when no symbol table is present, is to return nl and
false. A program can provide a symbol table and install a command into value>sym
with to to search that symbol table.

See also: sym>value

330

Writing FCode Programs for PCI

variable

stack: (E: -- a-addr) ("new-name< >" --)
generates: new-token|named-token|external-token b(variable)

Creates an uninitialized variable named new-name. When later executed, new-name
leaves its address on the stack. The alignment of the returned address is system-
dependent. The address holds a 32-bit value.

The value of new-name can be changed with ! and fetched with @.

For example:

ok variable foo 123 foo! foo @ .
123

ok 456 foo ! foo ?

456

FirmWorks encourages the use of value instead of variable . A value acts
identically to a constant in that it leaves its value on the stack when executed; a
variable must be fetched to obtained its value. But, unlike a constant , the contents
of a value can be changed. By consistently using value (as opposed to intermixing
value and variable), your code will be cleaner and you will not have to wonder
whether a given datum should be stored with ! or to , or whether or not you need to
use @.

In FCode Source, value cannot appear inside a colon definition.

versionl
stack: (--)
code: FD
versionl may only be used as the first byte of an FCode Program. versionl
m Sets the spread value to 0 causing the FCode Evaluator to read successive bytes of
the current FCode Program from the same address.
Establishes the use of 8-bit branches.
Reads an FCode header from the current FCode Program and either discards it or
uses it to verify the integrity of the current FCode program in an implementation-
dependent manner.
For portability, the preferred way to begin an FCode program in source form is with
the fcode-version 1 tokenizer macro. This macro causes the tokenizer to begin the
FCode binary with the versionl byte and an FCode header.
See also: fcode-version2 , Start0 , startl , start2 , start4
w! “double you store”
stack: (w waddr --)
code: 74

The low-order 16-bits of w are stored at location waddr. waddr must be aligned on a
16-bit boundary.

See also: rw!

Chapter 12 - Open Firmware Dictionary 331

stack:
code:

stack:
code:

Iw

stack:
code:

fw*
stack:
code:

<w@

stack:
code:

wa+

stack:
code:

“double you comma”
(w--)
D1

Compile 16-bits into the dictionary. The dictionary pointer must be 16-bit-aligned.

See also: c,

“double you fetch”

(waddr -- w)
6F

Fetch the 16-bit number stored at waddr and leave the result on the stack. waddr must
be aligned on a 16-bit boundary.

See also: rw@

“per double you”

(-n)
5B

n is the number of address units to a 16-bit word, typically 2.

“per double you star”

(nul--nu2)
67

nu2 is the result of multiplying nul by /w. This is the portable way to convert an index
into a byte offset.

(waddr --n)
70

Fetches the 16-bit number stored at waddr and extends its sign into the upper bytes.
waddr must be 16-bit-aligned.

For example:

ok 9123 8000 w! 8000 <w@ .h
ffff9123

ok 8000 w@ .h

9123

(addrl index -- addr2)
5F

Increments addrl by index times the value of /w. This is the portable way to increment
an address.

332

Writing FCode Programs for PCI

wal+

stack:
code:

wbflip

stack:
code:

whbflips

stack:
code:

wbsplit
stack:
code:

while
stack:

generates:

"width"

(addrl -- addr2)
63

Increments addrl by the value of /w. This is the portable way to increment an address.

(wl--w2)
80

w2 is the result of exchanging the two low-order bytes of the number wl. The two
upper bytes of wl must be zero, or erroneous results will occur.

(waddr len --)
236

Swaps the order of the bytes within each 16-bit word in the memory buffer waddr len.

waddr must be 16-bit-aligned. len must be a multiple /w.

(w - bl.lo b2.hi)
AF

Splits the lower 16 bits of w into two separate bytes. All but the least significant 8 bits
of each output stack result are zero.

(C: dest-sys -- orig-sys dest-sys)
(continue? --)
b?branch +offset

Tests the exit condition for a begin ...while ...repeat conditional loop. When the
while is encountered, continue? is removed from the stack and tested. If continue? is
true, execution continues from just after the while through to the repeat which then
jumps back to just after the begin . If continue? is false, the loop is exited by causing
execution to jump ahead to just after the repeat .

For example:

: probe-loop (addr --)
\ generate a tight 'scope loop until a key is pressed.
begin key? 0= while dup I@ drop repeat drop

This standard property is associated with display devices. The property value is an
integer (encoded with encode-int) that specifies the number of displayable pixles in
the “x”” dimension.

Chapter 12 - Open Firmware Dictionary 333

window-left

stack: (-- border-width)

code: 166
A value , containing the offset (in pixels) of the left edge of the active text area from
the left edge of the visible display. The *“active text area” is where characters are
actually printed. (There is generally a border of unused blank area surrounding it on
all sides.) window-left contains the size of the left portion of the unused border.
The size of the right portion of the unused border is determined by the difference
between screen-width and the sum of window-left plus the width of the active
text area (#columns times char-width).
This word is initially set to 0, but should always be set explicitly to an appropriate
value if you wish to use any fbl- or fb8- utility routines. This can be done with to ,
or it can be set automatically by calling fbl-install or fb8-install
When set with fbx-install , a calculation is done to set window-left so that the
available unused border area is evenly split between the left border and the right
border. (The calculated value for window-left is rounded down to the nearest
multiple of 32, though. This allows all pixel-drawing to proceed more efficiently.) If
you wish to use fbx-install but desire a different value for window-left , simply
change it with to after calling fbx-install

window-top

stack: (-- border-height)

code: 165
A value , containing the offset (in pixels) of the top of the active text area from the top
of the visible display. The “active text area” is where characters are actually printed.
(There is generally a border of unused blank area surrounding it on all sides.) window-
top contains the size of the top portion of the unused border.
The size of the bottom portion of the unused border is determined by the difference
between screen-height and the sum of window-top plus the height of the active
text area (#lines times char-height).
This word is initially set to 0, but should always be set explicitly to an appropriate
value if you wish to use any fbl- or fb8- utility routines. This can be done with to ,
or it can be set automatically by calling fb1-install or fb8-install . When set
with fbx-install , a calculation is done to set window-top so that the available
unused border area is evenly split between the top border and the bottom border. If
you wish to use fbx-install but desire a different value for window-top , simply
change it with to after calling fb x-install

within

stack: (n min max -- min<=n<max?)

code: 45
min<=n<max? is true if n is between min and max, inclusive of min and exclusive of
max.
See also: between

334 Writing FCode Programs for PCI

wljoin
stack:
code:

word

stack:
code:

words

stack:
code:

wpeek
stack:
code:

wpoke
stack:
code:

(w.lo w.hi -- quad)
7D

Combines the least significant 16-bits of each of the two input stack arguments into one
32-bit output stack result. All but the least significant 16-bits of w.lo and w.hi must be
zero.

(delim "<delims>text<delim>" -- pstr)
none

Parses text from the input buffer delimited by delim.

(--)

none

If there is an active package, displays the names of its methods. Otherwise, displays an
implementation-dependent subset (preferably the entire set) of the globally-visible
Forth commands. In either case, the order of display is to display more-recently-
defined names before less-recently-defined names.

The particular words displayed by words can be affected by the tokenizer directives
external , headers and headerless , and by the state of the configuration variable
fcode-debug?

If the FCode program was interpreted from text source, the tokenizer directives have
no affect on the words that are displayed.

However, if the FCode program is first tokenized and then evaluated, words displays:

m All words which were created by the FCode evaluator while the tokenizer directive
external was in effect.

m All words created by the FCode evaluator while the tokenizer directive headers
was in effect if the configuration variable fcode-debug? was true when the FCode
was evaluated.

words never displays words created by the FCode evaluator while the headerless
tokenizer directive was in effect.

(waddr -- false | w true)
221

Tries to read the 16-bit word at address waddr. Returns w and true if the access was
successful. A false return indicates that a read access error occurred. waddr must be 16-
bit aligned.

(w waddr -- okay?)
224

Tries to write the 16-bit word at address waddr. Returns true if the access was
successful. A false return indicates that a write access error occurred. waddr must be 16-

Chapter 12 - Open Firmware Dictionary 335

bit aligned.

Note: wpoke may be unreliable on bus adapters that buffer write accesses.

write
stack: (addr len -- actual)
code: none
Writes len bytes to the device from the memory buffer beginning at addr. Returns actual,
the number of bytes actually written. If actual is less than len, the write did not succeed.
Devices of type network place additional requirements on their write methods:
= hetwork
The write method transmits the network packet of len bytes from memory at addr,
returning the number of bytes actually transmitted. The caller must supply the
complete packet including the MAC header with source and destination address.
For some devices, the seek method sets the position for the next write
write-blocks
stack: (addr block# #blocks -- #written)
code: none
Writes #blocks records of length block-size bytes from memory (starting at addr) to
the device (starting at device block block#). Returns #written, the number of blocks
actually written.
If the device is not capable of random access (e.g. a sequential access tape device),
block# is ignored.
wxjoin
stack: (w.low2w3whi--0)
code: 244
Join four doublets to form an octlet. The high-order bits of each of the doublets are
ignored.
This function is only available on 64-bit implementations.
X, “ecks comma”
stack: (o-)
code: 245
Compile an octlet, o, into the dictionary (doublet-aligned).
This function is only available on 64-bit implementations.
X@ “ecks fetch”
stack: (oaddr --0)
code: 246
Fetch octlet from an octlet aligned address.
This function is only available on 64-bit implementations.
336 Writing FCode Programs for PCI

X!

stack:
code:

/X

stack:
code:

/x*
stack:
code:

Xa+t+

stack:
code:

xal+

stack:
code:

xbflip

stack:
code:

“ecks store”

(o0 oaddr --)
247

Store octlet to an octlet aligned address.

This function is only available on 64-bit implementations.

“per ecks”

(-n)
248

Number of address units in an octlet, typically eight.

This function is only available on 64-bit implementations.

“per ecks star”

(nul--nu2)
249

Multiply nul by the value of /x.

This function is only available on 64-bit implementations.

“ecks ay plus”

(addrl index -- addr2)
24A

Increment addrl by index times the value of /x.

This function is only available on 64-bit implementations.

“ecks ay one plus”

(addrl -- addr2)
24B

Increment addrl by the value of /x.

This function is only available on 64-bit implementations.

(octl -- oct2)
24C

Reverse the bytes within an octlet.

This function is only available on 64-bit implementations.

Chapter 12 - Open Firmware Dictionary

337

xbflips

stack:
code:

xbsplit
stack:
code:

xIflip

stack:
code:

xIflips

stack:
code:

xlIsplit
stack:
code:

Xor

stack:
code:

(oaddr len --)
24D

Reverse the bytes within each octlet in the given region. The region begins at oaddr
and spans len bytes. The behavior is undefined if len is not a multiple of /x.

This function is only available on 64-bit implementations.

(0--blob.2b.3b.4b5b.6Db.7hb.hi)
24E

Split an octlet into 8 bytes. The high-order bits of each of the eight bytes are zero.

This function is only available on 64-bit implementations.

(octl -- oct2)
24F

Reverse the quadlets within an octlet. The bytes within each quadlet are not reversed.

This function is only available on 64-bit implementations.

(oaddr len --)
250

Reverse the quadlets within each octlet in the given region. The bytes within each
guadlet are not reversed. The region begins at oaddr and spans len bytes. The behavior
is undefined if len is not a multiple of /x.

This function is only available on 64-bit implementations.

(0 -- quad.lo quad.hi)
251

Split on octlet into 2 quadlets. The high-order bits of each of the two quadlets are zero.

This function is only available on 64-bit implementations.

(x1x2--x3)
25

x3 is the bit-by-bit exclusive-or of x1 with x2.

338

Writing FCode Programs for PCI

xwilip

stack:
code:

xwflips

stack:
code:

xwsplit
stack:
code:

(octl -- oct2)
252

Reverse the doublets within an octlet. The bytes within each doublet are not reversed.

This function is only available on 64-bit implementations.

(oaddr len --)
253

Reverse the doublets within each octlet in the given region. The bytes within each
doublet are not reversed. The region begins at oaddr and spans len bytes. The behavior
is undefined if len is not a multiple of /x.

This function is only available on 64-bit implementations.

(o --w.low2w3w.hi)
254

Split an octlet into 4 doublets. The high-order bits of each doublet are zero.

This function is only available on 64-bit implementations.

Chapter 12 - Open Firmware Dictionary 339

340 Writing FCode Programs for PCI

A

FCode Reference

FCode Primitives

This appendix contains three lists:

m FCodes sorted according to functional group
m FCodes sorted by byte value
m FCodes sorted alphabetically by name

Each of these lists consist of one or more tables. The tables describe FCodes currently
supported by Open Firmware. Both the FCode token values and Forth names are
included. A token value entry of TGindicates a tokenizer-generated sequence, while -
indicates a tokenizer directive.

341

FCodes by Function

Table 40 Stack Manipulation
Value Function Stack Description
51 depth (--u) How many items on stack?
46 drop (x-) Removes top item from the stack
52 2drop (x1x2--) Removes 2 items from the stack
TG 3drop (x1x2x3--) Removes 3 items from the stack
47 dup (X--xX) Duplicates the top stack item
53 2dup (X1 x2--x1x2x1x2) Duplicates 2 stack items
TG 3dup (X1 x2 x3 -- x1 x2 x3 x1 x2 x3) Copies top 3 stack items
50 ?2dup (x--0]xx) Duplicates the top stack item if it is non-zero
4D nip (X1 x2--x2) Discards the second stack item
48 over (X1 x2--x1x2x1) Copies the second stack item to the top of stack
54 2over (X1 x2 x3 x4 -- X1 x2 x3 x4 x1 x2) Copies 2 stack items
4E pick (XU ...x1x0u--xu...x1x0xu) Copies u-th stack item
30* >r (x--)(R:--x) Moves a stack item to the return stack*
31* r> (-x)(R:x-) Moves item from return stack to data stack*
32 r@ (--x)(R:ix--x) Copies the top of the return stack to the data stack
4F roll (XU ... x1x0u--xu-1...x1x0xu) Rotates u stack items
4A rot (X1 x2x3--x2x3x1) Rotates 3 stack items
4B -rot (x1x2x3--x3x1x2) Shuffles top 3 stack items
56 2rot (X1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) Rotates 3 pairs of stack items
49 swap (x1x2--x2x1) Exchanges the top 2 stack items
55 2swap (X1 x2 x3 x4 -- x3 x4 x1 x2) Exchanges 2 pairs of stack items
4C tuck (X1 x2--x2x1x2) Copies the top stack item belowthe second item

* USE THIS FCODE CAUTIOUSLY.

Table 41 Single-Precision Arithmetic Operations

Value Function Stack Description

1E + (nul nu2 -- sum) Adds nul + nu2.

1F - (nul nu2 -- diff) Subtracts nul - nu2.

20 * (nul nu2 -- prod) Multiplies nul times nu2

21 / (nln2--quot) Divide nl by n2; remainder is discarded.

TG 1+ (nul--nu2) Adds one.

TG 1- (nul - nu2) Subtracts one.

TG 2+ (nul--nu2) Adds two.

TG 2- (nul--nu2) Subtracts two.

2D abs (n--u) Absolute value.

AC bounds (start len -- len+start start) Converts start,len to end,start for do or ?do loop.
2F max (nln2--nl|n2) n3 is maximum of nl and n2

2E min (n1n2--nl]n2) n3 is minimum of nl1 and n2
342 Writing FCode Programs for PCI

Table 41

Single-Precision Arithmetic Operations (Continued)

Value Function

Stack

Description

22 mod (nln2--rem) Remainder of n1 / n2.

TG */mod (nln2n3--rem quot) Remainder, quotient of n1 * n2 / n3.

2A /mod (nln2--rem quot) Remainder, quotient of n1/n2

2C negate (nl--n2) Changes the sign of nl

2B u/mod (ul u2 -- urem uquot) Divide unsigned one-cell number by an unsigned one-cell

number; yield one-cell remainder and quotient.

Table 42 Bitwise Logical Operations
Value Function Stack Description
TG << (x1u--x2) Synonym for Ishift
TG >> (x1u--x2) Synonym for rshift
59 2* (x1--x2) Multiplies by 2
57 2/ (x1--x2) Divides by 2
29 >>3 (x1lu--x2) Arithmetic right shifts n1 by u places
23 and (x1x2--x3) Bitwise logical AND
26 invert (x1--x2) Invert all bits of x1
27 Ishift (x1lu--x2) Left-shift x1 by u bits. Zero-fill low bits.
TG not (x1--x2) Synonym for invert
24 or (x1x2--x3) Bitwise logical OR
28 rshift (x1lu--x2) Right-shift x1 by u bits. Zero-fill high bits.
58 u2/ (x1--x2) Logical right shift 1 bit; zero shifted into high bit.
25 xor (x1x2--x3) Bitwise exclusive OR.
Table 43 Double Number Arithmetic Operations
Value Function Stack Description

D8 d+ (d1d2--d.sum) Adds two double numbers yielding a double number

D9 d- (d1d2--d.diff) Subtracts two double numbers yielding a double number

D4 um* (ul u2--ud.prod) Multiplies two unsigned numbers yielding an unsigned double
number product.

D5 um/mod (ud u -- urem uquot) Divides an unsigned double number by an unsigned yielding an

unsigned remainder and quotient

Table 44 Memory Access

Value Function Stack Description

72 ! (X a-addr --) Stores a number into the variable at a-addr
6C +! (nu a-addr --) Adds nu to the number stored in the variable at a-addr
77 2! (x1 x2 a-addr --) Stores 2 numbers at a-addr; x2 at lower address

343

Table 44 Memory Access (Continued)

Value Function Stack Description

76 2@ (a-addr -- x1 x2) Fetches 2 numbers from a-addr; x2 from lower address

6D @ (a-addr -- x) Fetches a number from the variable at a-addr

TG ? (a-addr --) Displays the number at a-addr

75 c! (byte addr --) Stores low byte of n at addr

71 c@ (addr -- byte) Fetches a byte from addr

TG blank (addr len --) Sets len bytes of memory to ASCII space, starting at addr

TA comp (addrl addr2 len -- n) Compares two byte arrays including case. n=0 if same

TG erase (addr len --) Sets len bytes of memory to zero, starting at addr

79 fill (addr len byte --) Sets len bytes of memory to value byte

0228 Ibflips (gaddr len --) Reverses bytes within each quadlet in given region

0237 Iwflips (gaddr len --) Exchanges doublets within quadlets in gaddr len

73 Il (quad gaddr --) Stores the quadlet at gaddr, must be 32-bit aligned

6E 1@ (gaddr -- quad) Fetches the quadlet at gaddr, must be 32-bit aligned

78 move (src-addr dest-addr len --) Copies len bytes from src-addr to dest-addr, handles overlap

correctly.

6B off (a-addr --) Stores false (32-bit 0) at a-addr

6A on (a-addr --) Stores true (32-bit -1) at a-addr

0236 wbflips (waddr len --) Exchanges bytes within doublets in the specified region

74 w! (w waddr --) Stores a doublet at waddr, must be 16-bit aligned

6F w@ (waddr -- w) Fetches the unsigned doublet at waddr, must be 16-bit aligned

70 <w@ (waddr -- n) Fetches the signed doublet at waddr, must be 16-bit aligned

The memory access commands listed in Table 45 are available only on 64-bit Open
Firmware implementations.
Table 45 64-Bit Memory Access

Value Function Stack Description

0242 <l@ (gaddr --n) Fetch quadlet from gaddr, sign-extended.

0246 x@ (oaddr --o0) Fetch octlet from an octlet aligned address.

0247 x! (o oaddr --) Store octlet to an octlet aligned address.

024D xbflips (oaddr len --) Reverse the bytes within each octlet in the given region.The behavior is
undefined if len is not a multiple of /x .

0250 xlIflips (oaddr len --) Reverse the quadlets within each octlet in the given region. The bytes within
each quadlet are not reversed. The behavior is undefined if len is not a
multiple of /x .

0253 xwflips (oaddr len --) Reverse the doublets within each octlet in the given region. The bytes within
each doublet are not reversed. The behavior is undefined if len is not a
multiple of /x .

344 Writing FCode Programs for PCI

Table 46 Atomic Access

Value Function Stack Description
0230 rb@ (addr -- byte) Reads the 8-bit value at the given address, atomically
0231 rb! (byte addr --) Writes the 8-bit value at the given address, atomically
0232 rw@ (waddr -- w) Reads the doublet at the given address, atomically
0233 rw! (w waddr --) Writes the doublet at the given address, atomically
0234 rl@ (gaddr -- quad) Reads the quadlet at the given address, atomically
0235 rl! (quad gaddr --) Writes the quadlet at the given address, atomically
The atomic access commands listed in Table 47 are available only on 64-bit Open
Firmware implementations.
Table 47 64-Bit Atomic Access
Value Function Stack Description
022E rx@ (oaddr --0) Reads the octlet at the given address, atomically
022F rx! (o oaddr --) Writes the octlet at the given address, atomically
Table 48 Data Exception Tests
Value Function Stack Description
0220 cpeek (addr -- false | byte true) Reads 8-bit value at given address, returns false if unsuccessful
0221 wpeek (waddr -- false | w true) Reads doublet at given address, returns false if unsuccessful
0222 Ipeek (gaddr -- false | quad true) Reads quadlet at given address, returns false if unsuccessful
0223 cpoke (byte addr -- okay?) Writes 8-bit value at given address, returns false if unsuccessful
0224 wpoke (w waddr -- okay?) Writes doublet at given address, returns false if unsuccessful
0225 Ipoke (quad gaddr -- okay?) Writes quadlet at given address, returns false if unsuccessful
Table 49 Comparison Operations
Value Function Stack Description
36 0< (n -- less-than-0?) True ifn<0
37 0<= (n -- less-or-equal-to-0?) Trueifn<=0
35 0<> (n -- not-equal-to-0?) True if n<>0
34 0= (nulflag -- equal-to-0?) True if n = 0, also inverts any flag
38 0> (n -- greater-than-0?) True ifn>0
39 0>= (n -- greater-or-equal-to-0?) True if n>=0
3A < (n1n2--less?) True if n1 < n2
43 <= (nl n2 -- less-or-equal?) True if n1 <=n2
3D <> (x1 x2 -- not-equal?) True if x1 <> x2
3C = (x1 x2 -- equal?) True if x1 = x2
3B > (N1 n2 -- greater?) True if n1 > n2

345

Table 49 Comparison Operations (Continued)

Value Function Stack Description
42 >= (Nl n2 -- greater-or-equal?) True if n1 >=n2
44 between (N min max -- min<=n<=max?) True if min <= n <= max
TG false (-- false) The value false
TG true (--true) The value true
40 u< (ul u2 -- unsigned-less?) True if ul < u2, unsigned
3F u<= (ul u2 -- unsigned-less-or-equal?) True if ul <= u2, unsigned
3E u> (ul u2 -- unsigned-greater?) True if ul > u2, unsigned
41 u>= (ul u2 -- unsigned-greater-or-equal?) True if ul >= u2, unsigned
45 within (N min max -- min<=n<max?) True if min <= n < max
Table 50 Text Input
Value Function Stack Description
- (([text<)> --) Begins a comment (ignored)
- \ (--) Ignore rest of line (comment)
TG ascii ([text< >] -- char) ASCII value of next character
TG control ([text< >] -- char) Interprets next character as ASCII control character
8E key (--char) Reads a character from the keyboard
8D key? (-- pressed?) True if a key has been typed on the keyboard
TG accept (addr lenl -- len2) Gets an edited input line, stores it at addr
8A expect (addr len --) Gets a line of edited input from the keyboard; stores it at addr
88 span (-- a-addr) Variable containing the number of characters read by expect
Table 51 ~ ASCII Constants
Value Function Stack Description
AB bell (-- 0x07) The ASCII code for the bell character; decimal 7
A9 bl (-- 0x20) The ASCII code for the space character; decimal 32
AA bs (-- 0x08) The ASCII code for the backspace character; decimal 8
TG carret (--0x0D) The ASCII code for the carriage return character; decimal 13
TG linefeed (-- OX0A) The ASCII code for the linefeed character; decimal 10
TG newline (--n) The ASCII code for the newline character; decimal 10
Table 52 Numeric Input
Value Function Stack Description
A4 -1 (---1) Constant -1
A5 0 (--0) Constant 0
A6 1 (-1) Constant 1
A7 2 (--2) Constant 2
346 Writing FCode Programs for PCI

Table 52 Numeric Input (Continued)

Value Function Stack Description

A8 3 (--3) Constant 3

TG d# ([number< >] -- n) Interprets next number in decimal

- decimal (--) If outside definition, change numeric conversion base to decimal

TG h# ([number< >] -- n) Interprets next number in hexadecimal

- hex (--) If outside definition, change numeric conversion base to hexadecimal
TG o# ([number< >] -- n) Interprets next number in octal

- octal (--) If outside definition, change numeric conversion base to octal

Table 53 Numeric Primitives

Value Function Stack

Description

99 u# (ul--u2) Converts a digit in pictured numeric output
97 u#> (u--strlen) Ends pictured numeric output
96 <# (--) Initializes pictured numeric output
Cc7 # (udl--ud2) Converts a digit in pictured numeric output
conversion
C9 #> (ud --str len) Ends pictured numeric output conversion
A0 base (-- a-addr) Variable containing number base
A3 digit (char base -- digit true | char false) Converts a character to a digit
95 hold (char --) Inserts the char in the pictured numeric output string
C8 #s (ud--00) Converts remaining digits in pictured numeric output
9A u#s (ul--u2) Converts rest of the digits in pictured numeric output
98 sign (n-) Sets sign of pictured output
A2 $number (addr len -- true | n false) Converts a string to a number
Table 54 Numeric Output
Value Function Stack Description
9D (nu--) Displays a number
TG d (n--) Displays number in decimal
TG decimal (--) If inside definition, output in decimal
TG .h (n-) Displays number in hexadecimal
TG hex (--) If inside definition, output in hexadecimal
TG octal (--) If inside definition, output in octal
9E .r (nsize--) Displays a number in a fixed width field
9F S (eon--2) Displays the contents of the data stack
TG S. (n-) Displays n as a signed number
9B u. (u--) Displays an unsigned number
9C u.r (usize--) Prints an unsigned number in a fixed width field

347

Table 55 General-purpose Output

Value Function Stack Description

TG (([text<)>] --) Displays a string now

91 (cr (--) Outputs ASCII CR character; decimal 13
92 cr (--) Starts a new line of display output

8F emit (char --) Displays the character

TG space (--) Outputs a single space character

TG spaces (cent--) Outputs cnt spaces

90 type (text-str text-len --) Displays n characters

Table 56 Formatted Output

Value Function Stack Description
94 #line (-- a-addr) Variable holding the line number on the output device
93 #out (-- a-addr) Variable holding the column number on the output device

Table 57 begin Loops

Value Function Stack Description

TG again (C: dest-sys --) Ends begin...again (infinite) loop

TG begin (C:--dest-sys) (--) Starts conditional loop

TG repeat (C: orig-sys dest-sys --) (--) Returns to loop start

TG until (C: dest-sys --) (done? --) If true, exits begin...until loop

TG while (C: dest-sys -- orig-sys dest-sys) If true, continues begin...while...repeat loop,
(continue? --) else exits loop

Table 58 Conditionals

Value Function Stack Description

TG if (C: -- orig-sys) (do-next? --) If true, executes next FCode(s)

TG else (C: orig-sysl -- orig-sys2) (--) (optional) Executes next FCode(s) if if failed
TG then (C:orig-sys--)(--) Terminates if...else...then

Table 59 case Statements

Value Function Stack Description

TG case (C: -- case-sys) (sel -- sel) Begins a case (multiple selection) statement

348 Writing FCode Programs for PCI

Table 59

case Statements (Continued)

Value Function Stack Description
TG endcase (C: case-sys --) (sel --) Marks end of a case statement
TG of (C: case-sysl -- case-sys2 of-sys) Returns to loop start
(sel of-val -- sel | <nothing>)
TG endof (C: case-sysl of-sys -- case-sys2) (--) |If true, exits begin...until loop
Table 60 do Loops
Value Function Stack Description
TG do (C: -- dodest-sys) Loops, index start to end-1 inclusive
(limit start --) (R: -- sys)
TG ?2do (C: -- dodest-sys) Like do, but skips loop if end = start
(limit start --) (R: -- sys)
19 i (--index) (R: sys -- sys) Returns current loop index value
1A j (--index) (R: sys -- sys) Returns value of next outer loop index
TG leave () (R:sys--) Exits do loop immediately
TG ?leave (exit? --) (R:sys --) If flag is true, exits do loop
TG loop (C: dodest-sys --) (--) Increments index, returns to do
(R: sysl -- <nothing> | sys2)
TG +loop (C: dodest-sys --) (delta --) Increments by n, returns to do. If n<0, index start to
(R: sysl -- <nothing> | sys2) end
89 unloop (--)(R:sys--) Discards loop control parameters
Table 61 Control Words
Value Function Stack Description
1D execute (...xt--7??) Executes the word whose compilation address is on the stack
33 exit (--) (R:sys--) Returns from the current word
Table 62 Strings
Value Function Stack Description
TG ! ([text<">< >] -- text-str text-len) Collects a string
TG s" ([text<**>] -- test-str text-len) Gathers the immediately-following string
84 count (pstr -- str len) Unpacks a packed string
82 Icc (charl -- char2) Converts char to lower case
83 pack ('str len addr -- pstr) Makes a packed string from addr len,
placing it at pstr
81 upc (charl -- char2) Converts char to upper case
0240 left-parse-string (' str len char Splits a string at the given delimiter (which
-- R-str R-len L-str L-len) is discarded)
011B parse-2int (‘str len -- val.lo val.hi) Converts a string into a physical address

and space

349

Table 63 Defining Words

Value Function Stack Description

TG : (colon) name (E: ... --??22)(--) Begins colon definition

TG ; (semicolon) (--) Ends colon definition

- alias (E:...--?7?) Creates newname with behavior of

(“new-name< >old-name< >” --) oldname

TG buffer: (E: -- a-addr) (len "new-name< >" --) Creates data array of size bytes
TG constant (E:--x) (x"new-name< >" --) Creates a constant

TG create (E: -- a-addr) ("new-name< >" --) Generic defining word

TG defer (E: ... --???) ("new-name< >" --) Execution vector (change with is)
TG field (E: addr -- addr+offset) Creates a named offset pointer

(offset size "new-name< >" -- offset+size)

Cco instance (--) Declare a data type to be local

TG struct (--0) Initializes for field creation

TG variable (E: -- a-addr) ("new-name< >"--) Creates a data variable

TG value (E: -- x) (X "new-name< >"--) Creates named value-type variable

(change with is)
Table 64 Dictionary Compilation

Value Function Stack Description

D3 , (x--) Places a number in the dictionary

DO c, (byte --) Places a byte in the dictionary

AD here (--addr) Address of top of dictionary

D2 I, (quad --) Places a quadlet in the dictionary

D1 w, (w--) Places a doublet in the dictionary

TG allot (len--) Allocates len bytes in the dictionary

TG to (param [old-name< >] --) Changes value in a defer word or a value

DD compile (--) Compiles following command at run time

DC state (-- a-addr) Variable containing true if in compilation state

The dictionary compilation commands listed in Table 65 are available only on 64-bit
Open Firmware implementations.
Table 65 64-Bit Dictionary Compilation

Value Function Stack Description

0245 X, (o--) Compile an octlet, o, into the dictionary (doublet-aligned).
350 Writing FCode Programs for PCI

Table 66 ~ Dictionary Search
Value Function Stack Description
TG ' ("old-name< >" -- xt) Finds the word (while executing)
TG ['l name (--xt) Finds word (while compiling)
CB $find (name-str name-len Finds a name in the dictionary
-- Xt true | name-str name-len false)
CD eval (...strlen--?7?) Executes Forth commands within a string
CD evaluate (...strlen--?7?) Interprets Forth text from the given string
Table 67 Address Arithmetic
Value Function Stack Description
AE aligned (nl--nlja-addr) Increases nl if necessary to yield a variable aligned address.
5A /c (--n) Address increment for a byte; 1
TG /c* (nul--nu2) Synonym for chars
5E ca+ (addrl index -- addr2) Increments addrl by index times /¢
TG cal+ (addrl -- addr2) Synonym for chars +
65 cell+ (addrl -- addr2) Increments addrl by /n
69 cells (nul--nu2) Multiplies by /n
62 char+ (addrl -- addr2) Increments addrl by /c
66 chars (nul--nu2) Multiplies by /¢
5C /1 (--n) Address increment for a quadlet;
68 /1* (nul--nu2) Multiplies by /1
60 la+ (addrl index -- addr2) Increments addrl by index times /I
64 lal+ (addrl -- addr2) Increments addrl by /I
5D /n (--n) Address increment for a normal;
TG /n* (nul--nu2) Synonym for cells
61 na+ (addrl index -- addr2) Increments addrl by index times /n
TG nal+ (addrl -- addr2) Synonym for cell +
5B /w (--n) Address increment for a doublet;
67 /w* (nul--nu2) Multiplies by /w
5F wa+ (addrl index -- addr2) Increments addrl by index times /w
63 wal+ (addrl -- addr2) Increments addrl by /w

The address arithmetic commands listed in Table 68 are available only on 64-bit Open

Firmware implementations.

Table 68

64-Bit Address Arithmetic

Value Function Stack

Description

0248

/X

(-n)

Number of address units in an octlet, typically eight.

351

Table 68 64-Bit Address Arithmetic (Continued)

Value Function Stack Description

0249 /x* (nul--nu2) Multiply nul by the value of /x .

024A xat (addrl index -- addr2) Increment addrl by index times the value of /x .
024B xal+ (addrl -- addr2) Increment addrl by the value of /x .

Table 69 Data Type Conversion

Value Function Stack Description

TF bljoin (bl.lo b2 b3 b4.hi -- quad) Joins four bytes to form a quadlet
BO bwijoin (b.lo b.hi --w) Joins two bytes to form a doublet
0227 Ibflip (quadl -- quad?) Reverses the bytes within a quadlet
T7E lbsplit (quad -- b.lo b2 b3 b4.hi) Splits a quadlet into four bytes

T7E lwflip (quadl -- quad2) Swaps the doublets within a quadlet
7C lwsplit (quad -- wi.lo w2.hi) Splits a quadlet into two doublets
80 whbflip (wl--w2) Swaps the bytes within a doublet
AF whbsplit (w -- bl.lo b2.hi) Splits a doublet into two bytes

7D wljoin (w.lo w.hi -- quad) Joins two doublets to form a quadlet

The data type conversion commands listed in Table 70 are available only on 64-bit
Open Firmware implementations.

Table 70 64-Bit Data Type Conversion

Value Function Stack Description

0241 bxjoin (b.lob.2b.3b.4b5b.6b.7b.hi--0) Joineight bytes to form an octlet.

0243 Ixjoin (quad.lo quad.hi --0) Join two quadlets to form an octlet.

0244 wxjoin (w.lo w.2 w3 w.hi--0) Join four doublets to form an octlet.

024C xbflip (octl -- oct2) Reverse the bytes within an octlet.

024E xbsplit (o0--blob.2b.3b.4b5b.6b.7b.hi) Splitan octlet into eight bytes.

024F xlIflip (octl -- oct2) Reverse the quadlets within an octlet. The bytes within
each quadlet are not reversed.

0251 xlsplit (0 -- quad.lo quad.hi) Split on octlet into two quadlets.

0252 xwflip (octl -- oct2) Reverse the doublets within an octlet. The bytes

within each doublet are not reversed.

0254 xwsplit (0 --w.low.2 w3 w.hi) Split an octlet into four doublets.

Table 71 Memory Buffers Allocation

Value Function Stack Description
8B alloc-mem (len -- a-addr) Allocates nbytes of memory and returns its address
8C free-mem (‘a-addr len --) Frees memory allocated by alloc-mem

352 Writing FCode Programs for PCI

Table 72

Miscellaneous Operators

Value Function Stack Description
86 >body (xt -- a-addr) Finds parameter field address from compilation address
85 body> (a-addr -- xt) Finds compilation address from parameter field address
DA get-token (FCodet -- xt Converts FCode Number to function execution token
immediate?)
DB set-token (xt immediate? Assigns FCode Number to existing function
FCodet# --)
00 end0 (--) Marks the end of FCode
FF endl (--) Alternates form for end0 (not recommended)
TG fcode-versionl (--) Begins FCode program
023E byte-load (addr xt --) Interprets FCode beginning at location addr
- fload ([filename<cr>] --) Begins tokenizing filename
- headerless (--) Creates new names with new-token (no name fields)
- headers (--) Creates new names with named-token (default)
7B noop (--) Does nothing
CcC offset16 (--) All further branches use 16-bit offsets (instead of 8-bit)
- tokenizer[(--) Begins tokenizer program commands
- Jtokenizer (--) Ends tokenizer program commands
TG fcode-version2 (--) Begins 2.0 FCode program, compiles startl
- external (--) Creates new names with external-token
Table 73 Internal Operators, (invalid for program text)
Value Function Stack Description
01-0F First byte of a two byte FCode
10 b(lit) (--n) (F: /FCode-num32/ --) Followed by 32-bit#. Compiled by numeric data
11 b(") (--xt) (F: /FCode#/ --) Followed by a token (1 or 2-byte code) . Compiled
by ['] or’
12 b(") (--strlen) Followed by count byte, text. Compiled by " or ."
(F: /FCode-string/ --)
C3 b(to) (x--) Compiled by to
FD versionl (--) Compiled by fcode-versionl as the first FCode byte
followed by a reserved byte, the FCode checksum
(2 bytes) and the FCode length (4 bytes).
13 bbranch (--) (F: /FCode-offset/ --) Followed by offset. Compiled by else or again
14 b?branch (don’t-branch? --) Followed by offset. Compiled by if or until
(F: /FCode-offset/ --)
15 b(loop) (--) (F: /FCode-offset/ --) Followed by offset. Compiled by loop
16 b(+loop) (delta--) Followed by offset. Compiled by +loop
(F: /FCode-offset/ --)
17 b(do) (limit start --) Followed by offset. Compiled by do

(F: /FCode-offset/ --)

353

Table 73

Internal Operators, (invalid for program text) (Continued)

Value Function Stack Description
18 b(?do) (limit start --) Followed by offset. Compiled by ?do
(F: /FCode-offset/ --)

1B b(leave) (F:.--) Compiled by leave or ?leave

B1 b(<mark) (F:--) Compiled by begin

B2 b(>resolve) (--)(F:-) Compiled by else or then

C4 b(case) (sel--sel)(F:-) Compiled by case

C5 b(endcase) (sel--)(F:--) Compiled by endcase

C6 b(endof) (--) (F: /FCode-offset/ --) Compiled by endof

1C b(of) (' sel of-val -- sel | <nothing>) Followed by offset. Compiled by of

(F: /FCode-offset/ --)

B5 new-token (--) (F: /FCode#/ --) Followed by table#, code#, token-type. Compiled
by any defining word. Headerless, not used
normally.

B6 named-token (--) Followed by packed string (count,text), table#,

(F: /7FCode-string FCode#/ --) code#, token-type. Compiled by any defining word
(: value constant etc.)

B7 b() (E:...--???) (F: -- colon-sys) Token-type compiled by :

B8 b(value) (E:--x)(Fx-) Token-type compiled by value

B9 b(variable) (E:--a-addr) (F: --) Token-type compiled by variable

BA b(constant) (E:--n)(F:n-) Token-type compiled by constant

BB b(create) (E:--a-addr) (F: --) Token-type compiled by create

BC b(defer) (B . =?2?)(F =) Token-type compiled by defer

BD b(buffer:) (E: -- a-addr) (F: size --) Token-type compiled by buffer:

BE b(field) (E: addr -- addr+offset) Token-type compiled by field

(F: offset size -- offset+size)
C2 b(}) (--) (F: colon-sys --) End a colon definition. Compiled by ;
CA external-token (--) vt

(F: /FCode-string FCode#/ --)

FO start0 (--) Like startl, but fetches successive tokens from
same address

F1 startl (--) Compiled by fcode-version2 as the first FCode byte
followed by a reserved byte, the FCode checksum
(2 bytes) and the FCode length (4 bytes). Uses 16-
bit branches. Fetches successive tokens from
consecutive addresses

F2 start2 (--) Like startl, but fetches successive tokens from
consecutive 16-bit addresses

F3 start4 (--) Like startl, but fetches successive tokens from
consecutive 32-bit addresses

Table 74 Memory Allocation
Value Function Stack Description
0105 free-virtual (virtsize --) Frees virtual memory from memmap, dma-alloc,or map-low
354 Writing FCode Programs for PCI

Table 75 Properties

Value Function Stack Description

0110 property (prop-addr prop-len name-str name-len --) Declares a property with the
given value structure, for the
given name string.

021E delete-property (nam-str nam-len --) Deletes the property with the
given name
0115 encode-bytes (data-addr data-len -- prop-addr prop-len) Converts a byte array into an
prop-format string
0111 encode-int (n -- prop-addr prop-len) Converts a number into an
prop-format string
0113 encode-phys (phys.lo ... phys.hi -- prop-addr prop-len) Converts physical address and
space into an prop-format string
0114 encode-string (‘str len -- prop-addr prop-len) Converts a string into an prop-
format string
0112 encode+ (prop-addrl prop-lenl prop-addr2 prop-len2 Merges two prop-format strings.
-- prop-addr3 prop-len3) They must have been created
sequentially
TG decode-bytes (prop-addrl prop-lenl data-len Decodes a byte array from a
-- prop-addr2 prop-len2 data-addr data-len) prop-encoded-array
021B decode-int (prop-addrl prop-lenl Converts the beginning of an
-- prop-addr2 prop-len2 n) prop-format string to an integer
021C decode-string (prop-addrl prop-lenl Converts the beginning of an
-- prop-addr2 prop-len2 str len) prop-format string to a normal
string
0128 decode-phys (prop-addrl prop-lenl Decode a unit-address from a
-- prop-addr2 prop-len2 phys.lo ... phys.hi) prop-encoded-array
021A get-my-property (nam-str nam-len Returns the prop-format string
-- true | prop-addr prop-len false) for the given property name
021D get-inherited-property (nam-str nam-len Returns the value string for the
-- true | prop-addr prop-len false) given property, searches
parents’ properties if not found
021F get-package-property (name-str name-len phandle Returns the prop-format string
-- true | prop-addr prop-len false) for the given property name in

the package "phandle”

Table 76 Commmonly-used Properties

Value Function Stack Description

0116 reg (phys.lo ... phys.hi size --) Declares location and size of device registers

0119 model (strlen--) Declares model number for this device, such as
" SUNW,501-1415-01"

011A device-type (strlen--) Declares type of device, e.g. " display”, " block", " byte",
" network", or " serial"

TG name (addr len --) Declares SunOS driver name, as in " SUNW,zebra"

0201 device-name (' strlen --) Creates the "name" property with the given value

355

Table 77 System Version Information

Value Function Stack Description
87 fcode-revision (--n) Returns major/minor FCode interface version
Table 78 Device Node Creation
Value Function Stack Description
011F new-device (--) Creates a new device node as a child of the active package. and makes the new
node the active package.
0127 finish-device (--) Completes a device node that was created by new-device
Table 79 Self-test Utility Routines
Value Function Stack Description
0120 diagnostic-mode? (-- diag?) Returns "true” if extended diagnostics are desired
0121 display-status (n-) Obsolete
0122 memory-test-suite (addr len -- fail?) Calls memory tester for given region
0124 mask (-- a-addr) Variable, holds "mask" used by memory-test-suite
Table 80 Time Utilities
Value Function Stack Description
0125 get-msecs (-n) Returns the current time, in milliseconds, approx.
0126 ms (n--) Delays for n milliseconds. Resolution is 1 millisecond
0213 alarm (xtn--) Periodically execute xt. If n=0, stop.
Table 81 Machine-specific Support
Value Function Stack Description
0130 map-low (phys.lo ... size -- virt) Maps a region of memory in 'sbus’ address space
0131 sbus-intr>cpu (sbus-intr# -- cpu-intr#) Translates SBus interrupt# into CPU interrupt#
Note — Note — Table 82 through Table 89 apply only to display device-types.
Table 82 Terminal Emulator Interface
Value Function Stack Description
011C is-install (xt--) Identifies "install" routine to allocate a framebuffer
011D is-remove (xt--) Identifies "remove" routine, to deallocate a framebuffer
011E is-selftest (xt--) Identifies "selftest" routine for this framebuffer
356 Writing FCode Programs for PCI

Table 83 User-set Terminal Emulator State Values

Value Function Stack Description
0150 #lines (--rows) Number of lines of text being used for display. This word must be
initialized (using to). fb x-install does this automatically, and also
properly incorporates the configuration variable screen-#rows
0151 #columns (-- columns) Number of columns (chars/line) used for display. This word must be
initialized (using to). fb x-install does this automatically, and also
properly incorporates the configuration variable screen-#columns
Table 84 Terminal Emulator-set Terminal Emulator State Values
Value Function Stack Description
0152 line# (-- line#) Current cursor position (line#). 0 is top line
0153 column# (-- column#) Current cursor position. 0 is left char.
0154 inverse? (-- white-on-black?) True if output is inverted (white-on-black)
0155 inverse-screen? (-- black?) True if screen has been inverted (black background)
Table 85 Display Device Low-level Interface defer Words
Value Function Stack Description
0157 draw-character (char --) Paints the given character and advances the
cursor
0158 reset-screen (--) Initializes the display device
0159 toggle-cursor (--) Draws or erase the cursor
015A erase-screen (--) Clears all pixels on the display
015B blink-screen (--) Flashes the display momentarily
015C invert-screen (--) Changes all pixels to the opposite color
015D insert-characters (n--) Inserts n blanks just before the cursor
015E delete-characters (n--) Deletes n characters to the right of the cursor
Remaining chars slide left
015F insert-lines (n--) Inserts n blank lines just before the current line,
lower lines are scrolled downward
0160 delete-lines (n--) Deletes n lines starting with the current line,
lower lines are scrolled upward
0161 draw-logo (line# addr width height --) Draws the logo
Table 86 Frame Buffer Parameter Values*
Value Function Stack Description
016C char-height (-- height) Height (in pixels) of a character (usually 22)
016D char-width (-- width) Width (in pixels) of a character (usually 12)
016F fontbytes (-- bytes) Number of bytes/scan line for font entries (usually 2)

357

Table 86 Frame Buffer Parameter Values* (Continued)

Value Function Stack Description

0162 frame-buffer-adr (-- addr) Address of frame buffer memory

0163 screen-height (-- height) Total height of the display (in pixels)

0164 screen-width (-- width) Total width of the display (in pixels)

0165 window-top (-- border-height) Distance (in pixels) between display top and text window
0166 window-left (-- border-width) Distance (in pixels) between display left edge and text

window left edge

*These must all be initialized before using any fb x- routines.

Table 87 Font Operators

Value Function Stack Description
016A default-font (-- addr width height advance min- char #glyphs) Returns default font values, plugs
directly into set-font
016B set-font (addr width height advance min-char #glyphs --) Sets the character font for text output
016E >font (char -- addr) Returns font address for given ASCI|I
character
Table 88 One-bit Framebuffer Utilities
Value Function Stack Description
0170 fbl-draw-character (char --) Paints the character and advance the cursor
0171 fbl-reset-screen (--) Initializes the display device (noop)
0172 fbl-toggle-cursor (--) Draws or erases the cursor
0173 fbl-erase-screen (--) Clears all pixels on the display
0174 fbl-blink-screen (--) Inverts the screen, twice (slow)
0175 fbl-invert-screen (--) Changes all pixels to the opposite color
0176 fbl-insert-characters (n--) Inserts n blanks just before the cursor
0177 fbl-delete-characters (n--) Deletes n characters, starting at with cursor
character, rightward. Remaining chars slide
left
0178 fbl-insert-lines (n-) Inserts n blank lines just before the current
line, lower lines are scrolled downward
0179 fbl-delete-lines (n-) Deletes n lines starting with the current
line,lower lines are scrolled upward
017A fbl-draw-logo (line# addr width height --) Draws the logo
017B fbl-install (width height #columns #lines --) Installs the one-bit built-in routines
017C fbl-slide-up (n-) Like fbl-delete-lines, but doesn’t clear lines
at bottom
358 Writing FCode Programs for PCI

Table 89 Eight-bit Framebuffer Utilities

Value Function Stack Description
0180 fb8-draw-character (char --) Paints the character and advance the cursor
0181 fb8-reset-screen (--) Initializes the display device (noop)
0182 fb8-toggle-cursor (--) Draws or erases the cursor
0183 fb8-erase-screen (--) Clears all pixels on the display
0184 fb8-blink-screen (--) Inverts the screen, twice (slow)
0185 fb8-invert-screen (--) Changes all pixels to the opposite color
0186 fb8-insert-characters (n--) Inserts n blanks just before the cursor
0187 fb8-delete-characters (n--) Deletes n characters starting with cursor char,
rightward. Remaining chars slide left
0188 fb8-insert-lines (n--) Inserts n blank lines just before the current
line, lower lines are scrolled downward
0189 fb8-delete-lines (n--) Deletes n lines starting with the current line,
lower lines are scrolled upward
018A fb8-draw-logo (line# addr width height --) Draws the logo
018B fh8-install (width height #columns #lines --) Installs the eight-bit built-in routines
Table 90 Package Support
Value Function Stack Description
023C peer (phandle -- phandle.sibling) Returns phandle of package that is the next
child of the the parent of the package
023B child (phandle.parent -- phandle.child) Returns phandle of the package that is the
first child of the package parent-phandle
0204 find-package (name-str name-len Finds a package named "name-str"
-- false | phandle true)
0205 open-package (‘arg-str arg-len phandle Opens an instance of the package "phandle,"
--ihandle | 0) passes arguments "arg-str arg-len"
020F $open-package (‘arg-str arg-len name-str name-len Finds a package "name-str name-len” then
--ihandle | 0) opens it with arguments "arg-str arg-len"
020A my-parent (-- ihandle) Returns the ihandle of the parent of the
current package instance
0203 my-self (-- ihandle) Returns the instance handle of currently-
executing package instance
020B ihandle>phandle (ihandle -- phandle) Converts an ihandle to a phandle
0206 close-package (ihandle --) Closes an instance of a package
0207 find-method (method-str method-len phandle Finds the method (command) named
-- false | xt true) "method-str" within the package "phandle"
0208 call-package (... xt ihandle -- 7??) Executes the method "xt" within the instance
"ihandle"
020E $call-method (... method-str method-len ihandle Executes the method named "method-str"
- 77?) within the instance "ihandle"

359

Table 90

Package Support (Continued)

Value Function Stack Description
0209 $call-parent (... method-str method-len -- 7?7) Executes the method "method-str" within the
parent’s package
0202 my-args (-- arg-str arg-len) Returns the argument str passed when this
package was opened
020D my-unit (-- phys.lo ... phys.hi) Returns the physical unit number pair for
this package
0102 my-address (-- phys.lo ...) Returns the physical addr of this plug-in
device. "phys" is a "magic" number, usable by
other routines
0103 my-space (-- phys.hi) Returns address space of plug-in device.
"space” is a "magic" number, usable by other
routines
Table 91 ~ Asynchronous Support
Value Function Stack Description
0213 alarm (xtn--) Executes method (command) indicated by "xt" every "n" milliseconds
0219 user-abort (... --)(R:...--) Abort after alarm routine finishes execution
Table 92 Miscellaneous Operations
Value Function Stack Description
0214 (is-user-word) (E: ... --?7?) Creates a new word called "name-str" which executes "xt"
(name-str name-len xt --)
01A4 mac-address (-- mac-str mac-len) Returns the MAC address
Table 93 Interpretation
Value Function Stack Description
0215 suspend-fcode (--) Suspends execution of FCode, resumes later if an undefined command is
required
Table 94 Error Handling
Value Function Stack Description
0216 abort (..)R --) Aborts FCode execution, returns to the "ok" prompt
0217 catch (... xt--???error-code | ??? false) Executes "xt," returns throw error code or 0 if throw
not encountered
0218 throw (... error-code -- ??? error-code | ...) Returns given error code to catch
FC ferror (--) Displays “Unimplemented FCode” and stops FCode
interpretation
360 Writing FCode Programs for PCI

FCodes by Byte Value

The following table lists, in hexadecimal order, currently-assigned FCode byte values.
FCode values marked with an asterisk are available only on 64-bit implementations.

FCodes by Byte Value

Value Function Stack

00 end0 (--)

10 b(lit) (--n) (F: /FCode-num32/ --)

11 b(") (--xt) (F: /FCode#/ --)

12 b(") (--strlen) (F: /FCode-string/ --)

13 bbranch (--) (F: /FCode-offset/ --)

14 b?branch (don’t-branch? --) (F: /FCode-offset/ --)
15 b(loop) (--) (F: /FCode-offset/ --)

16 b(+loop) (delta --) (F: /FCode-offset/ --)

17 b(do) (limit start --) (F: /FCode-offset/ --)
18 b(?do) (limit start --) (F: /FCode-offset/ --)
19 i (--index) (R: sys -- sys)

1A j (--index) (R: sys --sys)

1B b(leave) (F:--)

1C b(of) (sel of-val -- sel | <nothing>) (F: /FCode-offset/ --)
1D execute (... xt--2??)

1E + (nul nu2 -- sum)

1F - (nul nu2 -- diff)

20 * (nul nu2 -- prod)

21 / (nln2--quot)

22 mod (nln2--rem)

23 and (x1x2--x3)

24 or (x1x2--x3)

25 xor (x1x2--x3)

26 invert (x1--x2)

27 Ishift (x1u--x2)

28 rshift (x1u--x2)

29 >>3 (x1u--x2)

2A /mod (nln2--rem quot)

2B u/mod (ul u2 -- urem uquot)

2C negate (nl--n2)

2D abs (n--u)

2E min (nln2--nl]n2)

2F max (nln2--nln2)

30 >r (x--)(R:--Xx)

31 r> (—-x)(Rix-)

32 r@ (-x)(Rx--x)

33 exit (--) (R:sys-)

361

FCodes by Byte Value (Continued)

Value Function Stack

34 0= (nulflag -- equal-to-0?)

35 0<> (n -- not-equal-to-0?)

36 0< ('n -- less-than-0?)

37 0<= (n -- less-or-equal-to-0?)

38 0> (n -- greater-than-0?)

39 0>= (n -- greater-or-equal-to-0?)

3A < (nln2--less?)

3B > (nl n2 -- greater?)

3C = (x1 x2 -- equal?)

3D <> (x1 x2 -- not-equal?)

3E u> (ul u2 -- unsigned-greater?)

3F u<= (ul u2 -- unsigned-less-or-equal?)
40 u< (ul u2 -- unsigned-less?)

41 u>= (ul u2 -- unsigned-greater-or-equal?)
42 >= (nl n2 -- greater-or-equal?)

43 <= (nl n2 -- less-or-equal?)

44 between (N min max -- min<=n<=max?)
45 within ('n min max -- min<=n<max?)

46 drop (x--)

47 dup (x--xx)

48 over (x1x2--x1x2x1)

49 swap (X1 x2--x2x1)

4A rot (x1 x2x3--x2x3x1)

4B -rot (x1 x2 x3 --x3x1x2)

4C tuck (x1x2--x2x1x2)

4D nip (x1x2--x2)

4E pick (xu...x1x0u--xu...x1x0xu)
4F roll (xu...x1x0u--xu-1...x1x0xu)
50 ?2dup (x--01] xx)

51 depth (-u)

52 2drop (x1x2--)

53 2dup (x1x2--x1x2x1x2)

54 2over (X1 x2 x3 x4 -- x1 X2 x3 x4 x1 x2)
55 2swap (X1 X2 x3 x4 -- x3 x4 x1 x2)

56 2rot (X1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
57 2/ (x1--x2)

58 u2/ (x1--x2)

59 2% (x1--x2)

5A /c (--n)

58 /w (--n)

5C /1 (--n)
362 Writing FCode Programs for PCI

Table 95 FCodes by Byte Value (Continued)

Value Function Stack

5D /n (-n)

5E ca+ (addrl index -- addr2)
5F wa+ (addrl index -- addr2)
60 la+ (‘addrl index -- addr2)
61 na+ (addrl index -- addr2)
62 char+ (addrl -- addr2)

63 wal+ (addrl -- addr2)

64 lal+ (addrl -- addr2)

65 cell+ (addrl -- addr2)

66 chars (nul--nu2)

67 /w* (nul--nu2)

68 /I* (nul--nu2)

69 cells (nul--nu2)

6A on (a-addr --)

6B off (a-addr --)

6C +! (nu a-addr --)

6D @ (a-addr -- x)

6E 1@ (gaddr -- quad)

6F w@ (waddr -- w)

70 <w@ (waddr --n)

71 c@ (addr -- byte)

72 ! (x a-addr --)

73 I! (quad gaddr --)

74 w! (w waddr --)

75 c! (byte addr --)

76 2@ (a-addr -- x1 x2)

77 2! (x1 x2 a-addr --)

78 move (src-addr dest-addr len --)
79 fill (addr len byte --)

TA comp (addrl addr2 len -- n)
7B noop (--)

7C lwsplit (quad -- wl.lo w2.hi)
7D wljoin (w.lo w.hi -- quad)

7E Ibsplit (quad -- b.lo b2 b3 b4.hi)
TF bljoin ('bl.lo b2 b3 b4.hi -- quad)
80 whbflip (wl--w2)

81 upc (charl -- char2)

82 Icc (charl -- char2)

83 pack ('str len addr -- pstr)
84 count (pstr -- str len)

85 body> (a-addr -- xt)

363

Table 95

FCodes by Byte Value (Continued)

Value Function Stack

86 >body (xt -- a-addr)

87 fcode-revision (--n)

88 span (-- a-addr)

89 unloop () (R:sys--)
8A expect (addr len --)

8B alloc-mem (len -- a-addr)
8C free-mem (a-addr len --)
8D key? (-- pressed?)

8E key (-- char)

8F emit (char --)

90 type (text-str text-len --)
91 (cr (--)

92 cr (--)

93 #out (-- a-addr)

94 #line (-- a-addr)

95 hold (char --)

96 <# (--)

97 u#> (u--strlen)

98 sign (n--)

99 u# (ul--u2)

9A u#s (ul--u2)

9B u. (u--)

9C u.r (usize--)

aD (nu--)

9E .r (nsize--)

9F .S (. -.0)

A0 base (-- a-addr)

A2 $number (‘addr len -- true | n false)
A3 digit (char base -- digit true | char false)
A4 -1 (---1)

A5 0 (--0)

A6 1 (-1)

A7 (--2)

A8 3 (--3)

A9 bl (--0x20)

AA bs (--0x08)

AB bell (--0x07)

AC bounds (ncnt--n+cntn)
AD here (--addr)

AE aligned (nl--nlja-addr)
AF whbsplit (w -- bl.lo b2.hi)
364 Writing FCode Programs for PCI

Table 95

FCodes by Byte Value (Continued)

Value Function Stack

BO bwjoin (b.lo b.hi --w)

B1 b(<mark) (F:-)

B2 b(>resolve) (--)(F-)

B5 new-token (--) (F: /FCode#/ --)

B6 named-token (--) (F: /FCode-string FCode#/ --)
B7 b() (E:...--???) (F: -- colon-sys)
B8 b(value) (E:--x)(F:x-)

B9 b(variable) (E:--a-addr) (F: --)

BA b(constant) (E:--n)(Fn--)

BB b(create) (E:--a-addr) (F:--)

BC b(defer) (E:...--222) (F:--)

BD b(buffer:) (E: -- a-addr) (F: size --)

BE b(field) (E: addr -- addr+offset) (F: offset size -- offset+size)
co instance (--)

C2 b(;) (--) (F: colon-sys --)

C3 b(to) (x--)

C4 b(case) (sel --sel)(F:--)

C5 b(endcase) (sel --)(F:--)

C6 b(endof) (--) (F: /FCode-offset/ --)
Cc7 # (udl --ud2)

C8 #s (ud--00)

C9 #> (ud --strlen)

CA external-token (--) (F: /FCode-string FCode#/ --)
CB $find (name-str name-len -- xt true | name-str name-len false)
CcC offset16 (--)

CD eval (...strlen--?7?)

DO c, (byte --)

D1 W, (w--)

D2 1, (quad --)

D3 , (x--)

D4 um* (ul u2 -- ud.prod)

D5 um/mod (ud u -- urem uquot)

D8 d+ (d1d2--d.sum)

D9 d- (d1d2 -- d.diff)

DA get-token (fcode# -- xt immediate?)

DB set-token (xt immediate? fcode# --)

DC state (-- a-addr)

DD compile, (xt--)

DE behavior (defer-xt -- contents-xt)

FO start0 (--)

F1 startl (--)

365

Table 95

FCodes by Byte Value (Continued)

Value Function Stack

F2 start2 (--)

F3 start4 (--)

FC ferror (--)

FD versionl (--)

FF endl (--)

0102 my-address (-- phys.lo ...)

0103 my-space (-- phys.hi)

0105 free-virtual (virt size --)

0110 property (prop-addr prop-len name-str name-len --)
0111 encode-int (n -- prop-addr prop-len)

0112 encode+ (prop-addrl prop-lenl prop-addr2 prop-len2 -- prop-addr3 prop-len3)
0113 encode-phys (phys.lo ... phys.hi -- prop-addr prop-len)
0114 encode-string ('str len -- prop-addr prop-len)

0115 encode-bytes (data-addr data-len -- prop-addr prop-len)
0116 reg (phys.lo ... phys.hi size --)

0119 model (strlen--)

011A device-type (strlen--)

011B parse-2int ('str len -- val.lo val.hi)

011C is-install (xt--)

011D is-remove (xt--)

011E is-selftest (xt--)

011F new-device (--)

0120 diagnostic-mode? (-- diag?)

0121 display-status (n-)

0122 memory-test-suite (addr len -- fail?)

0124 mask (-- a-addr)

0125 get-msecs (-n)

0126 ms (n-)

0127 finish-device (--)

0128 decode-phys (prop-addrl prop-lenl -- prop-addr2 prop-len2 phys.lo ... phys.hi)
0130 map-low (phys.lo ... size -- virt)

0131 sbus-intr>cpu (sbus-intr# -- cpu-intr#)

0150 #lines (--rows)

0151 #columns (-- columns)

0152 line# (- line#)

0153 column# (-- column#)

0154 inverse? (-- white-on-black?)

0155 inverse-screen? (-- black?)

0157 draw-character (char --)

0158 reset-screen (--)

0159 toggle-cursor (--)

366 Writing FCode Programs for PCI

Table 95 FCodes by Byte Value (Continued)
Value Function Stack
015A erase-screen (--)
015B blink-screen (--)
015C invert-screen (--)
015D insert-characters (n--)
015E delete-characters (n-)
015F insert-lines (n-)
0160 delete-lines (n--)
0161 draw-logo (line# addr width height --)
0162 frame-buffer-adr (--addr)
0163 screen-height (-- height)
0164 screen-width (-- width)
0165 window-top (-- border-height)
0166 window-left (-- border-width)
016A default-font (-- addr width height advance min-char #glyphs)
016B set-font (addr width height advance min-char #glyphs --)
016C char-height (-- height)
016D char-width (-- width)
016E >font (char -- addr)
016F fontbytes (-- bytes)
0170 fbl-draw-character (char --)
0171 fbl-reset-screen (--)
0172 fbl-toggle-cursor (--)
0173 fbl-erase-screen (--)
0174 fb1l-blink-screen (--)
0175 fbl-invert-screen (--)
0176 fbl-insert-characters (n-)
0177 fb1l-delete-characters (n--)
0178 fbl-insert-lines (n-)
0179 fbl-delete-lines (n--)
017A fbl-draw-logo (line# addr width height --)
017B fbl-install (width height #columns #lines --)
017C fbl-slide-up (n-)
0180 fb8-draw-character (char --)
0181 fb8-reset-screen (--)
0182 fb8-toggle-cursor (--)
0183 fb8-erase-screen (--)
0184 fb8-blink-screen (--)
0185 fb8-invert-screen (--)
0186 fb8-insert-characters (n--)
0187 fb8-delete-characters (n-)
0188 fb8-insert-lines (n-)

Table 95

FCodes by Byte Value (Continued)

Value Function Stack

0189 fb8-delete-lines (n-)

018A fb8-draw-logo (line# addr width height --)

018B fb8-install (width height #columns #lines --)

01A4 mac-address (-- mac-str mac-len)

0201 device-name (strlen--)

0202 my-args (-- arg-str arg-len)

0203 my-self (-- ihandle)

0204 find-package (name-str name-len -- false | phandle true)

0205 open-package (arg-str arg-len phandle -- ihandle | 0)

0206 close-package (ihandle --)

0207 find-method (method-str method-len phandle -- false | xt true)
0208 call-package (... xtihandle -- ???)

0209 $call-parent (... method-str method-len -- 7??)

020A my-parent (-- thandle)

020B ihandle>phandle (‘ihandle -- phandle)

020D my-unit (-- phys.lo ... phys.hi)

020E $call-method (... method-str method-len ihandle -- 7??)

020F $open-package (arg-str arg-len name-str name-len -- ihandle | 0)
0213 alarm (xtn--)

0214 (is-user-word) (E: ... --???) (name-str name-len xt --)

0215 suspend-fcode (--)

0216 abort (o =) (R =)

0217 catch (... xt--??? error-code | ??? false)

0218 throw (... error-code -- ??? error-code | ...)

0219 user-abort (o) (R .--)

021A get-my-property (nam-str nam-len -- true | prop-addr prop-len false)
021B decode-int (prop-addrl prop-lenl -- prop-addr2 prop-len2 n)
021C decode-string (prop-addrl prop-lenl -- prop-addr2 prop-len2 str len)
021D get-inherited-property (nam-str nam-len -- true | prop-addr prop-len false)
021E delete-property (nam-str nam-len --)

021F get-package-property (name-str name-len phandle -- true | prop-addr prop-len false)
0220 cpeek (‘addr -- false | byte true)

0221 wpeek (' waddr -- false | w true)

0222 Ipeek (gaddr -- false | quad true)

0223 cpoke (byte addr -- okay?)

0224 wpoke (w waddr -- okay?)

0225 Ipoke (quad gaddr -- okay?)

0226 Iwflip (quadl -- quad2)

0227 Ibflip (quadl -- quad?)

0228 Ibflips (gaddr len --)

022E* rx@ (oaddr --0)

368 Writing FCode Programs for PCI

Table 95 FCodes by Byte Value (Continued)

Value Function Stack

022F* rx! (o0 oaddr --)

0230 rb@ (addr -- byte)

0231 rb! (byte addr --)

0232 rw@ (waddr -- w)

0233 rw! (w waddr --)

0234 rl@ (gaddr -- quad)

0235 rl! (quad gaddr --)

0236 wbflips (waddr len --)

0237 Iwflips (gaddr len --)

023B child (phandle.parent -- phandle.child)
023C peer (phandle -- phandle.sibling)

023D next-property (previous-str previous-len phandle -- false | name-str name-len true)
023E byte-load (addr xt --)

023F set-args (‘arg-str arg-len unit-str unit-len --)
0240 left-parse-string (str len char -- R-str R-len L-str L-len)
0241* bxjoin (blo b2b.3b.4b5b.6b.7bhi--0)
0242* <I@ (gaddr --n)

0243* Ixjoin (quad.lo quad.hi --0)

0244* wxjoin (w.lo w.2 w.3 w.hi --0)

0245* X, (o--)

0246* x@ (oaddr --0)

0247 x! (o oaddr --)

0248* /X (-n)

0249* /x* (nul--nu2)

024A* xa+ (addrl index -- addr2)

024B* xal+ (addrl -- addr2)

024C* xbflip (octl -- oct2)

024D* xbflips (oaddr len --)

024E* xbsplit (o--b.lob.2b.3b.4b5b.6b.7b.hi)
024F* xIflip (octl -- oct2)

0250* xIflips (oaddr len --)

0251* xlsplit (o0 -- quad.lo quad.hi)

0252* xwflip (octl -- oct2)

0253* xwflips (oaddr len --)

0254* xwsplit (0--wlow.2w.3w.hi)

- (([text<)> --)

- Jtokenizer (--)

- \ (--)

- alias (E: ...--77?)

(“new-name< >old-name< >" --)

decimal (--)

369

Table 95 FCodes by Byte Value (Continued)

Value Function Stack

- external (--)

- fload ([filename<cr>] --)

- headerless (--)

- headers (--)

- hex (--)

- octal (--)

- tokenizer[(--)

TG " ([text<">< >] -- text-str text-len)
TG ' ("old-name< >" -- xt)

TG @) (n--strlen)

TG ([text<)>] --)

TG (([text<)>] --)

TG . (colon) ("new-name< >" -- colon-sys) (E: ... -- ?7?)
TG ; (semicolon) ()

TG << (x1u--x2)

TG >> (x1u--x2)

TG ? (addr --)

TG [([old-name< >] -- xt)

TG 1+ (nul--nu2)

TG 1- (nul--nu2)

TG 2+ (nul--nu2)

TG 2- (nul--nu2)

TG accept (addr lenl -- len2)

TG again (C: dest-sys --)

TG allot (len--)

TG ascii ([text< >] -- char)

TG begin (C: --dest-sys) (--)

TG blank (addr len --)

TG buffer: (E: -- a-addr) (len "new-name< >" --)
TG /c* (nul--nu2)

TG cal+ (addrl -- addr2)

TG carret (--0x0D)

TG case (C: -- case-sys) (sel -- sel)

TG constant (E: -- x) (X "new-name< >" --)
TG control ([text< >] -- char)

TG create (E: -- a-addr) ("new-name< >" --)
TG d# ([number< >]--n)

TG d (n--)

TG decimal (--)

TG decode-bytes (prop-addrl prop-lenl data-len -- prop-addr2 prop-len2 data-addr data-len)
TG defer (E:...--???) ("new-name< >" --)

370 Writing FCode Programs for PCI

Table 95

FCodes by Byte Value (Continued)

Value Function Stack

TG do (C: -- dodest-sys) (limit start --) (R: -- sys)
TG ?2do (C: -- dodest-sys) (limit start --) (R: -- sys)
TG 3drop (x1x2x3-)

TG 3dup (X1 x2 x3 -- x1 x2 x3 X1 x2 x3)

TG else (C: orig-sysl -- orig-sys2) (--)

TG endcase (C: case-sys --) (sel --)

TG endof (C: case-sysl of-sys -- case-sys2) (--)

TG erase (addr len --)

TG eval (...strlen--?7?)

TG false (-- false)

TG fcode-version2 (--)

TG field (E: addr -- addr+offset) (offset size "new-name< >" -- offset+size)
TG h# ([number< >] --n)

TG .h (n-)

TG hex (--)

TG if (C: -- orig-sys) (do-next? --)

TG leave (--)(R:sys--)

TG ?leave (exit? --) (R: sys --)

TG linefeed (-- OX0A)

TG loop (C: dodest-sys --) (--) (R: sysl -- <nothing> | sys2)
TG +loop (C: dodest-sys --) (delta --) (R: sysl -- <nothing> | sys2)
TG /n* (nul--nu2)

TG nal+ (addrl -- addr2)

TG not (x1--x2)

TG o#t ([number< >] --n)

TG octal (--)

TG of (C: case-sysl -- case-sys2 of-sys) (sel of-val -- sel | <nothing>)
TG repeat (C: orig-sys dest-sys --) (--)

TG s" ([text<**>] -- test-str text-len)

TG s. (n-)

TG space (--)

TG spaces (cent--)

TG struct (--0)

TG then (C:orig-sys--)(--)

TG to (param [old-name< >] --)

TG true (--true)

TG (u.) (u--strlen)

TG until (C: dest-sys --) (done? --)

TG value (E: -- xX) (X "new-name< >"--)

TG variable (E: -- a-addr) ("new-name< >"--)

TG while (C: dest-sys -- orig-sys dest-sys) (continue? --)

371

FCodes by Name

The following table lists, in alphabetic order, currently-assigned FCodes. FCode values
marked with an asterisk are available only on 64-bit implementations.

Table 96 FCodes by Name

Value Function Stack

72 ! (x a-addr --)

TG ([text<">< >] -- text-str text-len)
c7 # (udl--ud2)

C9 #> (ud --strlen)

TG ' ("old-name< >" -- xt)

- (([text<)> --)

TG @) (n--strlen)

20 * (nul nu2 -- prod)

1E + (nul nu2 -- sum)

6C +! (nu a-addr --)

D3 , (x--)

1F - (nul nu2 -- diff)

9D (nu--)

TG . ([text<)>] --)

TG (([text<)>] --)

21 / (nln2--quot)

TG : (colon) ("new-name< >" -- colon-sys) (E: ... -- 7??)
TG ; (semicolon) (--)

3A < (nln2--less?)

96 <# (--)

TG << (xLu--x2)

43 <= (nln2 -- less-or-equal?)
3D <> 30

3C = (nln2 -- greater?)

0B > (nln2 -- greater?)

42 >= (nl n2 -- greater-or-equal?)
TG >> (x1u--x2)

TG ? (addr --)

6D @ (a-addr -- x)

TG [([old-name< >] -- xt)

- \ (-)

- Jtokenizer (--)

A5 0 (--0)

36 0< (n -- less-than-0?)

37 0<= ('n -- less-or-equal-to-0?)
35 0<> (n -- not-equal-to-0?)

34 0= (nulflag -- equal-to-0?)
372 Writing FCode Programs for PCI

Table 96 FCodes by Name (Continued)

Value Function Stack

38 0> (' n -- greater-than-0?)

39 0>= (n -- greater-or-equal-to-0?)

A6 1 (-1)

TG 1+ (nul--nu2)

TG 1- (nul--nu2)

A4 -1 (---1)

AT 2 (-2)

77 2! (x1 x2 a-addr --)

59 2* (x1--x2)

TG 2+ (nul--nu2)

TG 2- (nul--nu2)

57 2/ (x1--x2)

76 2@ (a-addr -- x1 x2)

A8 3 (--3)

29 >>3 (xlu--x2)

0216 abort (.. -) (R)

2D abs (n--u)

TG accept (addr lenl -- len2)

TG again (C: dest-sys --)

0213 alarm (xtn--)

- alias (E: ... --???) (“new-name< >old-name< >" --)
AE aligned (nl--nlja-addr)

8B alloc-mem (len -- a-addr)

TG allot (len--)

23 and (x1x2--x3)

TG ascii ([text< >] -- char)

12 b(") (--strlen) (F: /FCode-string/ --)
11 b(") (--xt) (F: /FCode#/ --)

B7 b(}) (E:...--???) (F:-- colon-sys)

C2 b(}) (--) (F: colon-sys --)

A0 base (-- a-addr)

13 g (--) (F: /FCode-offset/ --)

14 b?branch (don’t-branch? --) (F: /FCode-offset/ --)
BD b(buffer:) (E: -- a-addr) (F: size --)

C4 b(case) (sel --sel)(F:--)

BA b(constant) (E:--n)(F:n--)

BB b(create) (E:--a-addr) (F:--)

BC b(defer) (E...--27?)(F:--)

17 b(do) (limit start --) (F: /FCode-offset/ --)
18 b(?do) (limit start --) (F: /FCode-offset/ --)
TG begin (C: --dest-sys) (--)

373

Table 96 FCodes by Name (Continued)

Value Function Stack

DE behavior (defer-xt -- contents-xt)

AB bell (--0x07)

C5 b(endcase) (sel--)(F: --)

C6 b(endof) (--) (F: /FCode-offset/ --)

44 between (n min max -- min<=n<=max?)

BE b(field) (E: addr -- addr+offset) (F: offset size -- offset+size)
A9 bl (--0x20)

TG blank (addr len --)

1B b(leave) (F--)

015B blink-screen (--)

10 b(lit) (--n) (F: /FCode-num32/ --)

TF bljoin ('bl.lo b2 b3 b4.hi -- quad)

15 b(loop) (--) (F: /FCode-offset/ --)

16 b(+loop) (delta --) (F: /FCode-offset/ --)

B1 b(<mark) (F:-)

85 body> (a-addr -- xt)

86 >body (xt -- a-addr)

1C b(of) (sel of-val -- sel | <nothing>) (F: /FCode-offset/ --)
AC bounds (ncnt--n+cntn)

B2 b(>resolve) (--)(F =)

AA bs (-- 0x08)

C3 b(to) (x--)

TG buffer: (E: -- a-addr) (len "new-name< >" --)
B8 b(value) (E:--x)(F:x-)

B9 b(variable) (E:--a-addr) (F: --)

BO bwijoin (b.lo b.hi--w)

241* bxjoin (b.lo b.2b.3b.4b.5b.6 b.7 b.hi--0)
023E byte-load (addr xt --)

75 c! (byte addr --)

DO c, (byte --)

5A /c (-n)

- /c* (nul--nu2)

71 c@ (addr -- byte)

5E ca+ (addrl index -- addr2)

TG cal+ (addrl -- addr2)

62 char+ (addrl -- addr2)

020E $call-method (... method-str method-len ihandle -- ???')
0208 call-package (... xt ihandle -- 7??)

0209 $call-parent (... method-str method-len -- 72?)

TG carret (-- 0x0D)

TG case (C: -- case-sys) (sel -- sel)
374 Writing FCode Programs for PCI

Table 96

FCodes by Name (Continued)

Value Function Stack

0217 catch (... xt--???error-code | ??? false)
65 cell+ (addrl -- addr2)

69 cells (nul--nu2)

62 char+ (addrl -- addr2)

016C char-height (-- height)

66 chars (nul--nu2)

016D char-width (-- width)

0236 child (phandle.parent -- phandle.child)
0206 close-package (ihandle --)

0153 column# (-- column#)

0151 #columns (-- columns)

TA comp (addrl addr2 len -- n)

DD compile, (xt--)

TG constant (E:--x) (x"new-name< >" --)

TG control ([text< >] -- char)

84 count (pstr -- str len)

0220 cpeek (addr -- false | byte true)

0223 cpoke (byte addr -- okay?)

92 cr (--)

91 (cr (--)

TG create (E: -- a-addr) ("new-name< >" --)
TG d# ([number< >]--n)

D8 d+ (d1d2--d.sum)

D9 d- (d1d2 -- d.diff)

TG d (n--)

- decimal (--)

TG decimal (--)

021B decode-int (prop-addrl prop-lenl -- prop-addr2 prop-len2 n)
0128 decode-phys (prop-addrl prop-lenl -- prop-addr2 prop-len2 phys.lo ... phys.hi)
021C decode-string (prop-addrl prop-lenl -- prop-addr2 prop-len2 str len)
016A default-font (-- addr width height advance min-char #glyphs)
TG defer (E: ... --???) ("new-name< >" --)
015E delete-characters (n--)

0160 delete-lines (n--)

021E delete-property (nam-str nam-len --)

51 depth (-u)

0201 device-name (strlen--)

011A device-type (strlen--)

0120 diagnostic-mode? (-- diag?)

A3 digit (char base -- digit true | char false)
0121 display-status (n-)

375

Table 96

FCodes by Name (Continued)

Value Function Stack

TG do (C: -- dodest-sys) (limit start --) (R: -- sys)
TG ?2do (C: -- dodest-sys) (limit start --) (R: -- sys)
0157 draw-character (char --)

0161 draw-logo (line# addr width height --)

46 drop (x--)

52 2drop (x1x2--)

TG 3drop (x1x2x3--)

47 dup (x--xx)

53 2dup (x1x2--x1x2x1x2)

TG 3dup (X1 x2 x3 -- x1 x2 x3 X1 x2 x3)

50 ?2dup (x--01]xx)

TG else (C: orig-sysl -- orig-sys2) (--)

8F emit (char --)

0112 encode+ (prop-addrl prop-lenl prop-addr2 prop-len2 -- prop-addr3 prop-len3)
0115 encode-bytes (data-addr data-len -- prop-addr prop-len)
0111 encode-int (n -- prop-addr prop-len)

0113 encode-phys (phys.lo ... phys.hi -- prop-addr prop-len)
0114 encode-string ('str len -- prop-addr prop-len)

00 end0 (--)

FF endl (--)

TG endcase (C: case-sys --) (sel --)

TG endof (C: case-sysl of-sys -- case-sys2) (--)

TG erase (addr len --)

015A erase-screen (--)

TG eval (...strlen--?7?)

CD evaluate (... strlen -- 2?2?)

1D execute (...xt--2?7?)

33 exit (--) (R:sys-)

8A expect (addr len --)

- external (--)

CA external-token (--) (F: /FCode-string FCode#/ --)

TG false (-- false)

0174 fbl-blink-screen (--)

0177 fb1l-delete-characters (n--)

0179 fbl-delete-lines (n-)

0170 fbl-draw-character (char --)

017A fbl-draw-logo (line# addr width height --)

0173 fbl-erase-screen (--)

0176 fbl-insert-characters (n-)

0178 fbl-insert-lines (n-)

017B fbl-install (width height #columns #lines --)
376 Writing FCode Programs for PCI

Table 96

FCodes by Name (Continued)

Value Function Stack

0175 fbl-invert-screen (--)

0171 fbl-reset-screen (--)

017C fbl-slide-up (n-)

0172 fb1-toggle-cursor (--)

0184 fb8-blink-screen (--)

0187 fb8-delete-characters (n--)

0189 fb8-delete-lines (n--)

0180 fb8-draw-character (char --)

018A fb8-draw-logo (line# addr width height --)

0183 fb8-erase-screen (--)

0186 fb8-insert-characters (n--)

0188 fb8-insert-lines (n--)

018B fb8-install (width height #columns #lines --)

0185 fb8-invert-screen (--)

0181 fb8-reset-screen (--)

0182 fb8-toggle-cursor (--)

87 fcode-revision (-n)

TG fcode-version2 (--)

FC ferror (--)

TG field (E: addr -- addr+offset) (offset size "new-name< >" -- offset+size)
79 fill (addr len byte --)

CB $find (name-str name-len -- xt true | name-str name-len false)
0207 find-method (method-str method-len phandle -- false | xt true)
0204 find-package (name-str name-len -- false | phandle true)

0127 finish-device (--)

016E >font (char -- addr)

- fload ([filename<cr>] --)

016F fontbytes (-- bytes)

0162 frame-buffer-adr (--addr)

8C free-mem (a-addr len --)

0105 free-virtual (virt size --)

021d get-inherited-property (nam-str nam-len -- true | prop-addr prop-len false)
0125 get-msecs (-n)

021A get-my-property (nam-str nam-len -- true | prop-addr prop-len false)
021F get-package-property (name-str name-len phandle -- true | prop-addr prop-len false)
DA get-token (fcodet# -- xt immediate?)

TG h# ([number< >]--n)

TG .h (n-)

- headerless (--)

- headers (--)

AD here (--addr)

377

Table 96

FCodes by Name (Continued)

Value Function Stack

- hex (--)

TG hex (--)

95 hold (char --)

19 i (--index) (R: sys -- sys)

TG if (C: -- orig-sys) (do-next? --)

020B ihandle>phandle (ihandle -- phandle)

015D insert-characters (n--)

015F insert-lines (n-)

co instance (--)

0154 inverse? (-- white-on-black?)

0155 inverse-screen? (-- black?)

26 invert (x1--x2)

015C invert-screen (--)

011C is-install (xt--)

011D is-remove (xt--)

011E is-selftest (xt--)

0214 (is-user-word) (E: ... --?2??) (name-str name-len xt --)
1A i (--index) (R: sys -- sys)

8E key (-- char)

8D key? (-- pressed?)

73 Il (quad gaddr --)

D2 I, (quad --)

6E 1@ (gaddr -- quad)

5C /1 (--n)

68 /1* (nul--nu2)

242* <l@ (gaddr --n)

60 la+ (addrl index -- addr2)

64 lal+ (addrl -- addr2)

0227 Ibflip (quadl -- quad2)

0228 Ibflips (gaddr len --)

TE Ibsplit (quad -- b.lo b2 b3 b4.hi)

82 Icc (charl -- char2)

TG leave () (R:sys--)

TG ?leave (exit? --) (R: sys --)

0240 left-parse-string ('str len char -- R-str R-len L-str L-len)
0152 line# (- line#)

94 #line (-- a-addr)

TG linefeed (-- Ox0A)

0150 #lines (--rows)

TG loop (C: dodest-sys --) (--) (R: sysl -- <nothing> | sys2)
TG +loop (C: dodest-sys --) (delta --) (R: sysl -- <nothing> | sys2)
378 Writing FCode Programs for PCI

Table 96 FCodes by Name (Continued)
Value Function Stack
0222 Ipeek (gaddr -- false | quad true)
0225 Ipoke (quad gaddr -- okay?)
27 Ishift (x1u--x2)
0226 Iwflip (quadl -- quad?)
0237 Iwflips (gaddr len --)
7C Iwsplit (quad -- wi.lo w2.hi)
243* Ixjoin (quad.lo quad.hi -- 0)
01A4 mac-address (-- mac-str mac-len)
0130 map-low (phys.lo ... size -- virt)
0124 mask (-- a-addr)
2F max (nln2--nl|n2)
0122 memory-test-suite (addr len -- fail?)
2E min (nln2--nl]n2)
22 mod (nln2--rem)
2A /mod (nln2--rem quot)
0119 model (strlen--)
78 move (src-addr dest-addr len --)
0126 ms (n-)
0102 my-address (-- phys.lo ...)
0202 my-args (-- arg-str arg-len)
020A my-parent (-- ihandle)
0203 my-self (-- thandle)
0103 my-space (-- phys.hi)
020D my-unit (-- phys.lo ... phys.hi)
5D /n (-n)
TG /n* (nul--nu2)
61 na+ (addrl index -- addr2)
TG nal+ (addrl -- addr2)
B6 named-token (--) (F: /FCode-string FCode#/ --)
2C negate (nl--n2)
011F new-device (--)
B5 new-token (--) (F: /FCode#/ --)
023D next-property (previous-str previous-len phandle -- false | name-str name-len true)
4D nip (x1x2--x2)
7B noop (--)
TG not (x1--x2)
A2 $number (‘addr len -- true | n false)
TG o# ([number< >] --n)
- octal (--)
TG octal (--)
TG of (C: case-sysl -- case-sys2 of-sys) (sel of-val -- sel | <nothing>)

379

Table 96

FCodes by Name (Continued)

Value Function Stack

6B off (a-addr --)

CcC offset16 (--)

6A on (a-addr --)

0205 open-package (arg-str arg-len phandle -- ihandle | 0)
020F $open-package (arg-str arg-len name-str name-len -- ihandle | 0)
24 or (x1x2--x3)

93 #out (-- a-addr)

48 over (X1 x2--x1x2x1)

54 2over (X1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)

83 pack ('str len addr -- pstr)

011B parse-2int ('str len -- val.lo val.hi)

023C peer (phandle -- phandle.sibling)

4E pick (xu...x1x0u--xu...x1x0xu)

0110 property (prop-addr prop-len name-str name-len --)
31 r> (-x)(Rx-)

32 r@ (--x) (R x--x)

9E .r (nsize--)

30 >r (x--)(R:--x)

0231 rb! (byte addr --)

0230 rb@ (addr -- byte)

0116 reg (phys.lo ... phys.hi size --)

TG repeat (C: orig-sys dest-sys --) (--)

0158 reset-screen (--)

0235 rl! (quad gaddr --)

0234 rl@ (gaddr -- quad)

4F roll (xu...x1x0u--xu-1...x1x0xu)

4A rot (x1 x2x3--%x2x3x1)

4B -rot (x1 x2 x3 --x3 x1x2)

56 2rot (X1 x2 x3 x4 x5 x6 -- X3 x4 x5 x6 x1 x2)
28 rshift (x1u--x2)

0233 rw! (w waddr --)

0232 rw@ (waddr -- w)

022E* rx@ (oaddr --0)

022F* rx! (o oaddr --)

TG s" ([text<*>] -- test-str text-len)

TG S. (n--)

C8 #s (ud--00)

9F S (oo 20)

0131 sbus-intr>cpu (sbus-intr# -- cpu-intr#)

0163 screen-height (-- height)
380 Writing FCode Programs for PCI

Table 96

FCodes by Name (Continued)

Value Function Stack

0164 screen-width (-- width)

023F set-args (‘arg-str arg-len unit-str unit-len --)
016B set-font (‘addr width height advance min-char #glyphs --)
DB set-token (xt immediate? fcode# --)

98 sign (n-)

TG space (--)

TG spaces (cent--)

88 span (-- a-addr)

FO start0 (--)

F1 startl (--)

F2 start2 (--)

F3 start4 (--)

DC state (-- a-addr)

TG struct (--0)

0215 suspend-fcode (--)

49 swap (X1 x2--x2x1)

55 2swap (X1 X2 x3 x4 -- x3 x4 x1 x2)

TG then (C:orig-sys --) (--)

0218 throw (... error-code -- ??? error-code | ...)
TG to (param [old-name< >] --)

0159 toggle-cursor (--)

- tokenizer[(--)

TG true (--true)

4C tuck (x1x2--x2x1x2)

90 type (text-str text-len --)

99 u# (ul--u2)

97 u#> (u--strlen)

9A uis (ul--u2)

9B u. (u--)

40 u< (ul u2 -- unsigned-less?)

3F u<= (ul u2 -- unsigned-less-or-equal?)
3E u> (ul u2 -- unsigned-greater?)

41 u>= (ul u2 -- unsigned-greater-or-equal?)
TG (u.) (n--addrlen)

58 u2/ (x1--x2)

D4 um* (ul u2 -- ud.prod)

D5 um/mod (ud u -- urem uquot)

2B u/mod (ul u2 -- urem uquot)

89 unloop () (R:sys--)

TG until (C: dest-sys --) (done? --)

81 upc (charl -- char2)

381

Table 96 FCodes by Name (Continued)

Value Function Stack

9C u.r (usize--)

0219 user-abort (o =) (R --)

TG value (E: -- x) (X "new-name< >"--)
TG variable (E: -- a-addr) ("new-name< >"--)
FD versionl (--)

74 w! (w waddr --)

D1 W, (w--)

6F w@ (waddr -- w)

58 /w (-n)

67 /w* (nul--nu2)

70 <w@ (waddr --n)

5F wa+t (addrl index -- addr2)

63 wal+ (addrl -- addr2)

80 wbflip (wl--w2)

0236 whbflips (waddr len --)

AF whbsplit (w -- bl.lo b2.hi)

TG while (C: dest-sys -- orig-sys dest-sys) (continue? --)
0166 window-left (-- border-width)

0165 window-top (-- border-height)

45 within ('n min max -- min<=n<max?)
7D wljoin (w.lo w.hi -- quad)

0221 wpeek (waddr -- false | w true)
0224 wpoke (' w waddr -- okay?)

0244* wxjoin (w.low.2 w3 w.hi--0)

0245* X, (o--)

0246* x@ (oaddr --0)

0247+ X! (0 oaddr --)

0248* /x (--n)

0249* /x* (nul--nu2)

024A* xa+ (addrl index -- addr2)

024B* xal+ (addrl -- addr2)

024C* xbflip (octl -- oct2)

024D* xbflips (oaddr len --)

024E* xbsplit (o--b.lob2b3b.4b5b.6b.7b.hi)
024F* xIflip (octl -- oct2)

0250* xIflips (oaddr len --)

0251* xlsplit (o -- quad.lo quad.hi)

25 xor (x1 x2--x3)

0252* xwflip (octl -- oct2)

0253* xwflips (oaddr len --)

0254* xwsplit((0--wlow.2w.3whi)

382 Writing FCode Programs for PCI

383

384 Writing FCode Programs for PCI

Coding Style

This appendix describes the coding style used in some Open Firmware
implementations. These guidelines are a “living” document that first came into
existence in 1985. By following these guidelines in your own code development, you
will produce code that is similar in style to a large body of existing Open Firmware
work. This will make your code more easily understood by others within the Open
Firmware community.

Typographic Conventions

The following typographic conventions are used in this document:

m The symbol ; is used to represent space characters (i.e. ASCII 0x20).
m The symbol ... is used to represent an arbitrary amount of Forth code.
= Within prose descriptions, Forth words are shown in this font.

Use of Spaces

Since Forth code can be very terse, the judicious use of spaces can increase the
readability of your code.

Two consecutive spaces are used to separate a definition’s name from the beginning of
the stack diagram, another two consecutive spaces (or a newline) are used to separate
the stack diagram from the word’s definition, and two consecutive spaces (or a
newline) separate the last word of a definition from the closing semi-colon. For
example:

:new-name p(gstack-before -- gstack-after) ggfoo pbar op;

:new-name (pstack-before -- stack-after o)
ooofoo gbar pframus Ldup pwidget foozle ribbit grindle

Forth words are usually separated by one space. If a phrase consisting of several words
performs some function, that phrase should be separated from other words/phrases by
two consecutive spaces or a newline.

:name pp(gstack before - gstack after o) oothisl gthis2 gpthatl gthat2 o;

385

If you are uncertain how to group words into phrases, one useful algorithm is to look
at the stack effect of a group of words. A group of words is a phrase when the group
has no net stack effect (i.e. the stack looks the same after the group has executed as it
did before the group was executed).

When creating multiple line definitions, all lines except the first and last should be
indented by three (3) spaces. If additional indentation is needed with control
structures, the left margin of each additional level of indentation should start three (3)
spaces to the right of the preceding level.

: name (stack before -- stack after)
ooodaq..-

ooooooddq.--

0Dooooo9dq.--

ooodaq..-

if...else...then

Inif...then orif...else...then control structures that occupy no more than one line,
two spaces should be used both before and after each if , else or then .

ooif opaddpgthen g

ooif ooaddppelse oppppggthen o

Longer constructs should be structured like this:
<code to generate flag> opoif

ooo<true clause>

then

<code to generate flag> ooif

opp<true clause>

else

opp<false clause>

then

do...loop

In do...loop constructs that occupy no more than one line, two spaces should be used
both before and after each do or loop .

<code to calculate limits> oodogpadd ggloop on

Longer constructs should be structured like this:
<code to calculate limits> opdo

nop<body>

loop

The longer +loop construct should be structured like this:
<code to calculate limits> gpdo

opp<body>

<incremental value> g+loop

386 Writing FCode Programs for PCI

begin...while...repeat

In begin...while...repeat constructs that occupy no more than one line, two spaces
should be used both before and after each begin , while or repeat).

oobegin gp<flag code> gpwhile pp<body> Hgrepeat

Longer constructs:

begin gg<short flag code> oowhile
oop<body>

repeat

begin

ooo<long flag code>

while

ooo<body>

repeat

begin...until...again

In begin...until and begin...again constructs that occupy no more than one line,
two spaces should be used both before and after each begin , until or again .

DDbegin DD<b0dy> DDuntiI
oobegin gp<body> Hpagain

Longer constructs:
begin

ooo<body>

until

begin

oop<body>

again

Block Comments

Block comments begin with \ ;. All text following the space is ignored until after the
next newline. (While it would be possible to delimit block comments with parentheses,
the use of parentheses is reserved by convention for stack comments.

Precede each non-trivial definition with a block comment giving a clear and concise
explanation of what the word does. Put more comments at the very beginning of the
file to describe external words which could be used from the User Interface.

387

Stack Comments

Stack comments begin with (5 and end with) . Use stack comments liberally within
definitions. Try to structure each definition so that, when you put stack comments at
the end of each line, the stack picture makes a nice pattern.

: name (stack before -- stack after)
oooddg ppp bar (stack condition after the execution of bar)
opndaq ppp foo (stack condition after the execution of foo)

oooddg ppp dup (stack condition after the execution of dup)

Return Stack Comments

Numbers

Return stack comments are also delimited with parentheses. In addition, the notation
r: is used at the beginning of the return stack comment to differentiate it from a
parameter stack comment.

Place return stack comments on any line that contains one or more words that cause
the return stack to change. (This limitation is a practical one; it is often difficult to do
otherwise due to lack of space.) The words >r and r> must be paired inside colon
definitions and inside do...loop constructs.

: name (stack before -- stack after)
oppdaq >r (r: addr)
oonddg r>(r:)

1

Hexadecimal numbers should be typed in lower case. If a given number contains more
than 4 digits, the number may be broken into groups of four digits with periods. For
example:

dead.beef

Since the default number base is hexadecimal, the convention is not to precede
hexadecimal numbers with h#.

388

Writing FCode Programs for PCI

Optimizations

A number of commonly used operations have been given optimized definitions. The
use of these optimizations will improve the performance and reduce the size of your

code.

Table 97 Forth Optimizations

Use Instead of
1+ 1+
1- 1-
2+ 2+
2- 2-
2* 2%
2/ 2
0= =
0< 0<
0> 0>
O<= 0<=
0>= 0>=
0<> 0<>

Case Insensitivity

Forthmacs is case insensitive. However, the convention is to use lower case for Forth
words. Upper case characters may be used in comments while typing a regular English

text.

\ This is an example comment

389

390 Writing FCode Programs for PCI

Index

Symbols "mac-address” , 75

, 19 "max-frame-size" , 76
"#address-cells" , 11,69 "m?X'|atenCY" , 16
"#size-cells" , 11, 69 “min-grant" , 76

"address" , 69 "model" , 76

"address-bits" , 69 “name” L 3,11, 77
“alternate-reg" , 70 "page-size" 7?
"assigned-addresses” , 70 “power-consumption” 3,78
"available" , 71 ‘ranges” , 78
"big-endian-aperture” 71 "reg." K 3_, 11, 81, 275, 298
"pbus-range” , 71 "revision-id" , 83
"character-set" 71 "slot-names” , 83
"class-code" , 71 “status” , 83

"compatible” , 72 "translations" , 84

"depth” , 72,211 "vendor-id" , 84
"device_type" , 72 "width" , 84,333

"device-id") $call-method |, 43,44, 47,49 to 51
"devsel-speed” , 73 $call-parent , 43,49to 51
"fast-back-to-back" .73 $open-package , 44,48 to 49, 287
"has-fcode” , 73 (patch) , 291

"height" , 73,248 -pr_Operties , 34

“interrupts" .73 /aliases , 173

"linebytes" . 74,263 /chosen , 196
"little-endian-aperture" , 74 /packages , 47,57, 289

/deblocker , 59, 204

local-mac-address™ -, 74 /disk-label , 61, 215

391

/obp-tftp , 58,283 blink-screen , 141

/openprom , 287 buffer: , 45
/options , 287 byte-load , 33
opening packages in, 48
" C
@, 259 $call-method , 44, 47, 49 to 51
[, 47 call-package , 47,49
]tokenizer , 14,19 $Cal|-parent , 49to 51
char-height , 139
A char-width , 139
) Client Interface
accessing $callback , 191
methods, 49 callback , 190
packages, 55 sym, 320
active package, 42 close , 53
address , 140 close-dev , 26
"#address-cells” , 11,69 code examples
addressing $open-package , 48
packages, 56 begin-package , 57
PCI, 156 d+, 12
SBus, 157 data
VMEBus, 157 instance-specific, 54
alias , 14 static, 54
ANS Forth encode+ , 11
and FCode, 5 encode-int |, 11
apply , 51 encode-phys , 11
assembler encode-string , 11
¢ 190 find-package , 47
code , 197 my-address , 11
end-code , 224 my-space , 11
label , 260 open-dev , 56
auto-boot? , 21 6 property -, 11
colon definition, 6
B and stack comment, 7
banner , 22 command line editor, 24 to 26
begin-package , 26, 32, 56, 57 FCode download/test commands, 26
begin-select , 27,38, 181 optional command completion
begin-select-dev , 26,138,181 commands, 26

optional commands, 24
optional history commands, 25
required commands, 24

compile state, 6

binary format
FCode, 5
BIOS extension, 1

392 Writing FCode Programs for PCI—August 1996

config-b! , 199
config-b@ , 199
config-I! , 200
config-l@ , 200
configuration address header, 1
configuration variable manipulation
creating with
nodefault-bytes , 278
displaying with
printenv | 293
setting to default value with

set-default , 311
set-defaults , 311
setting with

$setenv , 312
setenv , 312
configuration variables

auto-boot? , 21,175
boot-command , 185
boot-device , 185
boot-file , 186
diag-device , 213
diag-file , 213
diag-switch? |, 214
fcode-debug? , 21, 35, 236, 335
input-device , 251
load-base , 265
oem-banner , 284
oem-banner? , 284
oem-logo , 284
oem-logo? , 285
output-device , 288
pci-probe-list , 24
screen-#columns , 306
screen-#rows , 307

security-#badlogins , 307
security-mode , 307
security-password , 308
selftest-#megs , 310

use-nvramrc? , 329
config-w! , 201
config-w@ , 200
current instance, 43

D

d#, 14

data
initialized, 45
instance-specific, 45
package, 45
packages, 42
static, 45
zero-filled, 45

data definition
packages, 54

deblocker support, 59, 204

debugger commands
$, 206
(, 206
(debug , 207
), 206
)debug , 207
* 206
+bp, 186
+dis , 215
.bp , 187
.breakpoint , 187
fregisters , 244
.instruction , 253
.registers , 300
.step , 318
<, 206
?, 206
--bp , 186
-bp , 186
bpoff , 187
c, 206
ctrace , 203
d, 206
debug, 205
debug(, 207
debugging , 207
debug-me, 207
debug-off , 207
dis , 215
dump, 220
f, 206
g, 206

393

394

go, 246

gos, 246

h, 206

hop, 249

hops, 249

g, 206

resume, 206

resume, 302

return , 302

s, 206

space-bar, 206

step , 318

stepping , 319

steps , 319

sym>value , 320

till, 322

tracing , 323

u, 206

value>sym , 330
decimal , 14
decode-unit , 46, 153
default-colors , 140
default-font , 140
defer , 45
defining

Forth words, 5
delete-characters , 141
delete-lines , 141
depth , 140
dev, 34
dev, 34,42, 46,57
device

drivers, plug-in, 52

identification, 3
device addressing

PCl, 156

SBus, 157

VMEBus, 157
device methods

block-size , 100, 184

claim , 196

close , 197

decode-unit , 153, 209

dma-alloc , 100, 153, 217

Writing FCode Programs for PCI—August 1996

dma-free , 154, 217
dma-map-in , 154, 217
dma-map-out , 154,218
dma-sync , 155, 218
encode-unit , 223
install-abort , 131
load , 100, 122, 265
map, 268
map-in , 155, 269
map-out , 156, 270
max-transfer , 100, 271
modify , 273
PCI bus node specific
config-b! , 199
config-b@ , 199
config-I! , 200
config-l@ , 200
config-w! |, 201
config-w@ , 200
probe-self , 155,293
read , 100, 121, 131
read-blocks , 101
remove-abort , 131

seek, 101
write , 101, 122, 131
write-blocks , 101

device node, 3,41

browsing, 34
creating with

begin-package/end-pac

kage, 32
device tree, 3
“" -, 164
node, 4
device types
"block" , 183
"byte" , 188

"display" , 216
"memory" , 271
"network" , 277

devices

"serial" , 310
device-end , 26, 34, 46, 57
serial, 131

disk label support, 61

d,

271031

dma-alloc , 153, 217
dma-free , 154,217
dma-map-in , 154,217
dma-map-out , 154, 218
dma-sync , 155,218
draw-character , 141
draw-logo , 141

E

emit-byte , 14,19
end0, 3,17

endl, 3

endcase , 224
end-package , 26, 33
erase-screen , 141

execute-device-method

to 52, 226

executing

methods, 47

execution token, 47

external

F

obtaining, 47

fb8-draw-character , 141
fb8-install , 140, 141
FCode

and ANS Forth, 5
binary format, 5
characteristics, 5
compile state, 6
defining words, 5
device identification, 3
interpret state, 6
interpretation, 3
interpreting, 32
methods, 4

minimum program, 11
one-byte, 13

program, 1

, 26,38,49,51

, 14,21, 35, 228, 335

programming style, 8to 9
property-specific FCodes, 87
source format, 5
stack, 6
tokenizing, 5
two-byte, 13
words, 5
FCode driver
functions, 2
FCode programs, 27
testing in source form, 39
FCode ROM image
body, 3
end token, 3
format, 3
header, 3
PCI data structure, 3
size, 3
Fcode source, 17 to 18
FCode types
interface, 13, 15
local, 13, 15
primitives, 13
system, 13

fcode-debug? , 21, 35, 335
fcode-end , 17

FCodes

-, 163

1, 160

#, 161

#>, 161

#columns , 198

#line , 262

#lines , 263

#out , 288

#s, 305

$call-method |, 43, 44, 47, 49 to 51,
191

$call-parent , 43,491t051, 191

$find , 239

$number , 280

$open-package , 44,48, 56, 287

', 161

(, 161

395

396

(cr , 203
(is-user-word) , 257
* 162

+, 162
+!, 162
+loop , 266
,, 163

., 163
., 295
.S, 305
/, 164
/c, 190

/l , 259
/I* , 259
/mod, 272
In, 275
/w, 332
fw* | 332
Ix , 337
Ix* , 337
<, 164
<#, 165
<=, 165
<>, 165
<l@, 259
<w@ 332
=, 165

> 165
>=, 166
>>a, 170
>body, 185
>font , 242
>r, 296
?dup, 221
@ 166

0, 167
0<, 167
O<=, 167
0<>, 168
0=, 168
0>, 168
0>=, 168
-1, 168

1, 168

2, 169
2!, 169

Writing FCode Programs for PCI—August 1996

2%, 169

2/, 169

2@ 169

2drop , 220
2dup, 221
2over , 289

2rot , 303
2swap, 320

3, 170

abort , 170

abs, 171

alarm , 172
aligned , 173
alloc-mem , 173
and, 175

b() , 176

b() , 176
b(+loop) , 184
b(:) , 176

b(;) , 176
b(<mark) , 184
b(>resolve) , 187
b(?do) , 179
b(buffer:) , 179
b(case) , 179
b(constant) , 179
b(create) , 179
b(defer) , 179
b(do) , 179
b(endcase) , 182
b(endof) , 182
b(field) , 182
b(leave) , 182
b(lit) , 183
b(loop) , 184
b(of) , 185

b(to) , 187
b(value) , 188
b(variable) , 188
b?branch , 178
base, 177
bbranch , 178
behavior , 181
bell , 182
between , 182

bl , 182

blink-screen , 141, 183
bljoin , 183

body>, 185

bounds , 186

bs, 187

bwjoin , 188

byte-load , 189

c!, 189

c,, 189

c@ 190

ca+, 190

call-package , 47,49, 191
catch , 193

cell+ |, 194
cells , 194
char+ , 194
char-height , 139,195
chars , 195
char-width , 139, 195
child , 195

close-package , 197
column# , 197

comp, 198

compile, , 199
count , 201

cpeek , 202

cpoke , 202

cr, 202

d-, 204

d+, 204

decode-int , 208
decode-phys , 208
decode-string , 208

default-colors , 140
default-font , 140, 209
delete-characters , 141, 210
delete-lines , 141,211
delete-property , 211

depth , 211

device-name , 212
device-type , 213

diagnostic-mode? , 214
digit , 215
display-status , 216

draw-character , 141, 219
draw-logo , 141,219

drop , 220

dup, 221

emit , 221

encode+ , 222
encode-bytes |, 222
encode-int , 222
encode-phys , 223
encode-string , 223
end0, 17,223

endl, 224
erase-screen , 225
evaluate , 225
execute , 226

exit , 227

expect , 228

external-token , 228
fb1-blink-screen , 229
fb1-delete-characters , 229
fbl-delete-lines , 229
fbl-draw-character , 230
fbl-draw-logo , 230
fbl-erase-screen , 230
fbl-insert-characters , 230
fbl-insert-lines , 231
fbl-install , 231
fbl-invert-screen , 232
fbl-reset-screen , 232
fb1-slide-up , 232
fb1-toggle-cursor , 232
fb8-blink-screen , 233
fb8-delete-characters , 233
fb8-delete-lines , 233
fb8-draw-character , 141, 234
fb8-draw-logo , 234
fb8-erase-screen , 234
fb8-insert-characters , 234
fb8-insert-lines , 235
fb8-install , 140, 141, 235
fb8-invert-screen , 236
fb8-reset-screen , 236
fb8-toggle-cursor , 236
fcode-revision , 237

ferror , 238

fil , 239

find-method , 47, 49 to 51, 240
find-package , 47,240

397

398

finish-device , 55,241
fontbytes , 139, 242
frame-buffer-adr , 140, 243
free-mem , 244

free-virtual , 244

get-inherited-property , 244

get-msecs , 245
get-my-property , 245
get-package-property , 245
get-token , 246

here , 248

hold , 249

i, 249

ihandle>phandle , 250
insert-characters , 141, 251
insert-lines , 141, 252
instance , 45, 252

interpose , 253

inverse? , 253
inverse-screen? , 254
invert , 254

invert-screen , 141, 255
is-install , 139, 140, 255
is-remove , 139, 140, 142, 256
is-selftest , 139, 140, 142, 257
j, 257

key, 258

key? , 258

I, 259

I, , 259

1@, 259

lat+ , 259

lal+ , 260

Ibflip , 260

Ibflips , 260

Ibsplit , 261

lcc , 261

left-parse-string , b5, 262
line# , 262

Ipeek , 266

Ipoke , 266

Ishift , 267

Iwflip , 267

Iwflips , 267

lwsplit , 267

Ixjoin , 267

Writing FCode Programs for PCI—August 1996

mac-address , 268
map-low , 269

mask, 270

max, 270
memory-test-suite , 271
min, 271

mod, 271

model , 84,272

move, 273

ms, 273

my-address , 11, 273
my-args , 55, 274
my-parent , 43,274
my-self , 43,44, 47,274
my-space , 11, 275
my-unit , 57, 275
na+, 276
named-token , 277
negate , 277
new-device , 44,277
new-token , 278
next-property , 278
nip , 278

noop, 279

off , 285

on, 286
open-package , 48, 56, 286
or, 288

over , 289

pack , 289

parse-2int , 290
peer , 291

pick , 292

property , 84,294
r>, 295

r@, 295

rb! , 297

rb@, 297

reg, 298

reset-screen , 141, 301
rlt, 302

rl@, 302

roll , 303

-rot , 303

rot , 303

rshift , 303

rw! , 303

rw@ 304

rx! , 304

xX@, 305
sbus-intr>cpu , 306
screen-height , 306
screen-width , 307
set-args , 56, 311
set-colors , 140
set-font , 139, 140, 312
set-token , 313

sign , 314

span, 315

start0 , 315

startl , 17,316
start2 , 316

start4 , 316

state , 317
suspend-fcode , 319
swap, 320

throw , 321
toggle-cursor , 141, 322
tuck , 324

type , 324

u#, 324

u#>, 325

u#ts, 325

u., 325

u.r , 329

u/mod, 327

u<, 325

u<=, 325

u>, 326

u>=, 326

u2/ , 326

um*, 326

um/mod, 327

unloop , 327

upc, 329

user-abort , 329
versionl , 331

w!, 331

w,, 332

w@ 332

wa+, 332

wal+, 333

wbflip , 333
wbflips , 333
wbsplit , 333

window-left | 141, 334

window-top , 141, 334

within , 334
wljoin , 335
wpeek, 335
wpoke, 335
x!, 337
X, , 336
x@ 336
xa+, 337
xal+, 337
xbflip , 337
xbflips , 338
xbsplit , 338
xIflip , 338
xIflips , 338
xlsplit ~, 338
xor , 336, 338
xwilip , 339
xwflips , 339
xwsplit , 339
fcode-version2 , 17
files
opening, 225

find-device , 42, 46,57, 240
find-method , 47,49 to 51, 240

find-package , 47,240
finish-device , 55,241
fload , 14,18, 241
fontbytes , 139
format
FCode ROM image, 3
Forth
compile state, 6
interpret state, 6
stack, 6
tokenizing, 5
words, 5
forth , 243
frame-buffer-adr , 140

399

G L

get-inherited-property , 34 left-parse-string , 55
get-my-property , 34 linebytes , 140
Is , 34
H
h#, 14 M
headerless , 14, 21, 35, 247, 335 map-in , 155
headers , 14, 21, 35, 247, 335 map-out , 156
height , 140 mapping
hex, 14 packages, 57
methods
I /deblocker , 59
/disk-label , 61
ihandle, 47 /obp_tftp , 58
avoiding confusion with phandle, 49 Ca“ing other package methods, 49
initialized data, 45 executing, 47
insert-characters , 141 FCode for accessing, 49
insert-lines 141 instance-specific, 46
install-console , 22 package, 41
. static, 46
instance
arguments, 55 model, 84
creation, 42 my-address , 11
package, 42 my-args , 55
parameters, 55 my-parent , 43
instance , 45 my-self , 43,44, 47
instance chain, 43 my-space , 11
instance, package, 41 my-unit , 57
instance-specific
data, 45
methods, 46 N

"name" , 3,11
name
of property, 4,63

interpret state, 6
interpreting FCode, 3, 32to 33

invert-screen , 141 .
is-install , 139, 140 new-device , 44
1506429-1983-colors 140 ”Ota;'t‘:;k comments. 9
!s-remove , 139, 140, 142 not-last-image 20
is-selftest , 139, 140, 142 null modem cable, 27
nvedit commands, 281
K $nvalias , 281
keyboard, 258 $nvunalias , 283

nvalias , 280

400 Writing FCode Programs for PCI—August 1996

nvquit , 282
nvrecover , 282
nvrun , 282
nvstore , 283
nvunalias , 283
NVRAM parameters
setting, 21
nvramrc , 22, 24,282

@)

o#, 14
octal , 14
open, 53
Open Firmware command

dev, 46

device-end , 46
open-dev , 26, 44
opening disk files, 225
$open-package , 44,48 to 49, 56
open-package , 48, 56, 286
organizationally unique identifier, 12
Oul, 12

P

package instance, 41
package methods
close , 53,197
draw-logo , 220
install-abort , 252
offset , 285
open, 53, 286
read , 297
read-blocks , 298
release , 300
remove-abort , 300
reset , 53,301
restore , 301

ring-bell , 302
seek, 309

selftest , 53,309
translate , 324
unmap, 328

write , 336
write-blocks , 336
package, definition, 41
/packages , 47,57
/deblocker , 59, 204
/disk-label , 61,215
/obp-tftp , 58
opening packages in, 48
packages
accessing, 55
active, 42
addressing, 56
data, 42, 45
data definition, 54
FCodes for accessing, 48
instances, 42
mapping, 57
methods, 41, 52
properties, 41
(patch) , 291
patch , 291
PCI
configuration address header, 1
configuration registers, 1
device probing process, 3
expansion ROM, 1,3
expansion ROM base address
register, 1
PCI addressing, 156
pci-header , 19
pci-header-end , 19
pci-probe-list , 24
phandle, 47, 245

avoiding confusion with ihandle, 49

plug-in device drivers, 52
"power-consumption” , 3
power-on banner, 22
probe-all , 22

probe-self , 155

probing sequence
expansion bus, 23

modifying with NVRAM script, 24

programming style

401

402

FCode, 8to9

.properties , 34

properties
"#address-cells" , 11,69, 171
"#size-cells" , 11,69, 314
"address" , 69,171
"address-bits" , 69,171
"alternate-reg" , 70,174
"assigned-addresses” , 70
"available" , 711,176
"big-endian-aperture” , 71

"bootargs" , 186
"bootpath" , 186

"bus-range" , 71
"character-set" , 71,195
"class-code" , 71
"compatible” , 72,198
"depth" , 72,211
"device_type" , 72,213
"device-id" , 72
"devsel-speed"” , 13
"existing"” , 226
"fast-back-to-back" , 73

"has-fcode" , 73
"height" , 73,248

"interrupts” , 13,253

"intr", 253

"linebytes” , 74, 263
"little-endian-aperture” , 74
"local-mac-address” , 74,265
"mac-address" , 75, 268
"max-frame-size" , 16,270
"max-latency” , 76

"min-grant" , 76

"model" , 76, 272

"name" , 3,11, 77,276
"page-size" , 78,289
"power-consumption” , 3,78
"ranges" , 78, 296

"reg" , 3,11, 81,275, 299
"relative-addressing" , 300
"revision-id" , 83
"slot-names" , 83

"status" , 83, 317

"stdin" , 318

Writing FCode Programs for PCI—August 1996

"stdout" , 318

"translations" , 84
"vendor-id" , 84

"width" , 84, 333

address , 140

block or byte device, 101
depth , 140

display device, 65, 140

height , 140
is06429-1983-colors , 140
linebytes , 140

memory device, 66
memory-mapped buses, 156 to 158
modifying from User Interface, 57
network device, 66, 122
packages, 41

parent node, 67

PCI child node, 68

PCI parent node, 67

serial device, 131

width , 140

property

creation, 64, 84

decoding, 86

definition, 63

encoding, 85

modification, 84

property name, 4, 63

property value, 4,63, 85
property value array formats, 63
retrieval, 85

standard names, 65

property , 84
property list, 3

creation, 3

pwd, 34

rb! , 297

rb@, 297

"reg" , 3,11, 81, 275, 298
reset , 53

reset-screen , 141

resume, 206
reverse polish notation, 5

rlt, 302
rl@, 302
rw! , 303
rw@ 304
rx! , 304
xX@, 305
S

SBus addressing, 157

screen , 306

script, 22,24

see, 34, 36

select , 26, 37,309

select-dev , 26, 35 to 37, 44, 309
selftest , 53

w6

serial device, 131

set-args , 26,56

set-colors , 140
set-font , 139, 140
set-rev-level , 20
set-vpd-offset , 20
show-devs , 34
size

FCode ROM image, 3
"#size-cells" , 11,69

source , 315
source format
FCode, 5
space-bar, debugger command, 206
stack, 6
diagram, 6
operation, 6
stack comment
and colon definition, 7
stack comments, 9
notation, 9
standard methods
decode-unit , 46

standard support packages, 57

startl , 17
state , 317
state-valid ,
static data, 45
static methods,
stdin , 318
stdout , 318
support packag
support packag

standard support packages, 41
suppress-banner

sync, 321

T

test , 321
TFTP support,
toggle-cursor

317

46

e, 41
es

58
, 141

Jtokenizer , 19

tokenizer

description, 18

directives,
macros, 13
output, 18

14

tokenizer directives

Jtokenizer
.(, 163
[char] , 1
\, 167
Jtokenizer

, 19

95

, 22,319

, 19,323

alias , 173

char , 194
decimal
emit-byte
external

208

, 19,221

, 21,35,

false , 229
fload , 18, 241

headerless

, 21,35, 247, 335

228, 335

headers , 21, 35, 247, 335

hex, 248

not-last-image
octal , 284

offsetl6

, 286

, 20,279

403

404

pci-header , 19, 292
pci-header-end , 19, 292
set-rev-level , 20,312
set-vpd-offset , 20,313
tokenizer[, 19,323

tokenizer macros

", 160

() , 162
(u.) , 326
M, 163

.d, 204

.h, 247

/c* , 190
In* |, 276

1, 164

;, 164

<<, 165

>> 166

?, 166

?do, 219
?leave , 261
[T . 47,166
1-, 168

1+, 168

2-, 169

2+, 169
3drop , 220
3dup, 221
accept , 171
again , 172
allot , 174
ascii , 175
begin , 180
blank , 182
buffer: , 45, 187
cal+, 190
carret , 192
case, 192
constant , 201
control , 201

create , 203
d#, 203
decimal , 208

decode-bytes , 208
defer , 45,209

Writing FCode Programs for PCI—August 1996

do, 218

else , 221

endcase , 224

endof , 224

erase , 225

eval , 225

fcode-end , 17
fcode-versionl , 237

fcode-version2 , 17,237

field , 238

h#, 247

if , 250

leave , 261

linefeed , 263

loop , 265

nal+, 276

not , 279

o#, 283

of , 285

repeat , 300

s", 305

s., 305

space , 315

spaces , 315

struct , 319

then , 321

to, 322

true , 324

until , 328

value , 45,330

variable , 45, 331

while , 333
tokenizer[, 14,19
tokenizing, 5

U

unit-address, 275
unselect-dev , 27, 37,328
User Interface

$create , 203

$sift , 313

(patch) , 291

(see) , 309

*[, 162

*mod , 272

.adr |, 172

.calls , 192

.properties , 294

>in , 250

>number, 280

[, 166

[char] , 195

[compile] , 199

1. 167

2constant , 201

abort" , 170

align , 173

apply , 51,175

assign-addresses , 175

banner , 176

begin-package , 26, 32, 56, 180

boot , 185

browsing device nodes, 34
.properties , 34
dev, 34,212
device-end , 26, 34,212
get-inherited-

property , 34

get-my-property , 34
Is , 34
pwd, 34,295
see, 34,308
show-devs , 34
words , 34,35

byte-load , 33

char , 194

clear , 196

close-dev , 197

command line editor, 24 to 26
optional command completion

commands, 26

optional commands, 24
optional history commands, 25
required commands, 24

compile , 199

dev, 42,57

devalias , 212

device-end , 57

dl, 27to 31, 216

does>, 219

end0, 223

end-package , 26, 33,224

environment? , 225

even, 226

execute-device-method , 49,51
to 52, 226

exit? , 227

FCode download/test commands, 26

find , 239

find-device , 42, 46,57, 240

fm/mod , 242

help , 248

immediate , 250

init-program , 250

input , 251

install-console , 252

interpreting FCode, 32 to 33

io, 255

literal , 263

load , 263

Is , 267

m*, 267

make-properties , 268

modifying properties, 57

noshowstack , 279

open-dev , 44,286

output , 288

parse , 290

parse-word , 290

password , 290

patch , 291

postpone , 293

probe-all , 293

quit , 295

rb! , 297

rb@, 297

recurse , 298

recursive , 298

reset-all , 301

rl , 302

rl@, 303

rw! , 304

rw@ 304

rx! , 304

x@, 305

s", 305

405

s>d, 307 Windows Terminal

show-devs , 313 using with dl | 27
showstack , 313 window-top , 141
sifting , 314 word , 335
sm/rem, 315 words

source , 315 FCode. 5
state-valid , 317 Forth, '5
2:3?::5 , ,gféL? words , 34,35
stdout , 318

sync , 321

test , 321

test-all , 321

testing a device driver, 35 to 39
begin-select , 27,38,181
begin-select-dev , 26,38,181
execute-device-

method , 26, 38, 226
patch , 37
see, 36, 308
select , 26, 37,309
select-dev , 26, 35, 309
unselect-dev , 27,37, 328

-trailing , 324
u*, 325

unaligned-I! , 327
unaligned-l@ , 327
unaligned-w! , 327
unaligned-w@ , 327
word, 335

words , 335

using Windows Terminal, 27

VvV
value

of property, 4, 63, 85
value , 45

variable , 45
VMEBus addressing, 157

w

width , 140
window-left |, 141

406 Writing FCode Programs for PCI—August 1996

